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Effect of Impurities on Tunnel Conductance in Finite Voltage and Temperature
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Transport phenomena through a tunnel junction in the
presence of impurities in the insulating layer are investi-
gated in the finite temperature and finite bias voltage.
We have found that the effect of the temperature on
the tunnel conductance in the non-linear current-voltage
(I — V) characteristics is smaller than that in the linear-
response case.
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1. Introduction

Spin-polarized transport phenomena in ferromag-
netic metal(FM)/insulator/FM tunnel junctions have at-
tracted current interest. The spin-polarized tunneling
studies have been performed in order to access infor-
mation about spin-dependent electronic states. In re-
cent years, the transport phenomena in such systems are
studied extensively, and large magnetoresistance ratio as
much as 30 % has been reported in Fe/Alzo;;/Fel] and
CoFe/Al,03/Co.2) Although a great progress has been
made in the experimental study, there remain some un-
solved problems about tunnel conductance and tunnel
magnetoresistance (TMR), e. g¢., 1) thickness and barrier
height of insulating layer dependence, 2) sample depen-
dence, 3) temperature dependence, and 4) bias depen-
dence. These problems are more or less related to the
randomness in each layer.3—%) Several theoretical works,
such as Julliere®) and Maekawa and Gafvert,”) associated
with experiments on TMR have been done. The study
of Maekawa and Gafvert has assumed incoherent tunnel-
ing, in which the randomness could be included implic-
itly, however, it is not able to show how the randomness
affects the TMR. Recently, Itoh ef al. proposed a micro-
scopic method which can treat the randomness explic-
itly to clarify the effect of the randomness on the tunnel
conductance and TMR in the linear response regime.®)
They have performed numerical simulations for finite size
clusters with the randomness and calculated the tunnel
conductance and TMR. They showed that the direct cal-
culation of the tunnel conductance is sufficiently effective.

In this study, we have used a microscopic model which
can be applicable to the complex structure of the sam-
ple geometry under finite bias voltages. We constracted
the model by extending that proposed by Itoh et al®
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In spite of the importance of studying transports under
the finite bias voltages, theoretical approaches seem to
be still in a developing stage because of the difficulty
in treating the nonequilibrium quantum systems. In
the previous study, we presented the numerical method,
which can treat the non-linear response, making use of a
recursive Green-function method based on the Keldysh
formalism.®) Using this method, in the present study, we
have performed numerical calculations to investigate the
non-linear current-voltage (I — V') characteristics for var-
lous sample geometry containing tunnel junction. We
have also investigated the effect of the randomness in
the insulating layer on the current. We concentrate our-
selves on the paramagnetic tunnel junctions for simplicity
throughout this work.

2. Model and Method

We consider a metal/insulator/metal trilayer struc-
ture, in which the parameter [ is introduced as a label
of the layer in z-direction. The regions where ! < 0 and
! > N + 1 are the semi-infinite metallic leads and the
region where 1 <1 < N is the insulating layer (central
region). The lattice structure of the system is taken to
be simple cubic with the lattice constant a and the (001)
orientation of the layers is taken as the stacking direction
(z-direction). The thickness of the insulating layer is Na
and the cross section of the system is Ma x Ma. The
periodic boundary conditions are adopted in the z— and
y—direction. The parameter M is set to be nine in this
work. We use a single-orbital tight-binding model with
a nearest neighbor hopping term and an on-site delta
function-like potential term. The Hamiltonian % is given
as

Ho=—t Y (deop+He)+ Y Vil ey
<@, (11> il

N
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1
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where r; and ! denote the positional vector in z-y planes
and the layer index in z-direction, respectively, and CII,
is the creation operator for an electron at the site (ri, ).
The on-site potential energy Vi(r;) depends on atom
which occupy the site (r;,{). The last term appears
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when the bias voltage V along the z-direction is ap-
plied to the central region (insulating layer), and we
assume the eclectrostatic potential to be ® = eV in
the left lead, and ®; = 0 in the right lead. In the
central region, for 1 < I < N, it is assumed to be
@ = eV(N +1—10)/(N+1) when the electric field
1s uniform.

The total current flowing along the z—direction, in
which the electric field is applied, can be expressed
in terms of the retarded (+) and advanced (-) Green
functions®—11)

Lot = %/dw (f = fr) Te [Ty G*H(1, N) Tr G-(N, 1],
(2)

where f; g = [e(w—#L.R)/ksT 4 1]7! with T being tem-
perature p; and pugp being the chemical potentials in
the left and right leads with p; = ug + eV. kg
is set to be unity. Here Tr denotes the trace for
M? x M? matrices, I} = it? [G}(0) — G7(0)], and
Ir = it [GR(N + 1)~ GR(N +1)] with GE(0).and
G7(N + 1) being the Green functions for the edge of
the unconnected leads on the left and right. G*(I,m)
is the interlayer Green’s function, i.e., an {-m element of
the Green’s function operator G = (w =+ i0 — H)~1. The
interlayer Green’s functions are calculated numerically
by recursive Green’s function technique. The detailed
description for the calculation of the interlayer Green’s
function is given in ref 9.

3. Numerical results

Now we discuss the transport phenomena through an
insulating layer. In what follows, we take the transfer
integral ¢ as a unit of the energy. The origin of MR COI-
responds to —6t. For computing the nonequilibrium cur-
rent, the integral in Egs. (2) is replaced by the Simpson’s
sum, and the mesh is taken to be typically Aw = 1075, .
We first consider a system including a single impurity
inside the insulating layer. The thickness of the insu-
lating layer is set to be N = 3 in this single impurity
case. We take the on-site potential energy Vi(r;) = 0 for
I < 0,1 > 4. Inside the insulating barrier (1<1<3),
Vi(r:) is chosen to the barrier height 7¢, except the impu-
rity site. At the impurity site, Vj(r;) is taken to be zero.
The position of the impurity in z direction is the center
of the insulating layer, i.e., ! = 2. We have calculated the
total current as a function of up for various temperatures
as shown in Figs. 1 (a) and (b). As can be seen from
Fig. 1 (a) a sharp peak appears at ug = 5.1 and T' = 0
for the linear response case at eV = 0.001. This is due to
the resonant tunneling occurring through a local energy
level constructed by the single impurity, which becomes
broader as the temperature increases. In the non-linear
response case (at eV = 0.5), where I — V characteristic
is non-linear, the structure of the peak changes
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Fig.l up dependence of the current for the single impu-
rity case. The bias voltage eV applied is (a) 0.001 and (b)
0.5. The thick solid, dotted, dashed, and thin solid curve

represent the calculated current at 7' = 0, 0.025,0.05 and
0.1, respectively.

considerably, as shown in Fig. 1 (b) at T = 0. In this
single impurity system, the most current flows through
the local impurity, and hence, the total current remains
unchanged during the local impurity level lies between
#r and py. In other word, the value of the trace in eq. 2
is almost constant in this case. In this T = 0 case, the
current becomes approximately

~ L) 0y 1y G (1, N) I G- (V1))

= H____""(“L; M) (g gty (3)

where £ is the transmission matrix through the insulat-
ing layer. Since Tr (¢ t!) is approximately constant due
to the single resonance, L,y ~ e(ur — ur)/h x const.,
if the impurity level exist between up and pr, other-
wise ;44 ~ 0. Therefore, we can see the nearly rectangle
shape in the current curve at T = 0 [see Fig. 1 (b)]. As
the temperature increases, the shape of the current curve
gradually approaches that seen in Fig. 1 (a) at T = 0.1
[see Fig. 1 (b)], although the peak values of the current
differ greatly. We also shows the up dependence of the
current at T' = 0 for various bias voltages in Fig. 2.
As the bias voltage increases, the peak becomes broader,
and finally the rectangle shape can be seen.

Next, we discuss the tunnel conduction through an in-
sulating layer containing random impurities. We use the
simple model for considering the randomness which can
be seen in the experiment. In the present case, the lo-
cation of the impurities in the insulating layer are deter-
mined by the uniform random numbers. The thickness
of the insulating layer is taken to be N=5 in the follow-
ing calculations. We take the on-site potential energy
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Vi(r;) = 0 for the impurity again and the impurily con-
centration 1s ¢ = 0.1.

Current(e/h

R
Fig.2 ppr dependence of the current. The current scale in
the vertical axis is made logarithmic. The applied bias
voltage eV is (a) 0.001 and (b) 0.5. The thick solid, dot-
ted, dashed, and thin solid curves show the calculated
currents at el = 0.001,0.01,0.05 and 0.5, respectively.

0.002——————— 0.6—————
- (@) {

<
kS
€
g
3 |
O

A

1

1 L " " 1 " 1 "
G4 56 8 14 5 s
HR

Fig.3 pr dependence of the current for the random impu-
rity case. The bias voltage eV applied is (a) 0.001 and (b)
0.5. The thick solid, dotted, dashed, and thin solid curves
represent the calculated currents at 7' = 0,0.025,0.05
and 0.1, respectively.

Figures 3 (a) and (b) give the typical examples of the
{p dependence of the current for {a) eV = 0.001 and (b)
eV =05at T =0,0.025,0.05,0.1 in the random impu-
rity cases. The position of the impurity sites are same
in both cases. In the linear response case at ¢!/ = 0.001
[see Fig. 3 (a)], sharp current peaks can be seen, which
1s due to the resonant tunneling by the impurity levels.
This sharpness of the peak structure of the current curve
disappears rapidly with increasing temperatures [see Fig.
3 (a)]. The peak positions can be determined by the rela-
tive location of the impurities. In the non-linear response
case at eV = 0.5, the shape of the curve structure of the
current even at 7' = 0 resembles that scen in Fig. 3 (a)
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at T'= 0.1. This feature is much different from that in
the single impurity case. The curve structure at 7' = ¢
in el = 0.5 is almost kept at 7" = 0.1, At 7 = 0 in
the non-linear case at eV = 0.5, many impurity levels
are present beltween pp and pg so that the averaging
takes place by the summation of the currents contributed
from many umpurity levels. Hence in this case of random
multi-impurity levels the effect of the increase of the bias
voltage on the curve structure resembles that of the tem-
peratures.

4. Summary

In summary, we have investigated the transport phe-
nomena through a tunnel junction containing impurity
atoms. We have investigated the bias voltage and tem-
perature dependence of the non-linear I — V character-
istics by using the recursive Green function method. We
have found that the effect of the temperature on the
tunnel current in the non-linear I — V characteristics is
smaller than that in the linear-response case. We also
found that the peak shape of the current at 7' = 0 and
eV = 0.5 for the single impurity case is much different
from that for the random impurity case.

This method can be extended for investigating TMR
and the result of the study on the effect of the bias voltage
and temperature on TMR will be presented elsewhere.
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