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Abstract

This work deals with the mechanisms of electronic transitions induced by low-energy positrons. For isolated atomic

systems we discuss the role of successive binary collisions, the so-called Thomas mechanisms, between the positron, the

excited electron and the atomic core. Furthermore, we consider transfer processes in which one of the charged particles

is trapped in a low-lying continuum state of one of the reaction participants. In the second part of the paper, we in-

vestigate the various pathways for the secondary-electron emission from metallic surfaces following the bombardment

by low-energy positrons. From a formal analysis it is shown that the probability rate for the production of an electron±

positron pair is connected to the interacting electron±positron two-particle Green operator. The scattering of the in-

teracting positron±electron subsystem from the crystal potential is treated and it is pointed out that a di�raction of the

electron±positron pair as a whole might take place leading to characteristic di�raction pattern. The analysis is sub-

stantiated by numerical studies for the secondary electron emission from Cu(0 0 1) and Fe(1 1 0) (BCC) samples. Ó 2000
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1. Introduction

The utilization of low-energy positron beams
for the study of electronic transitions is a routine
procedure in fundamental research as well as in
material science. For example, the positron-impact

ionization of isolated atomic systems leads to a
®nal continuum state consisting of a positron and
an electron moving in the ®eld of the residual ion.
The spectra of the positron and the electron can be
employed as a probe for the dynamics of this
correlated few-body scattering state. Generally,
the motion of few charged particles above the total
fragmentation threshold depends on the charges,
masses, energies and momenta of the interacting
particles. The mass dependence can be probed,
e.g., by contrasting the ionization cross-sections
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for the impact of an equivelocity proton and
positron beam. In addition, for a de®nite amount
of energies and momenta of the interacting
continuum particles, the open reaction channels
as well as the total potential surface can be
varied using particle and anti-particle projectiles.
This is clearly seen by comparing the electron-
impact ionization cross-sections with those due
to positron impact. For example, contrasting the
®nal channel achieved upon positron impact
with that resulting from electron-impact ioniza-
tion (two electron in the double continuum of a
residual ion), two distinctive di�erences can be
noted:
1. The total potential surface is markedly di�erent

in both cases [1]. This results in completely dif-
ferent dynamics, in particular when all particles
are close to each other.

2. The indistinguishability of the two electrons
leads to characteristic exchange e�ects in case
of an electron beam (the cross-sections are sta-
tistical mixtures of triplet and singlet scattering
cross-sections). While this e�ect is absent when
using positrons, an additional channel opens,
namely that of positronium formation.

On the other hand, classical binary scattering
processes are mainly dependent on the masses and
momenta of the colliding particles, i.e., whenever
quantal e�ects (including exchange in case of
electron beams) are su�ciently small with respect
to those arising from classical binary encounters
we can expect similar results when using electron
or positron beams. This is usually the case for high
energies and large separation of the collision
products. The importance of the multi-step binary
encounters in the positronium formation channel,
in particular, and for collision processes in general
is well documented [2±10]. In this work we carry
out a systematic study of the role of sequential
binary collisions in the positron-induced ioniza-
tion of atomic systems.

It is well established that the cross-section for
heavy-particle impact ionization of atoms shows
dramatic changes when the ionized electron is
ejected into a low-lying continuum state of the
scattered projectile [11±22]. For positron impact
such e�ects are also anticipated [10,23±30] to show
up in the secondary electron spectrum and have

been con®rmed by a recent experimental and
theoretical study [31,32]. We point out in this work
that in fact whenever one particle approaches one
of the reaction partners the cross-section decreases
or enhances according to the available density of
states.

These various aspects of the ionization of
atomic systems will be quanti®ed and illustrated
by numerical studies in Section 2.

In Section 3, we envisage the secondary electron
emission from metallic surfaces upon the distur-
bance by an incoming low-energy positron beam.
Low-energy positrons have long been employed
for the investigation of the electronic and crystal
structure of solids and surfaces as well as for the
investigations of dislocations and crystal lattice
defects [34±48]. As stated above, positron beams
have an advantage against electrons in that ex-
change e�ects are absent. In addition, due to their
positive charge positrons feel a repulsive crystal
potential, in contrast to electrons. This results in a
refractive index less than unity for positrons inci-
dent in a glancing mode onto ordered surfaces.
This makes positron beams predestinate for the
investigation of adsorbates and surface e�ects. The
positronium formation channel can also be utilized
for the investigation of material properties by an-
alyzing the angular correlation of the radiation
following the annihilation of the positronium and/
or the modi®cation of the annihilation parameters
due to trapping in crystal lattice defects. In this
work, we concentrate on a situation in which a
monoenergetic positron beam impinging onto a
metallic surface produces secondary electrons.
After the excitation process the positron and the
vacuum electron are detected in coincidence and
their energies and emission directions are deter-
mined. The theoretical formulation of this prob-
lem is given here for the ®rst time. It is shown that
the production of an electron±positron pair is
dependent on the interacting electron±positron
two-particle Green operator. In re¯ection-mode
emission, the scattering of the interacting posi-
tron±electron subsystem from the crystal potential
is indispensable. Therefore, we present here a
simple treatment in which the crystal potential is
approximated by a mu�n-tin potential and eval-
uate the scattering amplitude of the electron±
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positron system from this potential. It is found
that a di�raction of the electron±positron pair
might take place resulting thus in characteristic
di�raction pattern in the observed spectrum. The
analysis is complemented by numerical studies
using Cu(0 0 1) and Fe(1 1 0) (BCC) target sam-
ples. Unless otherwise stated, atomic units (a.u.)
are used throughout.

2. Mechanisms for the ionization of atomic systems

by positrons

In this section, we investigate the pathways for
the ionization of an isolated atom in a state juai
(with energy �a) by an incident positron beam with
a momentum k0. The vector momenta of the
positron and the electron in the ®nal state, ke� and
keÿ , respectively, are assumed to be determined
simultaneously by the experiment while the resid-
ual ion is described by the state vector juci (with
an eigenenergy �c). Thus, the total Hamiltonians in
the initial and the ®nal channels can be written as
Hi � ha � Vi and Hf � hc � Vf , respectively. Here
ha and hc are the Hamiltonians of the undisturbed
atom in the initial state and that of the residual
ion, i.e., hajuai � �ajuai and hcjuci � �cjuci. The
potential operator Vf is given by Vf � Hf ÿ hc

� Ve�eÿ � Ve�c � Veÿc. Here Ve�eÿ ; Ve�c and Veÿc are
the two body Coulomb interactions between the
positron and the active electron, the positron and
the ®nal-state ion, and the ionized electron and the
ion, respectively. Analogously, the initial state
potential Vi has the form Vi � Hi ÿ ha � Ve�eÿ

�Ve�c. The cross-section r�ke� ; keÿ ;uc; k0; ua� for
the escaping positron and electron to be detected
at the same time with momenta ke� ; keÿ and for the
target to go over from the atomic state ua into the
ionic state uc is given by

r�ke� ; keÿ ;uc; k0;ua� � cjhWÿjW�ij2; �1�

where c � �2p�4ke�keÿ=k0 and

jWÿi � Xÿf jke� ; keÿ ;uci; �2�
jW�i � X�i jk0;uai: �3�

The wave operators Xÿf ; X�i are given by

Xÿf � 1� Gÿf Vf ; �4�
X�i � 1� G�i Vi ; �5�

where the many-body Green operators Gÿf and G�i
are respectively the resolvent of Hf and Hi, with
appropriate boundary conditions. They can be
written in the form

Gÿf � Gÿc � Gÿc VfGÿf ; �6�
G�i � G�a � G�a ViG�i : �7�
The Green operators of the atom and the residu-
al ions are denoted by G�a and Gÿc , respectively.
From Eqs. (1)±(3), we can write r �
cjhke� ; keÿ ;ucjXÿyf X�i jk0;uaij2. Therefore, all dy-
namical quantities are contained in the product of
the two wave operators (this product is usually
called the scattering `S' operator).

Xÿyf X�i � 1
ÿ � VfG�f

�
1
ÿ � G�i Vi

�
� 1� G�i Vi � Vf G�f � VfG�f G�i Vi �8�
� 1� A� B� C; �9�

where

A � G�a Ve�eÿ � G�a Ve�c � G�a Ve�eÿG�a Ve�eÿ

� G�a Ve�cG�a Ve�c � � � � ; �10�

B � Ve�eÿG�c � Ve�cG�c � VeÿcG�c
� Ve�eÿG�c Ve�eÿG�c � Ve�cG�c Ve�cG�c
� VeÿcG�c VeÿcG�c � � � � ; �11�

C � Ve�eÿG�c G�a Ve�eÿ � Ve�eÿG�c G�a Ve�c

� Ve�cG�c G�a Ve�eÿ � Ve�cG�c G�a Ve�c

� VeÿcG�c G�a Ve�eÿ � VeÿcG�c G�a Ve�c � � � � : �12�
In deriving these relations we made use of the
Lippmann±Schwinger equations (6) and (7). The
multiple scattering expansions (10)±(12) o�er a
direct insight into the ionization paths as visual-
ized in Fig. 1(a)±(e): the unity operator in Eq. (9)
corresponds to the non-scattered part, the ®rst
term in Eq. (10) is an isolated electron±positron
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encounter in the ®eld of the atom (Fig. 1(a)), the
second term in Eq. (10) can be interpreted as a
direct scattering of the positron from the core of
the atom (the atom except for the active electron).
This contribution is usually neglected due to or-
thogonality arguments. The rest of Eq. (10) is just
higher-order multiple scattering with an interpre-
tation as for the ®rst and the second term being
viable. The terms in Eqs. (11) and (12) admit
similar interpretation. For example, the second
term in Eq. (12) is schematically shown in Fig.
1(c): the positron recoils o� the core and subse-
quently collides with the active electron. Fig. 1(b)
corresponds to the ®fth term in Eq. (12): after a
direct encounter with the positron, the electron
scatters from the core of the atom. Figs. 1(e) and
(f) correspond to two di�erent terms in the ex-
pansion (12) (the third and the ®fth term, respec-
tively). Nonetheless, when the electron and the
positron emerge after the collision with equal ve-
locities, an experimental set-up cannot distinguish
between the contributions of the processes illus-
trated in Figs. 1(e) and (f). Therefore, interference
e�ects can be expected in this situation. In fact this
phenomenon has been ®rst predicted in the posi-
tronium formation channel [4].

From Eqs. (10)±(12) it is clear that the devel-
opment of a single theoretical model that encom-
passes accurately all the terms in these expansions
is extremely demanding. Here we employ an ap-
proximate expression for Eq. (2) that has been
presented in full detail in [33]. In short the Hilbert
space is divided in two regions: the interaction
region and the asymptotic region. In the interac-
tion region the potential energy is larger than the
kinetic one whereas in the asymptotic region the
kinetic energy is the dominating one. Approximate
expressions for the wave function (2) are derived in
both regions and matched smoothly at the reaction
zone boundary. Using this model we calculated the
cross-section for the electron-impact ionization of
atomic hydrogen in its ground state. Fig. 2 shows
the cross-section as function of the de¯ection angle
of the positron and the secondary electron energy
Eeÿ . The positron impact energy is 500 eV and the
electron is detected in the forward direction
(k̂0kk̂eÿ ). Both the electron and the positron recede
with equal velocities from the residual ion, i.e.,
keÿ � ke� . The spectrum shown in Fig. 2 reveals a
rich structure that can be associated with some of
the terms in Eqs. (10)±(12). The peak at
he� :� cosÿ1�k̂0 � k̂e�� � p=2 8Eeÿ is related to the

Fig. 1. A schematic drawing of the multi-step scattering processes that correspond to some of the terms in the expansion (10)±(12) (see

text for details).
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second term in Eq. (12), i.e., (cf. Fig. 1(d)), after
scattering from the proton the positron can emerge
into any direction since the proton is far more
massive than the positron. Subsequently, the
scattered positron collides with the electron that is
then ionized. As the electron and the positron have
equal masses they have to emerge perpendicular to
each other and therefore the peak at he� � p=2
(note that the electron is detected at the forward
direction). The insets in Fig. 3(a) illustrate the
evolution of this peak. The second peak starting at
Eeÿ � 0; he� � 0 and extending to Eeÿ � 485 eV;
he� � p=2 can be assigned to the ®fth term in
Eq. (12), i.e., (cf. Fig. 1(f)), after a positron±elec-
tron encounter the electron scatters o� the proton.
The monotonic shift of the position of this peak
to higher de¯ection angles of the positron with
increasing secondary electron energy is readily
understood from the insets shown in Fig. 3(b).
Eventually, this peak merges with the ®rst one
located at he� � p=2 8Eeÿ .

At he� � 0, we notice three obvious structures:
for he� � 0 the cross-section is considerably large
at Eeÿ � 0. This is due to the nature of the Cou-
lomb interaction that prefers soft collisions with
minimal momentum transfer. In addition, the at-
tractive electron±proton interaction implies a large

density of states for electrons slowly moving in the
proton frame of reference. This also increases the
cross-section for soft electrons. At Eeÿ � 234 eV
the electron and the positron escape with nearly
equal velocity and in the same direction. Thus, the
electron moves in a low-lying continuum state of
the positron. Since the electron±positron interac-
tion is attractive the density of states available for
the escaping electron is considerably increased
when the electron approaches the positron and so
does the cross-section [31,32]. At very high sec-
ondary electron energies, i.e., for complete energy
loss of the positron the cross-section tends to drop
(cf. Fig. 4 as well). This is due to a repulsion e�ect
between the positron and the residual ion, i.e., to
the vanishing density of states for the positron in
the ®eld of the positively charged proton. The
exponential decrease of the cross-section is absent
in the case of heavy ion impact since the ions hardy
slow down by transferring, say 500 eV, energy to
the secondary electron.

At lower incident energies the e�ects resulting
from sequential binary collisions become smeared
out as seen in Fig. 4 for an impact energy of 100
eV. This is because the momentum components
present in the initial bound state become more
important and the electron (to be ionized) cannot

Fig. 2. The ionization cross-section of atomic hydrogen by positron impact as a function of the positron's scattering angle he� and the

secondary electron energy Eeÿ . The impact energy is 500 eV. The electron is detected in the forward direction along the direction of the

incident positron. The positron energy in the ®nal state is Ee� � �500ÿ Eeÿ ÿ 13:6� eV.
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be assumed to be at rest before the collisions. In
contrast, the dynamical e�ects such as the struc-
tures discussed at he� � 0 become more prominent.

3. Secondary electron ejection from surfaces by
positron beams

In this section, we deal with the secondary
electron emission from clean metallic surfaces

following the impact of a positron beam. The
utilization of positron beams for surface analysis
has a long history of success [34±48]. Here we
envisage a new technique in which a well-de®ned
positron beam impinges on a metallic surface and
ejects thereby secondary electrons. The emitted
electron and the scattered positron are detected at
the same time and their energies and emission di-
rections are experimentally determined. The inset
in Fig. 5 shows schematically the proposed

Fig. 3. (a) The same as in Fig. 2 with the scattering mechanisms leading to the peak at he� � p=2 being sketched. (b) In this ®gure we

illustrate schematically the reason for the evolution of the peak starting at he� � 0 and Eeÿ � 0 and extending to he� � p=2 and Ee� � 0.
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experiment. As will be shown below such mea-
surements contain useful information on the one-
particle spectral function of the occupied states.

If the electron±positron pair is emitted in a
back-re¯ection mode (cf. inset of Fig. 5), we need
to incorporate in a theoretical description the
positron±lattice interaction [49,50] and the posi-
tron±electron correlation [51]. In this work we in-
vestigate ®rst the electron±positron pair emission
that is due to the electron±positron correlation
only. Subsequently, we investigate the case where
the crystal potential becomes involved.

3.1. Electron±positron correlation function

Let us assume that the system consisting of the
solid and the positron beam is described by the
Hamiltonian H � Hs � Heÿe� � He�s. Here Hs is the
Hamiltonian of the undisturbed surface. For sim-
plicity we omit from our discussion the plasmon
and the phonon ®elds. Hs describes then the elec-
trons in the crystal static potential and is given by
Hs �

P
k;n;s En�k�ayk;n;sak;n;s, where k is the crystal

momentum, En�k� describes the electronic struc-
ture of the band with index n. The interaction of
the positron with the crystal potential is given by
He�s. The electron creation and annihilation op-
erators are given by ayk;n;s and ak;n;s, respectively,
and s is a spin index. Correlation and exchange
e�ects between the electrons in the solid are as-
sumed to be included in Hs in form of an e�ective
one-particle potential, such the one derived within
the density functional theory. The two-particle
operator Heÿe� induces the electron±positron pair
emission and is expressed as

Heÿe� �
X
a;b

ÿ4p
X�

1

jk0 ÿ ke� j2 � q2
s

� aykeÿ ;abyke� ;b
bk0;baq;a d�qÿ �keÿ � ke� ÿ k0��;

�13�

where by and b are the positron creation and an-
nihilation operators, a and b indicates the spin
projections, X is the volume of the crystal, qs is the
screening wave vector of the electron±positron
interaction which can be estimated, e.g. from the
Thomas±Fermi model. The dielectric constant is �.

Fig. 5. The coincident probability rate for the emission of a

positron and an electron with wave vectors ke� ;x and keÿ ;x from a

Cu(0 0 1) surface following the impact of a positron beam with

wave vector k0;x. As shown in the inset the electron and the

positron are detected at equal positions �35�� with respect to the

z-direction whereas the incident beam is tilted by 5� with respect

to the z-axis. The incident energy is ®xed at E0 � 65 eV. The

total excess energy of the escaping positron and electron is also

®xed at Etot � �k2
eÿ � k2

e� �=2 � 60 eV, i.e., the secondary elec-

tron is ejected from the vicinity of the Fermi level. The dotted

curve is the result of the calculation for the same experimental

set-up but the screening of the electron±positron interaction

(i.e., g1 in Eq. (A.5) is neglected all together �g1 � 0�), whereas

the dashed curve shows the results for a screening length of

g1 � 1:2 �A.

Fig. 4. The positron-impact ionization cross-section of hydro-

gen at the same geometrical arrangement as in Fig. 2, however,

the incident energy is lowered to 100 eV.

210 J. Berakdar / Nucl. Instr. and Meth. in Phys. Res. B 171 (2000) 204±218



The expression (13) accounts for interaction within
the electron±positron pair and the electron±hole
interaction in the ®nal state.

At the time t � 0, long before the incoming
positron hits the sample, the whole system is in the
(initial) state jii � byke� ;b

j0i. After the collision, i.e.,
at t!1, the ®nal state jf i consists of an elec-
tron±positron pair and a hole state in the con-
duction band, more precisely jf i � aykeÿ ;abyke� ;b

ahj0i
(the operator ah indicates the creation of the hole).
The ®nal state can be expanded in plane waves
such that

jf i � 1

X1=2

X
k;c

A�hc �k�aykeÿ ;abyke� ;b
ak;cj0i: �14�

Here Ah
c �k� is the Fourier transform of the single-

particle wave function of the conduction band
electron with spin projection c. According to the
``golden rule'' the transition probability rate is
given by limt!1�1=t�jT �t�j2, where

T �t� � h0jayhbke� ;bakeÿ ;aeÿiHtbyke� ;b
j0i: �15�

The expression (15) is nothing else but the elec-
tron±positron two-particle Green function G�2�eÿe�

[52]. The cross-section (1) is obtained from
limt!1�1=t�jG�2�eÿe� j2 after averaging over the
quantum numbers not observed in the initial state
and summing over those not resolved in the ®nal
state. Thus, the measurement of the electron-pos-
itron spectrum reveals the details of the two-par-
ticle Green function which in turn depends
sensitively on the electron±positron correlation. In
addition, as clear from Eqs. (14) and (15) the
emission probability depends on jAh

c �k�j2 which is
the spectral function of the conduction band
electrons (note that an integration of jAh

c �k�j2 over
k yields the energy-resolved density of states).
These conclusions are valid only if the positron-
induced electron emission takes place in response
to an electron±positron correlation without an
additional scattering of the electron±positron pair
from the crystal potential. The latter case will be
discussed in next section. The two-particle Green
function can be expanded [52,53] to ®rst-order
in the electron±positron interaction to obtain

numerically tractable expressions for the cross-
section.

3.2. Electron±positron emission in re¯ection mode

As stated above the electron±positron pair
emission induced by the interaction Heÿe� can be
related to the two-particle Green function which in
turn can be expanded in terms of single-particle
Green function that are numerically accessible,
this transition amplitude is denoted hereafter by
Teÿe� . However, in re¯ection mode emission, i.e., in
situations as those shown in Fig. 5, it is clear from
classical arguments that the crystal potential has to
be involved. This is because a (classical) scattering
of equal-mass particles cannot lead to a back-re-
¯ection of both of these particles. Therefore, we
have to evaluate at least a second-order term in
which the positron interacts both with the electron
and the crystal. The total transition amplitude can
thus be written as T � Teÿe� � Teÿe�crys where [54]

Teÿe�crys �
Z Z

d3p d3qhkeÿ ; ke� jHeÿe�G�2�eÿe� jp; qi
� hpjWe�crysjk0ihqjv��k�i: �16�

In Eq. (16) jvE�k�i is a single-particle occupied state
of the electron before the ejection with k being the
Bloch wave vector whereas jqi 
 jpi is a complete
set of plane waves.

For the numerical calculations shown below we
employ for the positron±crystal scattering poten-
tial Weÿe�crys an approximate expression consisting
of a non-overlapping mu�n±tin ionic potentials
V ion (We�crys �

P
i V ion

i ). The form factor
~We�crys :� hpjWe�crysjk0i can then be reduced to

~We�crys� N
������
2p
p

f
Auc

X
`

eÿiKzr?;`
X

gk

d�2��gk ÿ Kk�~V ion�K�:

�17�

In Eq. (17), ~V ion�K� is the Fourier transform of
V ion, N is the number of ionic cores illuminated by
the positron beam, Auc is the volume of the two-
dimensional unit cell, gk is the surface reciprocal
lattice vector, ` enumerates the atomic layers with
shortest distance r?;` with respect to the origin,
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K � pÿ k0, and f � exp�ip � reÿ� with reÿ referring
to the position of the electron.

The electron±positron pair is interacting via
Heÿe� . Thus, it is more appropriate to consider the
electron±positron two-particle wave function. Due
to the (two-dimensional) transitional symmetry of
the crystal this two-particle wave function has to
satisfy the Bloch theorem which imposes on the
transition amplitude the following form:

Te�crys /
X
`;gk

d�2��gk ÿ �Kk ÿ K0;k��

�L�gk; `;K ; keÿ ; ke� ; k�: �18�

Here K0 � k0 � k and K � ke� � keÿ are respec-
tively the initial and the ®nal wave vector of the
electron±positron pair. The function L depends
on the description of the momentum±space wave
function hqjv��k�i of the bound electron and the
type of the expansion of the two-particle Green
function. For a jellium-state momentum distribu-
tion and to a ®rst-order expansion of the two-
particle Green function in the interaction Heÿe� the
terms Te�eÿ and Teÿe�crys can be evaluated in closed
form [54].

Eq. (18) has important implications:
1. The Bragg condition, expressed by the delta

function in Eq. (18) implies that only the cen-
ter-of-mass wave vector of the positron±elec-
tron pair is relevant for the di�raction process.
This means that the electron±positron system
as whole is di�racted when the parallel compo-
nent of its wave vector is changed by gk during
the collision. Note that in low energy electron or
positron di�raction studies di�raction occurs
when the change in the wave vector of the inci-
dent electron/positron matches gk [55,56]. The
decisive di�erence to the electron±positron
pair's di�raction is that a ®xed K does not imply
®xed ke� and/or ®xed keÿ since a momentum ex-
change within the positron±electron subsystem
(mediated by Heÿe� ) does not necessarily modify
K (however, ke� ÿ keÿ has then to change in a
certain way to keep K ®xed). Therefore, a de®-
nite change in K does not ®x the amount of
change in the positron's wave vector.

2. The positions of the electron±positron di�rac-
tion peaks are determined by the amount of

change in K , the function L that depends on
Heÿe� , i.e., on the strength of the positron±elec-
tron correlation controls the intensity and shape
of the individual di�raction peaks.

3. Usually, the wave vector kk of the initially
bound Bloch electron is not resolved by the ex-
periment. Thus, we have to average over it when
calculating the cross-sections. This results in a
smear-out e�ect of the di�raction pattern even
in the case where K and k0 are experimentally
sharply resolved. Note that such behavior does
not occur in single positron or electron di�rac-
tion since in this case only the crystal potential
is basically involved.

4. Experimentally, Kk; gk and k0;k can be measured
with a su�cient accuracy. In such an experi-
ment, the positions and widths of the di�raction
peaks re¯ect the character of kk, e.g., the maxi-
mal allowed width of the di�raction peak is kF,
where kF is the Fermi wave vector.

Fig. 5 illustrates the above statements for a
Cu(0 0 1) monocrystal. The positron incident en-
ergy is ®xed at E0 � 65 eV. The total excess energy
of the escaping positron and electron is also ®xed
at Etot � �k2

eÿ � k2
e��=2 at 60 eV, i.e., the electron is

ejected from the vicinity of the Fermi level. As
clear from the inset in Fig. 5, k0; ke� ; keÿ lie in the
x±z plane, i.e., Kk possesses only one non-vanish-
ing component Kx along the x-axis. As indicated
above, the component relevant to the positron±
electron pair di�raction is in fact Kx ÿ k0;x. There-
fore, we consider electron±positron emission
probability rate as a function of Kx ÿ k0;x (while
Etot and E0 are ®xed as stated above). The results
shown in Fig. 5 are obtained after integration over
kk (weighted with the density of states). In Fig. 5
we notice three prominent peaks labeled by (a), (b)
and (c) which can be identi®ed as di�raction peaks
of the electron±positron pair. Since we integrated
over the crystal momentum kk these peaks are
broadened. Nonetheless, it is straightforward to
show that the peak (a) can be associated with the
�ÿ1; 0� di�racted beam whereas peak (b) corre-
sponds to the specular di�raction of the electron±
positron pair [the (0, 0) beam] and ®nally the peak
(c) can be assigned to the �1; 0� di�racted beam.
The heights of the three peaks are drastically
di�erent indicating that the electron±positron
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scattering dynamics, as described by L in Eq. (18)
has a strong in¯uence on the spectrum in the range
scanned in Fig. 5. In fact in some situations the
di�raction might be removed altogether by the
dynamical factor L, i.e., if L vanishes in Eq. (18)
the cross-section also vanish. We illustrate this
behavior in Fig. 6, where a Fe(1 1 0) (BCC)
monocrystal is used and the secondary electron is
ejected deep from the conduction band. In this
case the electron±positron spectrum becomes
symmetric and sharply centered around the spec-
ular beam direction. In other words, the specular
electron±positron beam in Fig. 5 (peak (b)) is
shifted to the left and the beams (a) and (c) are
completely suppressed.

In the ®nal example, we concentrate on the
di�erences and common features between the use
of electron and positron beams for the secondary
electron ejection. One obvious di�erence that is
mentioned in the introduction is the presence of
exchange e�ects when using electron beams. In
Fig. 7(a) we analyze the spectrum of the escaping
electron±electron pair following the impact of an
electron beam. The feasibility of such experiments
has already been demonstrated [57±60]. In Fig.
7(a) we notice two broad peaks at the wings of the
spectrum. The asymmetry in the distribution is

related the asymmetry in the experimental set-up
as shown in the inset. Performing the same ex-
periment with positron beams (Fig. 7(b)) the peak
on the left survives almost unchanged while the
one to the right diminishes. However, if we ex-
change the positions of the electron and the posi-
tron detectors as shown in Fig. 7(c) the peak to the
right in Fig. 7(a) remains while that to the left
disappears. Now combining Figs. 7(b) and (c) and

Fig. 6. The electron±positron emission from a Fe(1 1 0) (BCC)

crystal. As shown in the inset the positron beam impinges at 5�

with respect to the z-direction whereas the emitted electron and

positron are detected at equal �60�� but opposite sides to the

z-direction. The incident energy is 100 eV and the total energy

of the escaping electron and positron is 90 eV.

Fig. 7. (a) The simultaneous electron-pair emission from

Cu(0 0 1) following the impact of 65 eV electron beam. The total

energy of the electron pair is 60 eV. The angle of incidence of

the electron beam with respect to the z-direction is 5� whereas

the two emitted electrons emerge at opposite sides to the

z-direction and under equal angles of 35� (cf. inset). (b) The

same as (a) but we use positrons as a projectile instead of

electrons (a). (c) The same as in (b) but the positron and the

electron detectors are exchanged (cf. insets in (b) and (c)). The

label kp;x in (c) indicates the wave vector of the scattered posi-

tron in case of positron impact or that of the electron when

using electrons as projectiles.
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the ®nding of Fig. 5 we can explain the origin of
the structures in Fig. 7(a): the e�ect of exchange
when using electron beams means basically that we
cannot distinguish in which detector which elec-
tron is observed, i.e., roughly speaking, we have to
consider the spectrum at a given arrangement of
the detectors and the spectrum when the detectors
are exchanged. In fact, Fig. 7(a) is readily obtained
by combining Figs. 7(b) and (c). This means that
in Fig. 7(a) one peak is due to the scattering dy-
namics of the pair from the crystal potential (the
right wing peak) whereas the other peak is due to
exchange. The origin of the large peak in Fig. 7(b)
and, hence that in Fig. 7(a), lies in the di�raction
of the emerging pair, as pointed out in the dis-
cussion of Fig. 5 (note that only the angle of in-
cidence is changed from 5� in Fig. 5 to 2� in Fig. 7).

As a ®nal remark we note that the above nu-
merical calculations have been performed using
the local screening of the electron±positron inter-
action with the screening length being estimated
from the Thomas±Fermi theory. On the other
hand it is well known that, in general, the screen-
ing has a non-local, frequency dependent character
that is described by an appropriate dielectric
function. The incorporation of such a non-local
function in the present calculations leads to in-
tractable numerical problems. One solution to this
problem, that has been suggested recently [61], is
to derive the screening length from the density of
states at the Fermi level using full ab initio band-
structure calculations. In the context of the present
work we can get an insight into the e�ect of
screening on the electron±positron spectra by
varying the screening length within a reasonable
range. For example, the calculation of Fig. 5 have
been repeated with the screening being neglected
altogether and with the screening being quite large
(screening length is 1:2 �A). As clear from the Fig.
5, by varying the amount of screening the spectra
are smeared out but the over-all structure is not
destroyed.

4. Conclusions

In this work, we started by considering the
mechanisms for electronic excitations of isolated

atomic systems by low-energy positrons. Using a
multiple-scattering expansion we analyzed the
possible one- and multi-step scattering events and
connected these to a classical analog. Dynamical
e�ects due to the motion of the charged particles in
a Coulomb ®eld have also been discussed brie¯y. In
the second part of this work we considered the
electron±positron pair emission from metallic sur-
faces upon the impact of low-energy positron.
Using a formal analysis we showed that the prob-
ability emission rate is connected to the two-par-
ticle Green operator of the interacting electron±
positron pair. For emission in back-re¯ection
mode we also included the e�ect of the crystal po-
tential and pointed out that the di�raction of the
electron±positron pair as an entity might take place
leading to characteristic di�raction pattern. Final-
ly, we discussed brie¯y the di�erences and common
features when employing electron or positron
electron beams to produce the secondary electrons.

Appendix A. Analytical evaluation of the scattering

amplitude

In this section, we derive an analytical expres-
sion for the function L in Eq. (18). To this end we
need assume simple, yet reasonable models for the
electronic and crystal structure of the surface. The
latter we describe with the aid of a mu�n±tin form
given by Eq. (17). For the description of the initial
electronic distribution of the surface we resort to
an e�ective one-particle theory and assume the
initially bound electron to be described by the ef-
fective one-particle state vector jvki. An expression
for jvki can be derived by considering the ionic
cores as a constant positive `back-ground charge'.
Within this jellium model, the resultant e�ective
one-particle potential for the electron is a step
potential V0 at surface (as usual, z � 0 is located at
the jellium edge). Within the metal volume V the
conduction band electrons are treated as inde-
pendent particles bound to the metal half space
z < 0 by a potential barrier

V0 � �F � W ; �A:1�
where �F is the Fermi energy and W is the work
function. The density of states is given by that of
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the free-electron gas (apart from a factor 2 which
accounts for the electronic spin states)
qj � V =�4p3�. Thus the jellium wave function can
be expressed in terms of re¯ection and transmis-
sion coe�cients,

hreÿ jvki �
1����
V
p exp�ikk � reÿ ;k�

� eikzzeÿ � Reÿikzzeÿ ; z < 0

T eÿczeÿ ; z > 0:

�
�A:2�

The re¯ection and transmission coe�cients R and
T are given by

R � kz ÿ ic
kz � ic

; T � 2kz

kz � ic
�A:3�

and c �
�����������������
2V0 ÿ k2

z

q
.

The ®nal-state interaction of the vacuum
charged particles with the metallic surface can be
described by an image-charge potential. Asymp-
totically, this potential behaves as ÿ1=4z. Thus,
the ®nal state (vacuum) wave function at a given
asymptotic energy Ef can be approximated by

/f�reÿ ; re�� � �2p�ÿ3
exp �ike� � re�

� ikeÿ � reÿ ÿ iu�reÿ��: �A:4�

In Eq. (A.4) the term u�reÿ� � a ln�2ke;zzeÿ� is the
phase modi®cation of the asymptotically free
electron motion due to its image charge where
ke;z � ẑ � keÿ and the Sommerfeld parameter,
a � ÿ1=�4ke;z�, indicates the strength of this in-
teraction. In the case a � 0 we end up with the
®nal state being a product of two free-particle
states. The ®nal state energy is given by
Ef � k2

eÿ=2� k2
e�=2. The corresponding phase

modi®cation of the positron's motion due to the
image change interaction can also be taken into
account. However, in this case it has not been
possible to obtain analytical results.

The electron±positron pair is coupled via the
Coulomb screened potential

Heÿe� � lim
g1!�0

ÿZe� exp�ÿg1jreÿ ÿ re� j�
jreÿ ÿ re� j ; �A:5�

where Ze� � 1 is the charge of the positron. A ®rst
rough estimate of the value of the cut-o� factor,

which quanti®es the amount of screening of the
electron±positron Coulomb interaction, derives
from the Thomas±Fermi theory of screening. Here
it is important to note that all the integrals shown
below do exist in the limit of unscreened interac-
tion �g1 ! 0�, as demonstrated explicitly below.
Thus, we are able to test the in¯uence of (local)
screening e�ects by varying g1.

By expanding the Green function to the ®rst-
order we can write the expression (16) as

F � ÿ Ze� lim
g1;g2!�0

�2p�ÿ3

Z
d3q

� exp�i�qÿ ke�� � reÿ � ~Heÿe��ke� ÿ q; g1�
� 1

K2
ÿ ÿ q2 ÿ ig2

~We� crys�qÿ k0�; �A:6�

where Kÿ :� keÿ ÿ ke� . Upon substituting the
form factor ~We� crys�qÿ k0� (Eq. (17)) into Eq.
(A.6) we obtain

F � ÿ2�2p�ÿ3=2Ze�N
Auc

� lim
g1;g2!�0

X
`;gk

Z
d3q d�2��gk ÿ Kk�

� exp�i�qÿ ke�� � reÿ �

� exp�ÿiKzr?;`� ~V ion�K�
�jke� ÿ qj2 � g2

1��K2
ÿ ÿ q2 ÿ ig2�

: �A:7�

Changing variables from q to K the expression (16)
for Teÿe�crys simpli®es to

Teÿe�crys �
Z

d3K F�K�I�K�; �A:8�

where

F :� ÿ2�2p�ÿ3=2Ze�N
Auc

lim
g1;g2!�0

X
`;gk

d�2��gk ÿ Kk�

� exp�ÿiKzr?;`� ~V ion�K�
�jQ ÿ K j2 � g2

1��K2
ÿ ÿ �K � k0�2 ÿ ig2�

:

�A:9�
In Eq. (A.9) the momentum transfer vector
Q :� ke� ÿ k0 has been de®ned. Using Eq. (A.4)
for the ®nal-state, the function I�K� which occurs
in Eq. (A.8) is readily deduced to be
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I�K� � �2p�ÿ3=2

Z
d3reÿ exp�ÿi�Q � keÿ ÿ K� � reÿ

� iu�reÿ��vk�reÿ�: �A:10�
Using the integral representation

zÿa � 1

C�a�
Z 1

0

dt exp�ÿzt�taÿ1;

R�a� > 0; R�z� > 0; �A:11�
the logarithmic phase in the integral (A.10) can be
rewritten as

exp�iu� � lim
g3!�0

1

C�a�
Z 1

0

dt exp�ÿn � reÿ� taÿ1;

�A:12�

where a � ÿia� g3 (we recall a � ÿ1=�4ke;z�) and
n :� 2ke;ztẑ. Thus the integral I�K� evaluates to

I�K� � lim
g3!�0

1

C�a�
Z 1

0

dt taÿ1~vk�K; t�; �A:13�

where

~vk�K; t� � i

������
2p
V

r
d�2��kk ÿ Kk�

� 1

Kz ÿ kz

�
� R

Kz � kz
ÿ T

Kz ÿ ic

�
:

�A:14�
The vector K is given by K :� Q ÿ K � keÿ ÿ in.
For V ion we employ the screened Coulomb po-
tential

V ion�rp� � Zeff=re� exp�ÿkeffre��: �A:15�

The e�ective parameters Zeff ; keff account for the
screening of pure ionic ®eld due to the presence of
the localized positive cores and the delocalized
electrons. Thus, Eq. (A.8) can be reduced to

Teÿe�crys � lim
g1;g2;g3!�0

ÿNZe�Zeff

p2AucC�a�

�
Z 1

0

dt taÿ1
X
`;gk

II�t; `; gk�; �A:16�

where

II�t; `; gk� :�
Z 1

ÿ1
dKz Y �Kz; t; `; gk� �A:17�

and

Y �Kz; t; `; gk� � exp�ÿiKzr?;`�~vk�K;Kk � gk�

� jQk
h

ÿ gkj2 � �Qz ÿ Kz�2 � g2
1

iÿ1

� K2
ÿ

h
ÿ jk0;k � gkj2 ÿ �ki;z � Kz�2 ÿ ig2

iÿ1

� g2
k

h
� K2

z � k2
eff

iÿ1

: �A:18�

An expression for the integral (A.17) is obtained
by converting Kz to a complex variable and con-
sidering the improper contour integral

II�t; `; gk� � lim
q!1

I
oGq

dKz Y �Kz; t; `; gk� �A:19�

since r?;` < 0; �r?;` � ÿdz=2� we choose the do-
main G as the upper half of the complex plane, i.e.,
G � fKzj I�Kz� > 0; jKzj < qg. The function Y �Kz�
is meromorphic is G, i.e., it only possesses isolated
singularities and can thus be evaluated via calculus
of residues. The poles of Y �Kz� in G depend on the
sign of ke;z and hence on the geometry in which the
experiment is performed. In a transmission ex-
periment ke;z is negative whereas ke;z > 0 in re¯ec-
tion geometry. Here we perform the calculations in
re¯ection geometry, similar considerations apply
to transmission mode. The poles of Y �Kz� in G are
determined as

z0 � Qz � i jQk
h

ÿ gkj2 � g2
1

i1=2

; �A:20�

z1 �

ÿki;z ÿ K2
ÿ ÿ jk0;k � gkj2 ÿ ig2

h i1=2

;

if K2
ÿ > jk0;k � gkj2;

ÿki;z � K2
ÿ ÿ jk0;k � gkj2 ÿ ig2

h i1=2

;

if K2
ÿ< jk0;k � gkj2;

8>>>>>>>>>>><>>>>>>>>>>>:
�A:21�

z2 � i�g2
k � k2

eff�1=2: �A:22�
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Thus, the integral (A.19) can be expressed as

II�t; `; gk� � 2pi
X2

m�0

ReszmY �Kz; t; `; gk�: �A:23�

Inserting Eq. (A.23) into Eq. (A.8) the remaining t
integral can be carried out analytically by using the
integral representation of the b function,Z 1

0

tlÿ1�1� bt�ÿm
dt � bÿlB�l; mÿ l�;

j arg bj < p; R�m� > R�l� > 0: �A:24�
Furthermore, using the relation B�x; y� �
C�x�C�y�=C�x� y� we end up with the expression

Teÿe�crys �
�������
8

pV

r
Ze�ZeffN

Auc

eÿ2pa=3C�1� ia�

� exp �ia ln 2ke;z�
X
`;gk

d�2��kk ÿQk � gk ÿ ke;k�

� �L0 �L1 �L2�; �A:25�
from which we obtain the desired formula for the
function L in Eq. (18):

L �
�������
8

pV

r
Ze�Zeff N

Auc

eÿ2pa=3C�1� ia�

� exp�ia ln 2ke;z��L0 �L1 �L2�: �A:26�
The functions L0, L1 and L2 are given by

L0 � exp�ÿiz0r?;`�B0 2ijQk
h

ÿ gkj
iÿ1

� K2
ÿ

h
ÿ jk0;k � gkj2 ÿ �ki;z � z0�2

iÿ1

� g2
k

h
� z2

0 � k2
eff

iÿ1

: �A:27�

In case K2
ÿ > jk0;k � gkj2 we obtain for L1

L1 � ÿ1

2
exp�ÿiz1r?;`�B1

� jQk
h

ÿ gkj2 � �Qz ÿ z1�2
iÿ1

� K2
ÿ

h
ÿ jk0;k � gkj2

iÿ1=2

g2
k

h
� z2

1 � k2
eff

iÿ1

;

�A:28�

whereas if K2
ÿ < jk0;k � gkj2 the following relation

is valid:

L1 � ÿi

2
exp�ÿiz1r?;`�B1

� jQk
h

ÿ gkj2 � �Qz ÿ z1�2
iÿ1

�
h
ÿ K2

ÿ � jk0;k � gkj2
iÿ1=2

� g2
k

h
� z2

1 � k2
eff

iÿ1

: �A:29�

Finally, the expression for L2 reads

L2 � ÿi

2
�����������������
g2
k � k2

eff

q exp�ÿiz2r?;`�B2

� jQk
h

ÿ gkj2 � �Qz ÿ z2�2
iÿ1

� K2
ÿ

h
ÿ jk0;k � gkj2 ÿ �ki;z � z2�2

iÿ1

:

�A:30�
The functions Bj; j � 0; 1; 2, have been de®ned as

Bj :� �bj ÿ kz�ÿiaÿ1 � R�bj � kz�ÿiaÿ1

ÿ T �bj ÿ ic�ÿiaÿ1; �A:31�
where bj :� Qz ÿ zj � ke;z.
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