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Abstract
The problem of the observable equilibrium domain structure (DS) in pure
antiferromagnets is investigated with the use of continuous elasticity theory.
It is shown that the difference between the bulk and surface magnetoelastic
strains causes imaginary ‘incompatibility elastic charges’ analogous to the
surface ‘magnetic’ charges in ferromagnets. The corresponding long-range
field is shown to contribute to the ‘stray’ energy of the sample that governs
the appearance of the DS, the contribution from the ‘elastic charges’ being
proportional to the sample volume. Competition between the elastic ‘stray’
field, which favours inhomogeneous strain distribution, and an external
field, which tends to make the sample homogeneous, provides a reversible
reconstruction of the DS under the action of the external magnetic field.

1. Introduction

The idea of antiferromagnetic domains was suggested by Néel [1] nearly 50 years ago to explain
the behaviour of the susceptibility of antiferromagnets (AFM) in external magnetic fields. Since
that time, numerous experiments have confirmed the existence of domains in such AFM as
NiO [2–4], CoO [5, 6], CoCl2 [7], CoF2 [8], YBa2Cu3O6+x [9, 10], Cr [11], UPdSn [12], and
MnTe [13], despite the difficulties in directly observing them. The experiments show not only
the presence of domain structure (DS), but also its redistribution under the action of an external
magnetic field or mechanical stress and reappearance after the field is removed. Such stability
and reversible behaviour of the DS in AFM, which undoubtedly reveals their thermodynamic
origin, is still not explained. While formation of domains in ferromagnets is promoted by the
reduction of magnetostatic energy, the AFM possess no local magnetization in the absence
of an external field and there seems to be no obvious counterbalance to the increase of the
free energy produced by the domain walls. Most of the theoretical papers in this field (see,
e.g., [14–16]) deal with weak ferromagnets with small but non-zero non-compensated local
magnetization or take the AFM DS as an artefact. Usually, the formation of the domains in
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Figure 1. Translational (a) and orientational (b) AFM domains. Arrows show orientations of spins
at each site.

AFM is related to local fluctuations of the AFM order at the Néel temperature with subsequent
pinning of the domain walls by lattice imperfections. Li [17] has attributed the stability of the
DS to the interplay between the wall energy and a gain in entropy of the walls, but his estimates
show that the entropy contribution to the free energy is much too small to compensate for the
wall energy.

In general, there are two types of domain in AFM—so-called translational, or collinear,
domains with an antiparallel orientation of the magnetic vectors in the neighbouring domains
(and separated by a change-of-step boundary, according to the Li [17] classification) and
orientational domains, for which the magnetic axes in different domains are non-collinear
(separated by a change-of-axis boundary). In the former case, sketched in figure 1(a), the AFM
domains cannot be physically distinguished unless there is an additional source of contrast,
such as the different environments of the magnetic atoms in MnF2 and CoF2 investigated
in [8, 18, 19], along with other exotic AFM. The latter case (figure 1(b)) is typical for crystals
which possess several crystallographically equivalent directions for the AFM vectors and where
corresponding magnetic domains can be associated with crystallographic twins.

A peculiar feature of the orientational AFM domains is that they show different
spontaneous strains and lattice distortions. In fact, this makes it possible to observe the
AFM domains by the x-ray topographic technique and facilitates optical observations due
to the contrast enhancement. The magnetoelastic nature of the orientational AFM domains,
claimed by Tanner and Safa [20,21] and experimentally proven in [2,16,22–24], opens up the
possibility of applying the approaches developed for the description of the transition-induced
microstructure in crystals that undergo a martensitic-like phase transition. The martensitic
phase transition is a diffusionless transition associated with a finite displacement of the atoms
in the unit cell. This transition usually has first-order nature and proceeds through the motion
of coherent interfaces. In the absence of external fields the product phase is twinned; the
twinned regions take the form of plane-parallel stripes with flat interfaces. The main feature of
the martensitic phase transition is that it is usually followed by the appearance of rather large
(up to 5–10%) spontaneous strains. In other words, temperature variation produces a kind of
‘plastic’ deformation which, as was pointed out by Olson and Cohen [25], differs from the
intrinsically unstable states associated with an elastic deformation. Formation of the domain
(twin) structure in this case is caused by incompatibility of lattice deformation between the
parent and martensitic phase at the internal interfaces (figure 2). Such a lattice-invariant
deformation produces a change of shape and reduces macroscopic stresses. Mechanical
twinning can also reduce macroscopic stresses which arise due to lattice misfit in polysynthetic
structures [26]. So, an interface produces a kind of restoring force which tends to conserve
the shape of the martensitic phase and gives rise to equilibrium DS.
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Figure 2. Formation of the twin structure in martensite. The square in region 1 is a sketch of a unit
cell of the parent phase, and rectangles 2, 3 represent unit cells in the deformed martensite region.

Figure 3. Incompatibility: continuity in the near-surface region (shaded) is locally corrupted below
the Néel point; it can be restored on average by twin formation. Arrows sketch the easy axes for
the AFM vectors.

On the other hand, martensites and AFM differ not only in the value of the spontaneous
strain (which for martensites is usually 1–2 orders of magnitude greater than for AFM), but
also in the absence of the internal transformation-induced interfaces in AFM. In the present
paper we argue that a sample surface, like an interface in the martensites, may be a source of
a ‘restoring force’ in AFM and can cause formation of an equilibrium DS. We also develop a
model which takes a broader view of our previous results [27,28] and allows us to describe the
recent observations [24, 29–33] of the macroscopic properties of AFM in external magnetic
fields.

2. ‘Stray’ energy

Due to the abrupt change in the atomic surroundings, a surface has properties which are strongly
or sometimes crucially different from those of the bulk. This distinction is intensified in the
course of a phase transition. For example, in AFM crystals a long-range magnetic order in the
bulk of the sample is preserved at substantially higher temperature than at the surface [34–36].
In addition, wide-ranging experimental findings concerning the elastic and magnetoelastic
properties of thin films and multilayers (see, e.g., [37–39]) make it possible to assume that the
elastic properties of the surface are also quite different. Thus, a surface could be considered as
a phase tightly bonded with the bulk, with its own elastic, magnetic, and other characteristics.
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Suppose that a sample goes through the Néel temperature. The AFM vectors which occur
in the bulk try to produce the spontaneous quasi-plastic strains û(0)(r) which would appear
locally in the case of homogeneous distribution. The more inert (with respect to appearance of
magnetization) surface is described by a different strain tensor û(S). The strain incompatibilities
that appear produce internal mechanical stresses that must be relaxed by additional elastic
strains û+(r), so the total strain with respect to the reference state is

ûtotal = û(0) + û+(r), (1)

and represents a compatible state of deformation. In the case where the distribution of the AFM
vectors in the intermediate region between the bulk and surface does not play a significant role,
we can introduce an incompatibility tensor η̂ as follows:

ηip(r) = −εiklεpmtn(S)k [u(0)lt − u
(S)
lt ]n(S)m δ′[n(S)(r − rS)], (2)

where εikl is the antisymmetric Levi-Civita permutation tensor and n(S) is a vector normal
to the sample surface. Defined as a Dirac delta-function, δ is non-zero in the close vicinity
of the surface; the prime means the derivative with respect to the argument. In what follows
we will set the surface strain to zero, û(S) = 0. This simplest approximation is applicable to
the temperature interval below the Néel point in which the surface is still non-magnetic and
to systems with small surface magnetoelastic coupling or non-softening elastic moduli. The
more general case of non-zero surface strains can be treated in an analogous way.

The incompatibility η̂ can be considered as a result of the presence of fictitious dislocations
with infinitesimal Burgers vectors continuously distributed at the surface. This concept of
magnetically induced quasi-dislocations was developed by Kléman [40] for the domain walls
inside ferromagnets. Then, we can apply Eshelby’s approach [41] for calculation of the
additional dislocation-induced strains û+(r). According to standard elasticity theory, the
function û+(r) must satisfy the equations

εiklεpmt
∂2u+

km

∂xl ∂xt
= ηip, (3)

div σ̂ + ≡ ∂σ +
ij

∂xj
= fV , (4)

with boundary conditions for the relaxed stresses at the sample surface:

σ̂ +n(S) = f (S). (5)

In equation (4) the stresses σ̂ + are related to the additional strains û+ by Hooke’s law. The
vectors fV and f (S) describe, respectively, the bulk forces and surface loads produced by
dislocations. Eshelby proposed calculating them as

fV = −div ˆ̂cûpar, f (S) = −n(S) ˆ̂cûpar, (6)

where ûpar is a particular solution of equation (3):

ûpar(r) = 1

4π

∫
V

dr1
η̂(r1)− 1̂ Tr η̂(r1)

|r − r1| , (7)

and ˆ̂c is a tensor of the bulk elastic moduli.
In the case of quasi-dislocations located mainly at the sample surface, we can express ûpar

as

ûpar(r) = 1

4π

∫
S

dS
(n, r − rS)

|r − rS |3 Û(rS) = − 1

4π

∫
d�r Û(rS), (8)
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where d�r is an increment of solid angle at which the surface point rS is seen from the given
point r. The expression for the tensor

Û(rS) ≡ û(0)(rS) + n(S) ⊗ n(S) Tr û(0)(rS)− n(S) ⊗ (û(0)(rS)n
(S))− (û(0)(rS)n

(S))⊗ n(S)

(9)

includes only those combinations of the spontaneous strain tensor û(0) which are tangential to
the surface at a given point rS . They can be treated as a tensor of additional deformations that
compensate for the incompatibility between the surface and the bulk strains or, by analogy
with the physics of magnetism, as a tensor of ‘elastic charges’ located at the surface.

For practical applications it is more convenient to use a variational method in which an
optimum strain distribution corresponds to the minimum of a functional:

� =
∫
V

fbulk(r) dr + Fstray + Fsurf , (10)

which, by analogy with magnetostatics, comprises the shape-dependent stray energy of ‘elastic
charges’:

Fstray = 1

4π

∫
V

dr

∫
S

d�r û
+(r) ˆ̂cÛ(rS), (11)

where Û(rS) is defined in (9).
It can easily be verified that the expressions (4), (5) are Euler-type equations for the

functional (10).
In equation (10) we have also taken account of a free-energy density fbulk of the sample

which may include elastic as well as magnetic contributions. The last term, given by the
equation

Fsurf =
∫

dS [αS + β̂S ûS(rS) + 1
2 ûS(rS)

ˆ̂cSûS(rS)], (12)

describes the surface energy [42]. Coefficients αS and β̂S characterize the surface tension;
ˆ̂cS is the tensor of the surface elastic moduli. In the general case, ˆ̂cS is different from the
corresponding bulk tensor, and the surface strain tensor ûS(rS) is supposed to have only
tangential components. The surface energy (12) defines equilibrium surface strains below the
Néel point and it is also important for the setting up of the equilibrium shape of the sample
(it establishes the minimum surface area at a given volume). In the approximation considered
(ûS = 0), the surface elastic moduli are supposed to be much greater than those of a bulk
(formally, ˆ̂cS → ∞).

3. Equilibrium domain structure

The inhomogeneous equilibrium state of AFM may be found by minimizing the functional (10)
with respect to the independent magnetization components and elastic displacements. Without
preliminary information about the features of the DS, this problem becomes very complicated,
especially for the cases treating rearrangement of the domains under the action of external
fields. Additional complication as compared e.g. to the ferromagnets case arises from three-
dimensional non-locality and tensor character of the elastic ‘charges’ and fields. Substantial
simplification can be achieved if we assume that the characteristic length of the DS is much
smaller than the size of the sample. In this case the main contribution to the stray energy arises
from macrostresses:

〈σ̂macro〉 = 1

V

∫
dV ˆ̂cûpar (13)
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related to the averaged spontaneous strains

〈û(0)〉 = 1

V

∫
V

dr û(0)(r). (14)

Further calculations require an outline of the sample shape. For a typical case of a nS-oriented
thin plate, ûpar is homogeneous and, according to (6), fV = 0. An obvious solution of
equations (4) and (5) is û+ = −〈ûpar〉 and the stray energy of the macrostresses (13) takes the
form

Fstray = L2d〈Û〉ˆ̂c〈Û〉,
〈Û〉 ≡ 〈û(0)〉 + nS ⊗ nS Tr〈û(0)〉 − nS ⊗ (〈û(0)〉nS)− (〈û(0)〉nS)⊗ nS.

(15)

In (15) d is the thickness of the plate, which is much less than its transverse size L. It is also
evident from relation (15) that the stray energy is non-negative, Fstray � 0, and in the absence
of an external field it can only be reduced by zeroing of the average strains.

The value of Fstray (15) depends upon the shape of the sample. In our case, it depends on
the orientation of the surface normal with respect to the crystallographic axes. If the surface
normal nS is oriented along the principal symmetry axisCn of the sample (n = 3, 4, or 6), then
the macroscopic symmetry of the sample coincides with the crystallographic symmetry and
must be restored below the phase transition point by formation of the DS (in accordance with
the Curie principle which states that the tensor characteristic of the cause must coincide with
the tensor characteristic of the effect; thus, the temperature which causes the AFM transition
may produce on average only a scalar effect). So, all the types of domain should be equally
represented.

The above calculations show convincingly that the appearance of the homogeneous
deviatoric (shear) strains in the finite-size sample can give rise to a considerable energy increase
and thus is not advantageous. There is a close analogy between the appearance of the long-
range elastic fields in thermoelastics and dipole fields in ferromagnets (a similarity between the
equations for electromagnetic fields in substances and equations of elasticity theory was noticed
by de Wit long ago [43]). The case of weak ferromagnets needs special treatment because the
DS in corresponding compounds can be formed due to competition of demagnetization and
twinning factors. However, this problem is beyond the scope of this paper.

To continue the analogy with the problem of ferromagnetic domains, we should emphasize
some properties of the stray (twinning) field. First, the energy contribution resulting from
the ‘incompatibility charges’ located at the surface (see (15)) is proportional to the sample
volume V and thus, in principle, is independent of sample size. Second, the additional strain
field (8) is scaling invariant. In other words, the additional strain distribution inside the sample
depends only upon the angle at which the surface is seen from a given point. So, isomorphic
transformation of the sample does not change the additional strain distribution.

From the above arguments we can draw a rather general conclusion: in the case of
a temperature-induced phase transition the macroscopic symmetries of the sample in low-
and high-temperature phases are the same. If the transition is symmetry breaking (on the
microscopic scale), i.e. the microscopic order parameter is conjugated with non-isomorphous
striction and produces strains that locally reduce the symmetry of the crystal lattice, then
macroscopic symmetry is restored due to the onset of the DS with differently oriented strain
tensors. In the general case, the macroscopic symmetry of the sample can be lower than
the crystallographic one due to previous treatment of the sample, experimental conditions,
mechanical load, etc. In this case the DS of the AFM phase may contain more domains of a
certain type or may even be single domain.

Another important question that arises while analysing expression (10) is that of whether
the onset of twin (domain) structure is indeed thermodynamically advantageous. The point is
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that the inhomogeneous strain distribution gives rise to an increase of the full free energy due to
the contribution of the domain walls. In order to show that the stray-energy gain is greater than
the loss from the domain wall contribution, let us follow the method applied to ferromagnets
and consider the DS consisting of two alternating types of domain, characterized with the strain
tensors û1 and û2; the period of the DS dDS is much smaller than the plate thickness, dDS � d.
Different domains produce ‘charges’ of opposite signs. In the near-surface region, at distances
of the order of dDS (in accordance with the empirical St Venan principle), the corresponding
stress field is not compensated and it contributes to the free energy as follows:

Fch = L2dDSξ1ξ2(û1 − û2) ˆ̂c(û1 − û2) cosϑ, (16)

where ϑ is the angle between the plate surface and the domain (twin) interface, ξ1 (=1 − ξ2)

is the volume fraction of the domain of the first type.
Domain walls (interfaces) also contribute to the free energy:

FDW = L2σDW
d

dDS
, (17)

where σDW is the surface energy of a single domain wall.
Comparison of the above equations shows that the energy of the domain walls (17)

competes with the short-range contribution from the ‘elastic charges’ (16) and thus defines
an equilibrium DS period:

d
opt
DS =

√
σDWd√

ξ1ξ2(û1 − û2) ˆ̂c(û1 − û2) cosϑ



√
σDWd

Fel
. (18)

So, the contribution from the inhomogeneous part of the strains and the short-range
periodic ‘charge’ distribution,

Finh ∝ FDW(d
opt
DS ) ∝ V (û(0) ˆ̂cû(0))dDS

d
∝ Fstray

dDS

d
,

is proportional to the ratio of the DS period and the specimen thickness. If dDS/d � 1, Finh

is much smaller than the stray energy (15) of a homogeneously deformed sample, which is
proportional to the sample volume. In this case, the onset of the DS in AFM is promoted
by the reduction of the stray energy which counterbalances the energy increase related to
the inhomogeneous strain distribution. In the opposite case of a thin sample, dDS ∼ d, the
formation of the DS is unfavourable and the sample is single domain below the Néel point.

4. Domain structure in an external magnetic field

The approach developed is especially helpful for the description of the variation of macroscopic
parameters under the action of an external magnetic field. For the sake of definiteness, let us
consider a thin plate of a collinear AFM with the plane normal parallel to the principal crystal
axis. A good example of such an AFM is CoCl2 (the symmetry group is D3d), underdoped
YBa2Cu3O6+x at x � 0.3 (the symmetry group is D4h) or cubic KNiF3 and KCoF3 single
crystals. The corresponding contribution to the stray energy (15) is

Fstray = L2d{ 1
2c11[〈uxx〉2 + 〈uyy〉2] + c12〈uxx〉〈uyy〉 + 2c66〈uxy〉2}, (19)

where the z-axis is oriented along the plate normal.
The multidomain state of AFM in an external magnetic field H can be considered as a

mixture of different phases with chemical potentials µk (neglecting the small demagnetization
effects), which can be expressed as
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Figure 4. Smearing of the spin-flop transition for tetragonal AFM. In zero magnetic field the
two domains (depicted by two-sided arrows) are equally represented. Below the field of the
‘monodomainization’, H < HMD, the fraction of unfavourable domains diminishes; the whole
sample is slightly distorted. At HMD < H the sample is single domain and only rotation of AFM
moments is possible.

µk = Ean +
M0

2HE

(H · lk)
2 + ûk

ˆ̂
λmelk ⊗ lk +

1

2
ûk ˆ̂cûk. (20)

Here, Ean is the magnetic anisotropy energy, M0 is the saturation magnetization, 2HE is the
magnitude of the spin-flip field of exchange nature, lk and ûk are the vector of the AFM and
the spontaneous magnetostriction tensor, respectively, in the kth domain (k = 1, 2, 3 for

CoCl2 and k = 1, 2 for YBa2Cu3O6+x , KNiF3, and KCoF3), and ˆ̂
λme is the rank-4 tensor of

the magnetoelastic coefficient. In the case of movable domain walls the volume fraction of
the kth domain ξk is an internal thermodynamic variable related to µk , that can be found by
minimizing the free energy:

� = L2d
∑
k

ξkµk + Fstray. (21)

The averaged strain tensor in (19) is calculated as 〈û〉 = ∑
k ξkûk .

Standard analysis of equilibrium states (for details see [27, 28]) reveals the similarity
in behaviour of the magnetoelastic DS of AFM and magnetic DS of ferromagnets. If the
magnetic field is applied along one of the easy axes for the AFM vector (see figure 4), the
domain walls move so as to increase the fraction of the ‘favourable’ domains (with AFM vectors
perpendicular to the field direction) at the expense of the ‘unfavourable’ domains (with AFM
vectors parallel to the field direction). So, instead of a drastic spin-flop transition one should
observe smooth variation of the macroscopic properties (magnetization, magnetostriction)
due to redistribution of the DS. One example was reported in [7] for the magnetostriction
of CoCl2. In this process the chemical potentials of all the domains are kept equal and the
effective magnetic field remains zero. Unfavourable domains are swept out of the sample when
the external magnetic field attains the value

|H| = HMD ≡ λeffM0

√
HEM0

ceff
= u(0)

√
HEceff

M0
, (22)

where λeff and ceff are certain combinations of magnetoelastic and elastic constants that
should be calculated taking account of the concrete symmetry of the crystal. The quantity
u(0) = (λeffM

2
0/ceff) in (22) stands for the absolute value of the local spontaneous shear strain.

The domain fraction depends quadratically on H and saturates or vanishes at H = HMD. For
example, for YBa2Cu3O6+x , KNiF3, or KCoF3,

ξ1,2 = 1

2

(
1 ± H 2

H 2
MD

)
. (23)



Magnetostriction and magnetoelastic domains in antiferromagnets 3967

The characteristic field of monodomainization HMD is temperature dependent due to the
temperature dependence of M0(T ). Taking into account that HE ∝ M0(T ), one obtains
from (22) that

HMD ∝ M2
0 (T ). (24)

Below the field of monodomainization the average shear strain

〈u(0)〉 = λeffM
2
0

ceff

(
H

HMD

)2

= u0

(
H

HMD

)2

(25)

follows the quadratic field dependence normalized by the factor of the monodomainization
field value. Thus, the low-field dependence of any macroscopic property which depends upon
the relative fraction of the elastic domains should follow the law of ‘corresponding states’,
i.e., should coincide for different substances in the reduced coordinates H/HMD for the case
H � HMD.

To make an appropriate comparison with the experimental data, one should take into
account the field-induced isomorphous contribution to the observed macroscopic value. For
example, in the case of magnetostriction, an observed elongation of the sample in the direction
N relative to the crystallographic axes can be expressed as

δ-

-
= N(〈ûshear〉 + ûiso)N , (26)

where ûiso is the isomorphous striction:

ûiso ∝
(
H

HE

)2

. (27)

The first term in (26) is significant at low field values, below the monodomainization field
H < HMD; the second one governs the field dependence in the monodomain phase up to the
Néel point.

5. Discussion

The theoretical model developed allows us to describe appropriately a great deal of
experimental data. In table 1 we compare characteristic fields of monodomainization calculated
from the formula (22) and experimentally established values for different substances. In KNiF3

and KCoF3, Safa and Tanner [20] observed directly a reversible displacement of the domain
wall under the action of the magnetic field. The wall displacement x which could be associated
with the domain fraction was found to increase as

x ∝ H 2 −H 2
th

H 2
cr −H 2

th

, (28)

and the experimentally established values of the critical and threshold fields were, respectively,
Hcr = 1.65 T and Hth = 0.3 T for KCoF3 and Hcr = 0.4 T and Hth = 0.1 T for KNiF3. The
critical field Hcr is associated in table 1 with the field of monodomainization HMD. The
threshold field at which the domain walls start to move depends upon the activation energy
and could not be estimated in the present model.

Analogous observations of the S-type domain structure in NiO were made by Yamada [4].
The characteristic field is evaluated as the field at which one system of the domains disappears.

Observations of redistribution of the DS in CoCl2 AFM were made indirectly, on the basis
of magnetostriction versus magnetic field dependence, by Ryabchenko and co-workers [24].
In this case, the monodomainization field is determined from the saturation of the low-field
magnetostriction.
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Figure 5. The temperature dependence of the ‘monodomainization’ field HMD for YBa2Cu3O6.3,
constructed using the data from [31,32]. The inset shows a plot of M2

0 (T ) calculated according to
the data from [9].

Table 1. Characteristic values and monodomainization fields for different AFM. The quantity û(0)

denotes the magnetostriction; M0 is the magnetization value.

AFM u(0) M0 (kG) HE (T) ceff (GPa) H theor
MD (T) H

exp
MD (T) References

KCoF3 3 × 10−3 0.5 200 30 2.0 1.65 [20, 44, 45]
KNiF3 ∼3 × 10−5 0.3 280 30 0.5 0.4 [20, 44, 45]
CoCl2 4 × 10−4 0.32 3.2 34.7 0.33 0.2–0.3 [7, 24, 29]
NiO 9 × 10−5 1.02 1000 109 0.66 0.7–0.8 [4, 23, 46, 47]

Table 1 shows a rather good agreement between the calculated and experimentally
observed values of the monodomainization field, which corroborates the magnetoelastic origin
of the DS.

Further confirmation of the model can be found by applying it to the description of the field
dependence of the magnetoresistance of the YBa2Cu3O6.3 compound over a wide temperature
range. Magnetoresistance is a macroscopic characteristic; it is described by a symmetric
second-rank tensor. Therefore, its field dependence is the same as that for the magnetostrictive
strain tensor. We have processed the data kindly provided by Lavrov (and published in [31,32])
in the following way: first, we subtracted a high-field background (27) of exchange nature
and, then, we approximated the magnetoresistance ρxx −ρyy ≡ /ρ using a formula analogous
to (25):

/ρ(H)

ρ0
= /ρ(0)

ρ0

(
H

HMD

)2

. (29)
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Figure 6. The dependence of the longitudinal component of the magnetoresistance of YBa2Cu3O6.3
on the field H ‖ a and temperature, representing the law of ‘corresponding states’. This graph
was constructed using the data from [31, 32] plotted in reduced coordinates: /ρrel = /ρ//ρ0,
H/HMD.

Figure 5 shows the temperature dependence of the thus-calculated field of monodomainization
HMD. The inset gives the plot of M2

0 (T ) calculated according to the data from [9]. It can
be clearly seen that below 150 K the monodomainization field HMD and M2

0 (T ) follow
the same linear temperature dependence, in accordance with theoretical prediction (24).
Deviations from the linear dependence observed at higher temperatures could be explained
by the influence of defects. The defects pin the domain walls and diminish the fraction of the
mobile domains participating in the redistribution of the DS. At low temperature the defects
are immobile and thus give rise to a systematic error (which is the same for all temperatures)
in the monodomainization field compared with the ideal theoretical value (24). At higher
temperatures the mobility of the defects can be high enough to allow relaxation processes. In
this case a fraction of the pinned domain wall can be essential and the characteristic field of
monodomainization would be defined by reorientation processes, i.e., by the value of the spin-
flop transition field. Anyway, change of the temperature dependence of the monodomainization
field indicates change of the mechanism that governs the formation of the equilibrium DS.

Figure 6 presents the field dependence of the magnetoresistance in the reduced coordinates
/ρ(H)//ρ(0),H/HMD, which illustrates the law of ‘corresponding states’ (25) for the same
compound. All the curves, over a wide temperature range (below 150 K), are very close to
each other. Consequently, they are governed by the same mechanism.

6. Conclusions

The main results of the paper can be formulated as follows:
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(1) The equilibrium DS that arises in the course of the phase transition into the AFM
state results from the finite-size effects closely related to the properties of the sample
surface. The absolutely rigid surface produces the imaginary ‘incompatibility elastic
charges’ whose long-range field contributes to the energy of the sample, the corresponding
contribution being proportional to the sample volume and thus providing the twinning
effect.

(2) The contribution from the inhomogeneous distribution of the strain below the phase
transition point is proportional to the DS period and in the case of large samples is
vanishingly small.

(3) The elastic stray energy is the reason for the onset of the equilibrium DS in the easy-
plane collinear AFM. The domain distribution can be regulated in a reversible way by the
external magnetic field.

(4) The low-field dependence of the macroscopic parameters should be the same for different
samples if compared in the reduced coordinates H/HMD (the law of ‘corresponding
states’).
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