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Zero-field magnetization states in Permalloy thin film elements of rectangular shape are calculated
by means of finite element micromagnetic modeling. The energies of several possible magnetization
patterns are determined for different sizes and thicknesses of the specimen. Based on these data, a
phase diagram of the lowest-energy configuration is set up for rectangles of edge lengths between
250 nm and 1000 nm. It is shown that a thickness- and size-dependent transition from quasi-
homogeneous single-domain states to demagnetized flux-closure patterns occurs in that range. The
regime of sizes and thickness of the phase diagram in which the lowest-energy configuration of the
thin film element is a single-domain state is particularly important, since in this case the sample
is expected to show good stability with respect to thermal demagnetization, which is a required
criterion to make it suitable for technological applications in magneto-electronic devices.
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I. INTRODUCTION

In Magnetic Random Access Memory (MRAM) de-
vices [1], soft magnetic thin film elements are used as unit
cells of information. Ideally, each thin-film element of the
device is homogeneously magnetized, with two possible
directions of the magnetization, between which the par-
ticle can be switched. According to its magnetization di-
rection, the information stored in an element is evaluated
as either a logical ”one” or a logical ”zero”. In real world,
however, such soft magnetic platelets are generally not
magnetically bistable systems. Instead, numerous differ-
ent magnetic structures can be observed at zero field, de-
pending on the particle’s shape, size, material, thickness,
its microstructure and its magnetic history. Most of these
magnetization states are undesirable from a technological
point of view, because once the magnetic structure splits
up into a flux-closure magnetic domain pattern, the cell is
no longer in a state which can be unambiguously assigned
to a logical value. In Permalloy thin-film elements of rect-
angular shape, a large set of possible magnetic structures
has been found both experimentally[2–4] and numerically
[5, 6]. The agreement between calculated and observed
structures is remarkably good. The domain structures
can be categorized into remanent states with a high net
magnetization, and flux closure patterns with vanishing
average moment. The domain pattern of the latter ones
are in perfect agreement with the construction scheme
set up by Van Den Berg [7], an ingenuous geometrical al-
gorithm to construct flux-closure patterns in ideally soft
thin-film elements of arbitrary shape. The formation of
these magnetic structures can usually be understood by
considering Brown’s pole avoidance principle[8] on one
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FIG. 1: Some basic magnetization structures in Permalloy
rectangles. Demagnetized domain structures: (a) Landau,
(b) Diamond; States with high remanence: (c) S-state, (d):
C-state. The terms C-state and S-state are coined by the
flux lines through the rectangle, having similar shapes as the
respective letters.

side and the tendency to avoid inhomogeneities of the
magnetic structure on the other side. Remanent mag-
netic structures in soft magnetic elements are the out-
come of a competition between stray field energy and
exchange energy. When a hysteresis loop is performed
with an in-plane field, it is generally not clear what ex-
actly determines the resulting zero field configuration,
especially if the sample drops in a demagnetized state.
Which path, e.g. the magnetization takes from a satu-
rated state to a demagnetized state with seven domains
(diamond state[9]) as compared to the path from satura-
tion to a Landau-type structure, either with or without
cross-tie walls, and why the specimen chooses to drop
into one state rather than the other are difficult questions
which need to be examined with accurate time-resolved
micromagnetic simulations. Obviously, the formation of
end domains along those edges of the specimen which
are aligned perpendicular to the external in-plane field
is a decisive initial breaking of symmetry, which leads
to different remanent states, known as C-state and S-
state [10]. The C-state seems to be connected with the
Landau-structure, while the S-state appears to be related
with the diamond structure[11].

In order to suppress closed-flux domain structures
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which may originate from such end domain patterns,
elongated thin-films elements with tapered ends have
been considered [2]. Indeed, these particles resulted to
have one well-defined remanent state with almost uni-
form magnetization. Ambiguities connected with the
possibility to obtain either C-state or S-state as remanent
states and the resulting reduced stability with respect
to the formation of flux-closure patterns were avoided.
However other problems arose. While the remanent state
was well-defined, the reversal mechanism was not, sim-
ply because the sources of possible instabilities had been
successfully suppressed. As a consequence of this, the
location at which the reversal nucleates is almost unpre-
dictable in such particles. Even computations lead to
different results, some claiming the reversal starts in the
middle of the sample[12], others stating that a vortex
penetrates the sample from the side of the specimen[13],
both of which are likely to be possible. Nowadays, the
formation of end domains is seen as a helpful feature,
because they allow the magnetization to reverse contin-
uously by means of edge soliton propagation. In this
case, the magnetization of the particle switches by the
nucleation of head-on domain walls moving along the
edges, which is preceded by an expansion of the end do-
mains. However, it is important to have control of the
end domains, in order to allow for a reproducible switch-
ing process. It has been shown earlier, that the S-state
switches in a continuous fashion [5, 14], with two edge
solitons which propagate along the edge without inter-
secting. Therefore, a switching process between two S-
states is generally not problematic, whereas C-states are
difficult to switch[6]. Recently, Arrott [29] has proposed
the use of thin-film elements with specially rounded cor-
ners – similar to the shape of a bean – in order to favor
the C-state as a remanent state, to suppress acciden-
tal switching. The reversal of this particle should occur
by means of an additional bias field, which converts the
structure into the S-type, thus allowing to switch easily.

One of the major challenges in the technical applica-
tion of magnetic thin film elements for MRAM devices is
the required reliability and reproducibility of the switch-
ing process. Over more than 1013 cycles of magnetization
reversal, the particle is required to remain magnetized in
a well-defined high-remanence state. Therefore, the num-
ber of possible demagnetized states needs to be kept as
small as possible, in order to reduce the probability of an
accidental demagnetization, driven, e.g., by thermal ef-
fects. Contrary to the aforementioned approaches, which
focus on different shapes of thin film elements, this paper
reports on the influence of the thickness of a thin film el-
ement on the total energy of domain structures. If a thin
film element is a single-domain particle in the sense that
a flux-closure magnetization pattern has a higher energy
than a structure with high remanence, it is unlikely to
drop accidentally in a demagnetized states, and it is im-
portant to know whether this property can be obtained
by simply changing the particle’s thickness.

Several magnetic structures in Permalloy thin film ele-

ments of rectangular shape (aspect ratio 2:1) are investi-
gated, and their energy is compared as a function of the
specimen’s thickness. The investigations are carried out
using a micromagnetic finite element algorithm.

II. MICROMAGNETIC BACKGROUND

The most significant energy terms to be considered for
the calculation of remanent magnetic structures in the
framework of micromagnetism are exchange, anisotropy
and stray field energy:

Etot =

∫

(V )

∑

i=x,y,z

A(∇mi)
2+K

[

1 − (m · k)2
]

−
µ0

2
M ·HsdV

(1)
In the case of Permalloy, surface anisotropy is neg-

ligible, and since we are interested in zero field con-
figurations, the Zeeman term is omitted. To mimic
the properties of Permalloy, an exchange constant
A=1.3·10−11 J/m, a uniaxial anisotropy constant K =
500J/m3, and a saturation magnetization Ms = |M | =
7.96 · 105A/m corresponding to a saturation polariza-
tion Js = µ0Ms of 1.00 T, are assumed. In Eq. (1),
m = M/Ms denotes the reduced magnetization and k is
a unit vector parallel to the easy axis, which is is along
the long edge of the rectangle. The stray field H s is the
magnetic field arising from the magnetic moments of the
sample. A detailed description of the calculation of this
contribution is given in the next section.

Equilibrium configurations of the magnetization can
be obtained by minimizing the total energy Etot with re-
spect to the directional field of the magnetization, i.e., by
solving the variational problem δEtot = 0, where Etot is
uniquely determined by the magnetic structure M(r).
Stable magnetic structures correspond to local energy
minima of the magnetic configurational space. Gener-
ally, analytic solutions of this variational problem are
only available for samples of special, simple geometry
and by making use of simplifying assumptions concern-
ing the magnetic structure and the demagnetizing field
Hs. However, by means of numerical calculations, mag-
netization structures can be calculated from first prin-
ciples in the framework of micromagnetism. Such sim-
ulations generally represent a difficult task, and they
are usually restricted to particles in the sub-micrometer
range. This is mostly so because of the high system
requirements (memory, processing time) involved with
the numerical calculation of the long-range interaction
given by the stray field, which grow rapidly with in-
creasing number of discretization cells. The restrictions
in size are also due to the disparate length scales in-
volved in micromagnetic problems. Widely extended re-
gions of homogeneous regions (the magnetic domains)
are connected by narrow regions of strongly inhomoge-
neous magnetization (the domain walls). The important
length scales describing these features, first introduced by
Kronmüller[15], are the so-called exchange lengths. They
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describe the typical extension of magnetic microstruc-
tures. In soft magnetic materials the exchange length of
the stray field ls =

√

2A/µ0M2
s is decisive, whereas in

hard magnetic materials the exchange length due to the
anisotropy lK =

√

A/K needs to be considered. These
exchange lengths are connected with the extension of
Néel walls and Bloch walls[16], respectively. A power-
ful method to account for the different length scales in
micromagnetic simulations has been presented by Hertel
and Kronmüller, who developed two different adaptive
mesh refinement schemes for three-dimensional micro-
magnetic calculations, thus allowing to accurately simu-
late the magnetic structure in samples of unprecedented
size [17].

Increased experimental ability of nano-patterning of
thin film elements, on one side, and the steadily growing
computational power combined with improving numeri-
cal techniques, on the other side, have shifted the typical
size of samples which can be calculated reliably in the
range of particles as they are experimentally produced
and technologically relevant. In fact, it is nowadays pos-
sible to perform micromagnetic simulations on elements
of larger size than those planned to be used in future
magneto-electronic devices. A potential memory element
as it could be used in an MRAM should have a lateral
extension in the sub-micron range.

III. FINITE ELEMENT MICROMAGNETIC

MODELING

To calculate numerically the field of the magnetiza-
tion, a discretized form of it is first required. For this
purpose, the sample is subdivided into simplex elements,
i.e. tetrahedral elements in the three-dimensional case.
The orientation and the shape of these elements is gen-
erally irregular, which allows to approximate the shape
of samples of virtually arbitrary shape. This is in strong
contrast to the commonly used finite-difference schemes,
which require a regular discretization mesh of cube-
shaped cells of equal size. In the latter case, inclined or
curved surfaces need to be approximated with a ”stair-
case” approximation. Only in two-dimensional simula-
tions, and with considerable effort, it has recently become
possible to obtain some remedy of the errors arising from
this approximation [18]. The geometrical flexibility of
the finite element method has been exploited to perform
simulations of materials with complicated, realistic grain
structures [19, 20] and to adaptively refine specific parts
of the computational region, wherever a higher discretiza-
tion density is required [21].

Numerically, the minimization of the total energy (1)
is performed with a conjugate gradient method [22]. The
constraint of constant magnitude of the magnetization
|M | = const. needs to be observed during the minimiza-
tion process, which can be achieved easily by representing
the magnetization vector with spherical coordinates ϕ, ϑ.

It is noteworthy that within each element a linear inter-

FIG. 2: Finite element mesh used for the simulations. The
edges of the elements are represented as a wireframe. The
mesh consists of 15 000 nodes placed on a regular grid, which
are the corner points of 58 212 tetrahedral elements. Inside
the elements the magnetization is interpolated linearly.

polation of the magnetization is used. The interpolation
is performed using so-called shape functions, which al-
low to determine a value of a discretized function inside
each finite element by means of interpolation of the val-
ues on the discretization points, which are just the corner
points of the elements in this case. Compared with the
zero-order approximations used in algorithms based on
finite differences and the evaluation of the stray field by
means of Fast Fourier Transformation (FFT) [23], where
the magnetization is assumed to be piecewise homoge-

neous, this first-order interpolation scheme with a piece-
wise linear approximation is more precise concerning the
calculation of the stray field term. By using a linear in-
terpolation scheme, inhomogeneous magnetization pat-
tern do not perform sudden, unphysical discontinuities
at the boundaries of the discretization cells, contrary to
zero-order schemes, where this effect can lead to fictitious
uncompensated charges, which may be sources of errors
in the calculation of the stray field term. The drawback
of the finite element method is that the implementation
is quite complicated and the memory requirements are
higher than those needed in finite-difference schemes.

Having the discretization scheme with the correspond-
ing interpolation functions, the evaluation of the micro-
magnetic energy terms is generally straightforward. The
only term which requires a closer look is the long-range
term resulting from the stray field. To calculate the stray
field, a scalar potential U is introduced, from which H s

is derived as a gradient field H s = −∇U . The potential
U satisfies Poisson’s equation

∆U = 4π∇M (2)

with the boundary conditions

Ui|∂V = Uo|∂V , (3)
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and

lim
x→∞

U = 0 (5)

where Ui and Uo are the inward and the outward limit
of the potential at the surface ∂V and n̂ is the normal
vector directed out of the sample.

To solve Poisson’s equation with proper considera-
tion of the boundary conditions, the boundary element
method (BEM) is combined with the finite element
method (FEM). Highly accurate calculations can be ob-
tained by means of this hybrid FEM/BEM scheme, which
was first applied to micromagnetic problems by Fredkin
and Koehler[24]. The ansatz used to solve Eq. (2) is to
split the potential U into two parts U = U1 + U2. One
part of the potential, U1, is zero outside the magnetic
particle and satisfies Poisson’s equation inside the sam-
ple. The Neumann boundary conditions (4) are natural
conditions in the solution of U1. The other part, U2, is a
solution of Laplace’s equation. The Dirichlet boundary
conditions for U2, which uniquely determine the solution,
are obtained from the values of U1 at the particle’s sur-
face ∂V by means of a boundary integral[24]

U2 (x) =
1

4π

∫

∂V

U1(x
�

)
∂

∂n̂(x
�

)

1

|x − x
�

|
dS′

+

(

Ω(x)

4π
− 1

)

U1(x) , (6)

where the integral is extended over the surface ∂V and
Ω(x) is the solid angle subtended at the surface point
x. Numerically, the elliptical differential equations are
solved with the Galerkin method, by means of which
the discretized problem is transformed into a (large) set
of linear equations that can be solved with the biconju-
gate gradient method. After the stray field of a magnetic
structure is calculated, the minimum energy arrangement
of the magnetization is determined. The process of calcu-
lating the magnetic structure and its stray field is itera-
tively repeated until a self-consistent solution is obtained.

IV. MAGNETIC STRUCTURES IN

PERMALLOY RECTANGLES

Soft magnetic thin film elements are magnetized in-
plane because of the predominant influence of the stray
field energy (”shape anisotropy”). The tendency to
arrange the in-plane magnetization in a way to form
magnetic domains is due to the finite lateral extension.
Surface charges at the boundary of the sample can be
avoided by aligning the magnetization parallel to the
edges, as is the case in flux-closure patterns. Obviously,
the driving force to form magnetic domains diminishes
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FIG. 3: Average stray field energy density of rectangular par-
ticles with aspect ratio a : b=2:1, homogeneously magnetized
along the long edge (a) as a function of the relative thickness
c/a. The values are calculated using the equations due to
Aharoni. The energy density Estray/V is given in units of the
stray field constant Kd = µ0M

2
s /2.

with the particle’s thickness, because the amount of sur-
face charges arising from a homogeneous in-plane mag-
netization depends on the area of the surface to which
the magnetization is perpendicularly oriented. Analytic
expressions on the stray field energy of homogeneously
magnetized prisms have been provided by Aharoni[25].
Quantitatively, the thickness dependence of the average
energy density of a homogeneously magnetized slab is
shown in the diagram of Fig. 3. As can be seen in the
inset, especially in the thin-film regime the increase in
energy with thickness is particularly steep, and almost
linear.

The energies resulting from the analytical calculations
represent upper bounds for real rectangles with single-
domain in-plane magnetization. If a rectangular thin
film element is magnetized along the long edge, surface
charges (and stray field energy) are reduced by the for-
mation of end domains, which lead to the aforementioned
C- and S-states. Still, these structures have consider-
able stray field energy, which can be reduced by means
of flux-closure arrangements, however at the expense of
exchange energy due to the domain walls. Contrary to
the stray field energy density of a homogeneously magne-
tized thin film element, the energy density of an idealized
multi-domain structure with flux closure does not depend
on the thickness, provided that the magnetization does
not vary along the thickness. This thickness dependence
of the stray field energy eventually leads to a transition
from a single-domain state to a multi-domain state.

To give an overview of the dependence on size and
thickness of magnetic structures in thin Permalloy rect-
angles, the energy of various magnetization states is
calculated in different platelets. The particles have
edge lengths ranging between 250 nm×125 nm and
1000 nm×500 nm, which is in the order of the technologi-
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FIG. 4: The two major domains of a Landau-type structure
can be separated by a cross-tie wall. This wall type is often
found in soft magnetic thin films of intermediate thickness
(10-50 nm) .

cally relevant size. The thickness of the rectangles is var-
ied between 2.5 nm and 32.5 nm. Since the aspect ratio
of the rectangles a : b is equal to 2:1 in all cases, the long
edge a and the thickness c are sufficient to specify the
sample’s dimensions. In addition to the magnetic pat-
terns shown in Fig. 1 a cross-tie wall structure as shown
in Fig. 4 is taken into consideration.

The resulting energies are shown in Fig. 5, as a function
of the thickness for four rectangles of different size. Gen-
erally, the average energy density of the high-remanence
C- and S-states increases with the thickness, in accor-
dance with the behavior expected from analytic calcula-
tions, cf. Fig. 3. Although not recognizable from Fig. 5,
in all cases the C-state has a lower energy than the S-
state. The reason for this is probably that the surface
charges of opposite sign, which attract each other, are
closer together in the C-state than in the S-state.

In the range of size and thickness considered here, the
cross-tie structure is never a lowest-energy arrangement.
For very thin and small platelets, the cross-tie structure
is numerically unstable and converts into the Landau-
structure. With increasing size, obviously, the tendency
to form flux-closure domain patterns increases with the
size (both thickness and edge length), so that the av-
erage energy density of Landau, Diamond and cross-tie
structures decreases with the edge length.

Although the energy of the different patterns can dif-
fer significantly with the size, the magnetic structures
are largely independent on size and thickness. As shown
in Fig. 6, the patterns are mostly invariant with respect
to scaling. In the C-state, however, the domain walls
become somewhat sharper and the subdivision into do-
mains clearer as the particle’s size increases.

It is a difficult task to identify a structure as a mag-
netic ground state of a particle, because it can not be
ruled out strictly that some structure which has not
been taken into consideration has a lower total energy
than the lowest-energy arrangement of the calculated
structures. This situation occurred in Standard Prob-
lem No. 3 [26, 27] in which a small ferromagnetic cube
was considered, and the transition between two magneti-
zation states (Flower State and Vortex State) was calcu-
lated. This was supposed to be a size-dependent transi-
tion between two magnetic ground states. Later, Hertel
and Kronmüller have shown that a third state, which
was named Twisted Flower State, has a lower energy at
the relevant edge lengths [28]. In small thin film ele-
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The lowest-energy arrangement is marked in the correspond-
ing regions.
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FIG. 6: Perspective view on platelets of different size, however
with same aspect ratio. On the left side, the platelets are in
the diamond state, on the right the magnetization is in the
C-state. The major edge lengths are 1000 nm, 500 nm, and
250 nm, the thicknesses are 30, 15, and 7.5 nm, respectively.
Note that the particles are only graphically placed next to
each other. The micromagnetic calculations are performed
for isolated, non-interacting platelets.
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FIG. 7: Phase diagram of the lowest-energy arrangement in
Permalloy rectangles of aspect ratio 2:1.

ments, where the magnetization structure is essentially
two-dimensional, the manifoldness of possible magnetic
structures is probably smaller, so that the set of magneti-
zation states presently considered is likely to be sufficient.
The symmetric in-plane Flower state has not been con-
sidered (in the nomenclature of C- and S-state, this one
could be referred to as ”X-state”). Though this struc-
ture might occur in very small platelets, it is unstable in
larger rectangles and there it has a higher energy than
S- or C-state due to the inefficient reduction of surface
charges. Also not considered is a double cross-tie wall
structure, which could become stable in thick and large
platelets but is unstable at smaller sizes. Moreover, not
even the single cross-tie pattern is an energetically con-
venient arrangement in the range of size considered here,
and a two-fold cross-tie structure requires larger lateral
extensions than a single one to sustain the two cross-tie
walls.

Based on the data as presented in Fig. 5 a phase di-
agram according to Fig. 7 can be set up. According to
this, a single-domain regime, where the high-remanence
structures C-state and S-state have the lowest energy can
be clearly identified depending on size and thickness. For
a rectangular platelet with dimensions corresponding to
this regime, flux-closure patterns have a higher energy
than the quasi-homogeneous states. Such particles can
therefore be expected to be more unlikely to drop ac-
cidentally into a technologically undesirable flux-closure
domain state.
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