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Computational micromagnetism of magnetization processes in
nickel nanowires
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Abstract

Ordered sets of interacting ferromagnetic nanowires are complex systems which require numerical simulations for the

investigation of their micromagnetic properties. Applying finite element techniques combined with the boundary

element method allows to accurately calculate the magnetostatic interaction between several wires. It turns out that for

an array of wires the coercive field is significantly lower than it is for a single nanowire. Time-resolved micromagnetic

simulations are employed to study the dynamics of the magnetization reversal of single nanowires. With increasing

diameter, a nucleation–propagation process is replaced by a curling reversal mode.

r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Arrays of magnetic nanowires are interesting
candidates for ultra-high-density recording media
[1,2]. The small lateral expansion of about
20250 nm in principle allows for information
storage densities in the order of a few hundred
Gbit/in2: As a result from progress in the fabrica-
tion of highly ordered arrays of magnetic wires [3]
and their prospective application as storage media,
the micromagnetic properties of an ensemble of
magnetic nanowires, and especially the under-
standing of their hysteretic behavior recently has
become of growing interest.

The characteristic parameters of the hysteresis
loop of arrays of nanowires, i.e. the coercive field
and the remanence as well as the shape of the
hysteresis loop, depend on the particle shape, the
parameters of the magnetic material, the micro-
structure and on the magnetostatic interaction
with the neighboring wires. The latter point is a
central issue of this paper. Numerical methods are
required to treat an array of interacting wires in
the framework of micromagnetism.
Generally, two different approaches can be

found in the literature concerning the simulation
of the properties of magnetic nanowires. One way
consists in modelling a large set of nanowires,
which may be even infinitely extended [4,5]. Due to
the complexity of the system [6], in this case
it is necessary to make simplifying assumptions
concerning the magnetic structure and the
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magnetostatic fields. Another strategy consists in
simulating the magnetization processes in single,
isolated nanowires [7–9]. Such calculations are
performed from first principles in the framework
of micromagnetism, i.e. without making simplify-
ing assumptions concerning the magnetic structure
of the wires and the magnetostatic fields. The
drawback of this method is that a full micro-
magnetic simulation of a single nanowires is
already involved, so that the simulation of an
array of reasonable size is precluded due to the
high computational costs.
In Section 4.1, micromagnetic simulations on

arrays consisting of several nickel nanowires are
presented. Using a boundary element method [10] it
is possible to calculate the magnetostatic interaction
between magnetic particles with high accuracy and
without the need to consider the area between the
particles [11]. The dynamics of the magnetization
reversal mechanism is discussed in Section 4.2.
Two different methods are employed for micro-

magnetic simulations. To calculate the hysteretic
properties of magnetostatically coupled nanowires
a quasi-static algorithm based on energy mini-
mization is used. The dynamics of the magnetiza-
tion reversal in single nanowires, instead, is
investigated by means of an algorithm which
integrates Gilbert’s equation of motion for the
magnetic moments.

2. Micromagnetic background

Equilibrium structures of the magnetization are
characterized by local minima of the Gibbs free
energy. Therefore, it is possible to calculate
magnetic structures by minimizing the free energy
as a function of the directional field of the
polarization JðrÞ: The most important energy
contributions are the exchange energy Eexc; the
anisotropy energy Ean; the stray field energy Es
and the Zeeman energy EZee in an external field.
Each of these energies results from the integration
of the corresponding energy denities e over the
sample’s volume V

G ¼
Z

e dV ¼
Z

eexc þ ean þ es þ eZee dV : ð1Þ

For a given ferromagnetic material, the total
energy (1) is given uniquely by the magnetization
field within the sample. Numerically, this field
is represented in a discretized form. The sample
is subdivided into finite elements of irregular
tetrahedral shape. The magnetization is calculated
at the nodes of the finite element mesh. Since
the magnitude of the magnetization vector is
constant (saturation polarization Js ¼ Jj j), two
polar angles (Wi; ji; the angles enclosed with the
z-axis and with the x-axis in the xy-plane,
respectively) are sufficient to describe the direction
of the magnetization at each node i: The total
energy (1) can then be minimized with respect to
the variables {ji;Wi}, e.g. by means of the
conjugate gradient method, yielding a discretized
solution of an equilibrium structure of the
magnetization. Details on this procedure are
described elsewhere [12].
The demagnetizing field is calculated with a

magnetic scalar potential U ; which is assigned to
each node of the mesh and from which the
demagnetizing field Hd ¼ �=U is derived. The
magnetic scalar potential is calculated by means of
a hybrid boundary element/finite element method
[13]. This procedure consists essentially of splitting
the potential U in two parts U ¼ U1 þ U2; of
which U1 satisfies Poisson’s equation DU1 ¼
= � J=m0 and U2 is the solution of Laplace’s
equation DU2 ¼ 0 with appropriate boundary
conditions. The boundary element method is
employed to determine the Dirichlet boundary
conditions for U2:
The above procedure to minimize the total

energy allows to calculate equilibrium structures of
the magnetization. The analysis of dynamic
aspects of the magnetization, however, requires a
different approach. The temporal evolution of the
polarization J is given by Gilbert’s equation

dJ

dt
¼ �g J � Heffð Þ þ

a
Js

J �
dJ

dt

� �
; ð2Þ

where g is the gyromagnetic ratio and a is a
damping constant. The effective field Heff follows
from the energy density e as the negative varia-
tional derivative with respect to the polarization
Heff ¼ �de=dJ :

R. Hertel / Journal of Magnetism and Magnetic Materials 249 (2002) 251–256252



3. Sample specification

Hexagonal arrays of nickel nanowires are
modelled. The diameter of the wires is 40 nm and
the length is 1 mm. The material’s parameters are
A ¼ 1:05� 10�11 J/m (exchange constant) and
Js ¼ 0:525 T: The magnetocrystalline anisotropy
is set to zero, since the wires are assumed to be
mostly amorphous. The wires are placed on
hexagonal lattice sites with a pitch of 100 nm: This
data has been chosen in accordance with corre-
sponding experimental investigations on highly
ordered Nickel nanowires embedded in a porous
alumina matrix [2]. The largest set considered in
the present simulations is diplayed in Fig. 1.

4. Results

4.1. Hysteresis loops

To systematically investigate the effect of the
magnetostatic interaction between the wires, si-
mulations of the hysteresis loops are performed for
different numbers of wires, with a maximum of 16
interacting nanowires.
The external field is applied in direction of the

wires’ axis. Closed hysteresis loops are simulated
for values of the external fields between +500 and
�500 mT: The field is reduced and incremented in
steps of 5 mT: At each step, the magnetic structure

of each wire of the considered array is calculated.
Since the magnetocrystalline anisotropy is set to
zero, magnetostatic effects are the only source of
hysteresis. Therefore, the stray field needs to be
calculated with particularly high precision.
It turns out that after saturation, each wire can

be regarded as a magnetically bistable system. The
nanowires switch between two well defined, mostly
homogeneous magnetization states. This behavior
results in a hysteresis loop of nearly rectangular
shape for a single nanowire.
An example of a hysteresis loop of interacting

nanowires is shown in Fig. 2 for the case of a set of
seven nanowires. Configurations with reduced net
magnetization can be found in the vicinity of the
coercive field. This occurs when not all of the wires
are magnetized in the same direction. In this case,
five of the seven nanowires have switched at
7120 mT; while two wires are still magnetized in
the opposite direction.
The magnetostatic coupling between the wires

strongly influences the coercive field HC of the set
of coupled wires. A monotonous reduction of HC

is found with increasing number of interacting
nanowires, see Fig. 3.
While a single nanowire reverses at an opposite

field of 145 mT; the coercive field is only 115 mT
for an array of 16 nanowires. This significant
reduction of roughly 30% is a remarkable result of
the simulation which demonstrates the strong
influence of the magnetostatic interaction on the

Fig. 1. Array of 16 nanowires as used for the simulation (left)

and enlarged view on the top of one wire (right) illustrating the

finite element discretization.
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Fig. 2. Hysteresis loop of an array of seven nanowires.
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hysteresis loop. Though the available data is not
sufficient to reliably extrapolate the values of HC

to the case of an infinite number of nanowires, the
tendency is obvious and a coercive field in the
order of 100 mT can be expected for large numbers
of nanowires. The experimentally determined
value for the coercivity is 110 mT [2], which is
quite close to the computed result for 16 nano-
wires.

4.2. Switching dynamics

The magnetization reversal is studied by means
of dynamic micromagnetic simualtions. Since the
reversal mechanism is unlikely to depend on the
neighboring wires and the numerical effort for
dynamic simulations is much higher than for
quasi-static ones, the dynamic simulation is
restricted to a single, isolated nanowire. An
external field of sufficient strength for reversal (in
this case 150 mT) is applied instantaneously to the
homogeneously magnetized wire. With these initial
conditions, Gilbert’s equation (2) is integrated
numerically at each node. A damping parameter
a ¼ 0:1 is assumed.
It is found that the reversal mechanism depends

sensitively on the diameter d of the nanowires. For
d ¼ 40 nm; the reversal occurs by means of
nucleation and subsequent soliton propagation.

Snapshots of the magnetization reversal are shown
in Fig. 4. The reversal sets in at the end of the wire.
There, the demagnetizing field has its strongest
value and hence facilitates the reversal. The strong
effect of shape anisotropy aligns the magnetization
in direction of the wire axis as far as possible. This
leads to the formation of a domain with reversed
magnetization which expands by means of domain
wall displacement. Once the reversal has started at
the end of the wire, a head-on domain wall
propagates through the wire. This domain wall
separates two regions of different magnetization
direction, one of which is oriented parallel to the
external field, the other anti-parallel to it.
The magnetization in the middle of the domain

wall is oriented perpendicular to the external field.
This gives rise to a precession of the magnetization
within the domain wall. Therefore, the soliton does
not simply propagate through the wire, but it
winds down the wire leading to highly regular,
periodic oscillations of the magnetization compo-
nents perpendicular to the wire axis, as can be seen
in Fig. 5.
The magnetization reversal mechanism changes

drastically if the diameter of the nanowire is larger.
Snapshots of the beginning of the magnetization
reversal in a nanowire with 60 nm diameter are
shown in Fig. 6. Except for the larger diameter, the
nanowire is the same as before.
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Fig. 3. The coercive field diminishes with increasing number of

interacting nanowires.

Fig. 4. Six snapshots of the reversal mechanism by means of

nucleation and propagation in a nanowire of 40 nm diameter.

The figures are ordered at equal steps in time, increasing from

left to right.
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Regarding the onset of magnetization reversal at
the particle’s end and the expansion of a reversed
domain, this mode is similar to the previous case.
However, the cross-section is now large enough to
sustain a vortex, which is formed during reversal in
order to reduce magnetic surface charges. The
vortex formation is similar to a curling mode
which in this case, however, is localized in contrast
to the classical version. This process represents a
mixed form of a curling reversal mode and a
nucleation–propagation process. The junction
between two mutually antiparallel domains is in
this case a vortex wall. This mechanism is similar

to a nucleation process discussed analytically by
Braun [14]. Note that in the middle of the vortex a
micromagnetic singularity (Bloch point) is formed
which propagates through the wire. Details on this
reversal mechanism will be subject of future
investigations.

5. Conclusions

Static and dynamic micromagnetic simulations
based on the finite element method combined with
the boundary element method allow for detailed
predictions of the micromagnetic properties of soft
magnetic nanowires.
The simulations clearly show that magnetostatic

coupling is crucial for the coercive field of an array
of magnetic nanowires. While the calculated value
of the coercive field of a single nanowire is merely
of the same order of magnitude as the experi-
mental value for the array, the simulation of a set
of 16 nanowires yields a coercive field which is in
close agreement with to the experimental value.
However, the maximum size of the simulated array
is not sufficient to expect an exact reproduction of
the experimental value.
Dynamic micromagnetic simulations reveal that

magnetization reversal of nickel nanowires occurs
by nucleation and subsequent propagation. In thin
wires (d ¼ 40 nm), head-on domain walls are
generated at the wire’s ends which propagate
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Fig. 5. Average magnetization components during the magne-

tization reversal. The magnetization in the xy-plane perpendi-

cular to the wire axis oscillates with high frequency while the

mean z-component decreases.

Fig. 6. Dynamics of a curling reversal mode combined with a nucleation-propagation process in a nanowire with 60 nm diameter.

Snapshots are taken at increasing time from left to right.
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through the wire. A characteristic oscillation of the
perpendicular component is forecasted for this case.
A more involved, but similar, reversal mode is
found in wires of 60nm diameter. This mixed form
of a curling reversal and a nucleation–propagation
process contains a head-on domain wall with vortex
structure which propagates through the wire, thus
reversing the magnetization in the wire.
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