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This study presents a theoretical framework for the propagation of a compound consisting of NV interact-
ing particles in a multicenter potential. A novel Green operator approach is proposed that disentangles
the geometrical and dynamical properties of the scatterers from the internal evolution of the projectile
compound. Furthermore, the transition operator for the scattering from the multicenter potential is
expanded in terms of many-body scattering path operators, which in turn are expressed in terms of sin-
gle site transition operators that are amenable to computations. To deduce the correlated many-body
Green operator of the scattering compound, a cumulative method is designed that reduces the problem
to the evaluation of Green operators of systems with a reduced number of interacting particles. This
is particularly useful for efficient calculations and encompasses the usual perturbative approaches.

When an electronic system is subjected to an exter-
nal perturbation, it may respond collectively by the
emission of electrons. A variety of important struc-
tural and electronic properties of materials can then
be deduced by analyzing the spectrum of the emitted
electron flux. Prominent examples of such analytical
techniques are electron energy loss spectroscopy,! the
(low, high and medium energy) electron diffraction
method? and single photoemission measurements.®
Correspondingly, a number of reliable theoretical
concepts have been put forward to deal with the sin-
gle particle scattering from ordered and disordered
matter.*5

On the other hand, the propagation of a many-
body system with coupled internal degrees of free-
dom through a multicenter potential is much less
understood theoretically. Examples of such cases
are the scattering of atoms, molecules and corre-
lated electrons from surfaces (see Ref. 6 and refer-
ences therein). A detailed analysis of such processes
is, however, of great fundamental and technological
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importance, as a number of important catalytic re-
actions occur at surfaces.”

The difficulties in the theoretical treatment stem
from the nonseparability introduced by the corre-
lated many-body scattering compound and the sub-
tle coupling of the internal motion (of the con-
stituents of the compound) to the external multi-
center potential.

This work aims at developing a systematic frame-
work for the description of a compound with a finite
number of interacting particles that propagates in
the field created by a multicenter potential. This po-
tential could be ordered or disordered, but it should
be possible to cast it reasonably well in a nonover-
lapping muffin tin form.

The fundamental quantity that describes the be-
havior of the correlated system in the presence of
the external potential is the total Green operator
G, which is the resolvent of the respective Hamil-
tonian. Our goal is thus to find exact expressions
for G in terms of single particle quantities that are
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computationally accessible. Our strategy is to de-
couple formally the degrees of freedom of the com-
pound with /V interacting particles from the external
scattering potential. For the Green operator of the
N-body system we propose an incremental method
due to which the Green operator is cumulatively re-
duced to Green operators of systems with a reduced
number of interactions. This procedure can be suc-
cessively repeated until a reduced interacting system
is reached whose Green operator is known. In a
second step the scattering compound is considered
as a quasi-single-particle with an internal dynamical
structure. For the scattering of this quasiparticle we
design a scattering path operator formalism that ex-
presses the multisite many-body transition operator
in terms of single site transition operators.

For a mathematical formulation we consider a
nonrelativistic compound consisting of N correlated
particles. The total interaction within this system
is assumed to be described by a potential of the
form UL = Z;\;iﬁlvﬁ, where v;; have not been
further specified at this stage. This structured pro-
jectile is then scattered from an external multicenter
potential We,, which can be cast in terms of a super-
position of M individual nonoverlapping potentials,
w;, acting within specific distinguishable domains Q;,
ie. W = M w;, ©:1Q; =0, Vj # i. Thus, the
correlated system is coupled to the external scatter-
ing potential via

Wexi = Z Z Wy (1)

where wy; is the interaction of particle [ with the
scattering site k. The total Hamiltonian of the sys-

tem can be written as H = Hl(nf} + Wy, where

HY = g4+ U. (N), and K being the kinetic energy

int int

operator. The behavior of the correlated system,
characterized by Hl(;t , When subjected to the exter-

nal potential Weyt is described by the total Green
operator (the resolvent of H) which satisfies the
relation

ext G( N) ’ (2)
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Here Tox: is the so-called transition operator and
G is the Green operator of the correlated system

int

when the external potential is switched off. From

Egs. (2) and (3) it is clear that G can be formu-
lated as G = AB where A = 1+ G T = 1+

int
Gl(nt)WeXt o G extG )Wext +---and B = G(N).

int int

These relations for G disentangle the internal degrees
of freedom of the projectile, described by B, from the
dynamical and geometrical properties of the external
potential scattering that are described by A. The
external motion is coupled to the internal one via
Gi(:t'), which occurs in the expression for 4. Thus,
the task is focused on finding simple and mathemat-

ically sound expressions for G(ﬂ) and To.:.

mt

The total internal potential U, (N) g decomposed

int

as
N o N
g =y i, (4)
i=1
N-1 :
WV =3 WM e, N-1, ()
k=1
where u(N V= “(N 1)/(N 2), with @ u bemg

the total potent1al of the correlated systems when
N —1 particles are interacting while particle j is free.
In Fig. 1 the expansion (4) is explained geometrically.

Let us introduce the Green operator Gf{fv_” of a
systemn with the total potential ijl u(N_l) M e

1, N] (note that G5 = ¢y As H(N) =

int int

(K + E (N' !)} + Z (N U we can treat
Gf.:,f_ 11) as the reference (known) Green operator and

deduce from the Lippmann—Schwinger equation the
recurrence relations

Gi(i\? _ (N 1)[1+ (N— I)G (N— 1] (6)
N-1 N-1 N—1Y ~(N—
GE’\fhl ) = GE’V’—2 )[1 + uE’\T+11)GfV—11)] - (M

These equations are reformulated in the simple but
exact relation

N
G =G T (Go + GoulM V6 -D). (s)

int
i=1

The physical meaning of the operators G;Nf}‘}
which determine the expansion (8) is readily seen
from Fig. 2 for a compound with six interact-
ing comstituents. It is clear from this diagram
for the six-particle system that each of the re-
duced five-particle diagrams can be further expanded
in terms of four-particle diagrams. To reach a
simplified expression we note that 3J_, N -
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Fig. 1. Pictorial geometric sketch of the total potential expansion (4) for six interacting particles. The particles are
enumerated and marked by the full dots at the corners of the hexagon. The hexagon stands for the full potential U(®) of
the six correlated particles. According to Eq. (4), the hexagon can be broken down into six pentagons. Each pentagon
symbolizes the full five-body potential u(5]
particle not at a corner (particle j) is free.

of those five particles situated at the corners of the pentagon, whereas the
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Fig. 2. The Green operators which occur in the expansion (6) are illustrated diagrammatically. As in Fig. 1, we
choose an example of six mteractmg particles. The hexagons and the oriented pentagons stand for the same potenmals,
as explained in Fig. 1. The particles are indicated by straight lines. The interaction that occurs in each Green operator
is the sum of the pentagons depicted in the respective diagrams. Only particles that cross a pentagon or a hexagon
are interacting.
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(N 4 +E {N b, Therefore, the Green opera-

tor G’(N b satlsﬁes the equation G( =) :gﬁN 2

N 1)[2 (N 1)]G(N V) Where g(N_l) is the
(N-1)

Green operator mvolvmg the interaction u} only.
Inserting this relation into Eq. (8), we deduce that
the leading term of the expansion (8) is given by the
recurrence relations

N
G](i\tr) s G«EN+1 H {Gu-i-Gou(N 1)g§N 1)
=1
(N=1) (N-1)
+ Gou > 9;

j—1
<[] ool
k=1

G(N) lorder G_N+ ﬁ N 1) (9}

int

(N i ol B4 H g2 g, N-1].
=1
(10)

In other words, the Green operator of an N-body
system is, in a first order approximation, a product
of N Green operators of all the different interacting
N — 1 subsystems that can be combined within the
N-body system. The Green operators of the N — 1
subsystems can in turn be reduced in the same man-
ner to a product of those of the (/N — 2)-body sub-
systems that exist in the (N — 1)-particle system.
Figure 3 gives a diagrammatic representation of this
hierarchical procedure. In practice, one starts the
incremental method as depicted in Fig. 3 from a sys-
tem with a reduced number of interacting particles
M for which the Green operator is known. Then,
the recipe given above yields the solution (the Green
operator) when M + 1 particles are interacting. This
procedure has to be further continued to reach the
interacting N-body system. It is important to real-
ize that this approach is not perturbative and that
all interactions are treated on an equal footing. On
the other hand, a perturbative treatment is encom-
passed in the expansion (9) through the Born series
for g( )i ke [ D]

Having established a reduction formula for the
many-body Green operator, we turn now to deal-
ing with the transition operator T,y;, as defined by

Eq. (3). The aim is to express it in terms of sin-
gle site transition operators. For this purpose we
introduce w'*) ;= Z:V Wy as the interaction of all
N interacting particles with the site k. The external
potential (1) reads W = 22’1:1 w'® | Thus, Tue

can be expanded in a sum as
Toxer= Z q(k) (ll)

q(k) - w(k) -+ w(k)Gi(rﬁr)Text (12)

¢ = ) @G (k)

N
£ WE0.
Ik
Now we introduce the k site transition operator of
the correlated compound as t;, = w(®) + w(k)Gi([ﬁr)tk
and rewrite Eq. (13) as

M
™ =t + 3 4G q®. (14)
12k

Combining this relation with Eq. {11) leads to

Tost = Ztk-i—z t: G (4 + w G Tow) . (15)
1k

Following the treatment by Gyorffy®® of the single
particle scattering from a multicenter potential, we
introduce the many-body scattering path operators,
7 as

W S Z LG = 6+ Z kgl
ki kg
' (16)
and sum over j. The comparison with Eq. (14) yields
g = ;'-M 7%, and from Eq. (11) we finally conclude

that
Mo Mo
= Z q(*) = Z TH (17
i ij

The physical interpretation of tg, ¢'*) and 7% is as
follows. The operator t; describes the scattering of
the correlated system (H, 1(nt )) as a whole from the site
k in the absence of all the other scatterers, whereas
q'®) characterizes the collision of this correlated Sys-
tem from the site k in the presence of all other scat-
tering centers. The operators 7% describe the tran-

sition of the correlated projectile under the action
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Fig. 3. Schematic representation of the approximation (9), (10) for N interacting particles. The total potential is
labeled by the black circle and the N — 1, N — 2 and N — 3 body potentials are indicated by ellipses with different
eccentricities. The particles are shown by the solid lines. Only those particles that cross an ellipse are interacting.
Each diagram stands for the Green operator (shown in the diagram) of a system with the potential symbolized by the

circles and/or the ellipses.

of wy, following an initial scattering from the poten-
tial centered around the site I. Thus, the transi-
tion operator from the multicenter potential Tyy is
broken down into successive single site transitions
that are computationally more accessible. Combin-
ing Egs. (17) and (8) we arrive at the final exact
expression for the total Green operator (2):

N
G=|1+GN)

1

M

ig —N+1
_;_ ™\ Gy
1

N
* = N-—
x [T [Go+ Gou{" " VGN D] (18)
k=1

As evident from Egs. (10) and (16), the compo-
nents of the main expression (18) can be obtained
from established single particle theories. The first
order term of the exact expansion (18) is

~

M N
Gr |1+Go Y 7| GV T ¥V (19)
iF =1

In conclusion, we have proposed a nonperturbative
scheme for the theoretical treatment of correlated
many-body finite systems from a multicenter poten-
tial. The total Green operator is reduced to the eval-
uation of Green operators of systems with a reduced

number of interactions and to the sequential scatter-
ing of these reduced systems as a whole from a single
site. This has been achieved by the development of
an incremental method that yields the Green opera-
tor of a system with IV interactions from that for sys-
tems involving N -/ interactions, where ! € [1, N-2|.
For the scattering from the external potential we de-
signed a many-body scattering path formalism that
relates the multicenter transition operator to single
site transition operators.
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