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Anisotropic spin and charge transport in presence of spin-orbit interaction
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We explore spin and charge transport phenomena in a two-dimensional electr@Dg43 in presence of
spin-orbit coupling connected to two ideal Ferromagnetic leads with parallel magnetization. It is shown that the
spin polarization transported through the 2DEG depends on the absolute direction of magnetization in a
coordinate system defined by plane of 2DEG and normal to it. Conductance is also shown to be anisotropic.
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The growing field of spintronics has attracted a lot of hV2 ~
interest after the proposal of the spin-field effect transistor H=— 5 taloxk)-z 1)

(spin-FET by Datta and Das.The Datta-Das spin-FET is a

hybrid structure of type FM1-2DEG-FM2, where 2DEG is awhere « is the Rashba spin-orbit interaction parameter. We
two-dimensional electron gas of a narrow gap semiconductonrite the above Hamiltonian in the matrix form which is
(INAS) and FM1 and FM2 are injector and detector ferro-more convenient for the study of spin transport

magnetic contacts. The working of this device relies on the
manipulation of electronic spin state in 2DEG with the elec-
tric field of an external gate electrode. Essential for this
mechanism is field dependent spin-orbit coupling, which is ) ) , ) 202 12
relatively large and well establishédt is now generally Wherel is the 2x2 identity matrix,Bo=#"(ki+kj)/m and
accepted that the spin-orbit coupling in narrow-gap 2DEG ighe vector isBg=2a(k/x—Kkyy). Note that the magnitude
governed by the Rashba Hamiltoni%ﬁor a 2DEG |y|ng in and direction OfBR is determined by wave vectdr. Infact

xy plane (see Fig. 1 the Rashba spin-orbit interaction has the direction ofBg is always perpendicular to the instanta-
neous wave vectdk.

; ) ~ i ] An appropriate physical quantity to study the spin trans-
tor, o Pauli matrices, and is a unit vector perpendicular to port is the polarization vectd®= (o), where angular bracket
2DEG plane. The Rashba spin-orbit causes spin splitting fofepresents the ensemble averaging. With this definition one

k#0, AE=2ak, which is linear in momentum. The Rashba can immediately write down the equation of motion for po-
splitting is due to absence of space inversion symmetrylarization vector

However the exchange splitting in ferromagnets is due to the

breaking of time reversal symmetry. Therefore it is natural to dP  d{o(t)) i

expect that spin and charge transport properties of a hybrid g at g(o'(t)H —Ha(t)). )
structure like spin-FET, which combines elements with dif-

ferent symmetry properties, may be different than the stanSimplifying the above equation using E@) one gets
dard mesoscopic structures consisting of elements with same

symmetry, for, e.g., all metal mesoscopic structures.

Motivated by this, in this paper we study the spin and hgp =BrXP. 4
charge transport of a FM1-2DEG-FM2 system sketched in
Fig. 1. A natural reference frame for the Fig. 1 is defined by
the plane of 2DEGwe call it thexy plane and the normal to
this plane , i.e., the axis. The polarization of the ferromag- FM1
nets FM1 and FM2 are equal in magnitude and parallel to
each other but points in a directior,@), i.e., P,=P,
=Py (sinfcose,sindsin ¢,cosd), with 6 and ¢ being the
usual spherical angles. The question addressed here is the
following: does the spin polarization transported through
2DEG from FM1 to FM2, and the charge transport, i.e., con-
ductance depend ord(¢)? We show through a combination L
of analytical and numerical calculation, that transported spin
polarization and charge conductance are anisotropic, i.e., de-
pends on angl® and ¢. These anisotropies are presentirre- F|G. 1. A 2DEG connected to two ideal Ferromagnetic leads.
spective of the Hamiltonian considered being an effectiverhe three region shown are respectivédy, (b), and(c). Trajecto-

the form Hg= a(k X o) Z,with k being the momentum vec-

FM2

mass Hamiltonian or tight binding Hamiltoni4n® ries lying in region(b) (depicted as dashed linesaches the FM2
The Hamiltonian of a 2DEG in presence of Rashba spinballistically. Trajectories lying in region&) and(c) (shown as solid
orbit coupling reads lines) scatters from boundary before reaching FM2.
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Equation(4) is well known in the literature and is fully quan- 08 - -
tum mechanical and holds even B is time dependertt. ] % — o Fat
Equation(4) can be solved analytically when the fielg is 06T g e g ‘t:.
a constant vector, the most general solution is given as 04l of \\‘. o W
° e/ L) i L)
~ ~ o. / \\ .o o. ! \\ .o
P(t) = POCOE( (,L)Rt) + ZBR( BR' Po)S|n2( (URt/Z) Pol 0.2 ".'. //I \\\ %, s / \\\ .‘.~‘
1 !
N / \ \
+ ( BRX PO)SIH( th), (5) 00 /’ \\\ /’I \‘\
/ N/ \
wherePy is the initial polarization imposed by ferromagnet 02 P g E
FM1 and wg=Bg/% is precession frequencyprecession
angley= wgt). Since we are interested in the transport prop- -0.4 m T80 0 360
erties when the polarization vector of injector and detector 6 or ¢ (degree)

ferromagnetsFM1 and FM2 in Fig. 1 are equal and paral-
lel, hence by projectindg?(t) on P, we obtain the required
solution

P(t) - Py=|Po|?coq wgt) + 2(Py- Br)?sir?(wgt/2), (6)

where wg=Bgr/h=2ak;/#. For a given injection angl@
as shown in Fig. 1, Eq6) simplifies to

P(t)-Po
|Pol?
=cog wgt)+2 sinB
— )?sin( 0)%sirt(wgt/2).

pOl( 01¢vat1B)E

(@)

The quantity pol@, ¢, wgt,B) is a measure of spin polar-
ization (for a given injection anglgg) transferred from FM1
to FM2 through the 2DEG. Equatidid) is a general solution
for any givend and ¢, for particulard and ¢ solution can be
found in standard textln Eq. (7) t is the time electron takes

FIG. 2. Polarization transported from FM1 to FM2 through
2DEG as a function of angle, calculated using E@$.and (8) as
explained in text. Wher& = W= 50/27,a=0.06.

trajectory in Fig. 1 or with scatteringsolid trajectory in Fig.

1) from the boundaries. Hence we need to calculaecord-
ingly for different values ofB. Therefore we divide the in-
tegration overg in three regimes, namelya) — #/2<B<
—tan Y(W/L), (b) —tan }(W/L)<pB=<—tan }(W/L), and
(c) tan Y(W/L)<pB=<m/2. The regimesa) and (c) corre-
spond to the trajectories which suffers scattering from
boundary while trajectories in regim®) propagates ballis-
tically. Since trajectories lying in regim@) propagates bal-
listically therefore the time to reach the output terminal is
=L/cos(B) (see Fig. 1 dashed lifeFor trajectories lying in
regimes(a) and(c) the electron scatters from the boundary at
least once before reaching the out put term{i#l2), hence
for these values 0B, we assume that the electrons diffuse
along the channel with a mean free patlisin(B) (later in

to reach the output terminal. Since the electron are injectedur exact numerical simulation we will see that this approxi-

over the range- w/2< < w/2, we need to make an average
over all possible values of injection angl To do this we

mation is quite reasonalleHence the time to reach the
boundary is given as=[2L?sin(8)]/(viW). Using the corre-

proceed as follows: We notice that depending upon injectiorsponding value ot for regimes(a), (b), and(c),we obtain

angle B8 electron reaches the boundary ballisticaltiashed

2aksL _ 2mal
vicogB) cogp)

th—

2ak;L?sin(B) =4wEPsir(ﬁ)

precession angle= wgt,

UfW

wherea = ak;/E; is dimensionless Rashba parametgy is
Fermi energyandL =L/\; andW=W/\; are the length and

width of the channel in units of Fermi wavelength. Substi-

tuting these values obgt in Eq. (7) and performing the
integration overB, we obtain polarization as function of

6,¢,a for a givenL andW. Equation(7) together with Eq.

to different values off and ¢, namely, (i) 6=u/2, ¢ is
variable, i.e., polarization of FM1 and FM2 is rotated in the
xy plane (the plane formed by 2DEG(ii) ¢=0, 0 is the
variable corresponding to the rotation in tke plane, (iii )
¢=/2, 0 is the variable corresponding to the rotatioryin
plane. For these three different cases the transported polar-
ization given by Eq(7) is shown in Fig. 2 as a function of

(8) can be used to calculate the transported polarization fogngle. It is clearly seen from Fig. 2 that transported polariza-
any given direction ¢, ¢), however, for clarity and simplic- tion is anisotropic.

ity we present results for three specific cases corresponding The amplitude of oscillation tells us about the spin coher-
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FIG. 4. Conductance as a function of angle corresponding to the
ig. 3. The dot-dashed line is the conductance in absence of spin-
orbit interaction.

FIG. 3. Results of numerical simulation for polarization for bal-
listic system. The numerical simulation were performed on a 5
X 50 lattice within tight binding model. The tight binding Rashba
parameter is given by,= atk;a/2=0.03, FM exchange splitting . . .
is A/E;=0.5, andk;a=1. These parameters were chosen in such a Ve see that the agreement between Fig. 2, i.e., analytical

way that they correspond to the parameters of Fig. 1, as explaineg@lculation, and Fig. gsimulation is quite good. The slight
in text (analytical result quantitative mismatch is due to the fact that numerical simu-

lation was done for hard wall confining potentialyrdirec-

ence and since this is different for all the three cases i{ion Whi.Ch leads to specular reflection, whil in analytica_l
signifies that the spin coherence is also affected anisotrop _alpulatlon scattering from the boundgry was treate_d as dif-
cally. References 6 discusses the spin coheferieh is usive. Therefore it is clear that the anisotropy in spin trans-

related with the amplitude of oscillatipmvhen the injected p(ejar:ni:'cs n[:;;%sentwln” theincgn::?g?nrginm(ﬁ%ﬁled%ei r?waisan
current is unpolarized since the contacts were nonmagnetf(_:| 0 as well as 9 g mocet and 1S no

hence the question of transport of spin polarization does no‘?ﬁeCt of _reduced Symmetry (.)f tight binding modeRe-
arise. In fact, it is seen from Fig. 2 that amplitude of oscil- cently anisotropy in pola}r|zat|on transps\;t have been ob-
lation is larger for case§) and (iii), compared to casi). served for holes injected into a quantum weHowever, the

The absolute magnitude of oscillation is always smaller tha echanism is npt clegr,' see Rgf. 9. Our results suggest t'hat
one implying even in ballistic transport spin dephasing take or el_ectr_ons, spin-orbit interaction can lead to anisotropy in
place due to the boundary scattering. Though in our anaIytipO|ar'Zat'on transport but we cannot make definite statement

cal calculation boundary scattering was treated as diﬂ‘usiveregalrdlng the experimental result Ref. 9 since the effect there

. - . . 5 related to holes.
however, we will see in the exact numerical calculation that .
a perfectly reflecting boundary also leads to dephasing. Now since conductance of FM/2DEG/FM depends on the

To further strengthen our results we performed numericapolarization of electrons reaching the output terminal, hence
It is expected that conductance should also be anisotropic.

simulation on a tight binding square lattice of lattice spacingThiS is clearly visible in Fig. 4. where we have plotted the

awith N, sites alongc axis andN, sites along thg axis. For S . :

the tight binding Hamiltonian the Rashba spin-orbit couplingtOtal conductance, '.‘eG._GS@L Gy corresponding to Fig. 3,
- ~ o~ , as function of polarization angle. It should be noted that the
'S given by Aso= a/2a_— atkial/2 (see Refs. 68 We fix t gy ctance is symmetric with respect to angler ¢ which

=1 (hopping andksa=1 (ballistic casg for the numerical s consistent with Btiiker symmetry relation for charge
simulation in the tight binding model. Ondeandksa are  -ansporf® It is instructive to note that the conductance does
fixed the other parameters for the tight binding model whichy, depend on polar anglé or ¢ in absence of spin-orbit

would correspond to the parameters of Fig. 1 are given agieraction as is seen from the Fig.(dot-dashed straight
Ny=2mL =50, Ny=27W=50, and \s,=atk;a/2=0.03. |ine). This clearly shows that the anisotropies are a conse-
With these set of parameters we calculate spin resolved coguence of rotational symmetry breaking by spin-orbit inter-
ductance for a given polarization direction, (b)) of ferro-  action. In a recent paper Matsuyamigal * studied conduc-
magnets, within Landauer-Biker formalism>®#%Using  tance oscillation in similar system arising due to Fabry-Perot
the spin resolved conductance we define the polarization agesonances. In particular they showed that conductance os-
cillates as a function of carrier density for a fixed magneti-
G.—G zation direction, i.e., either parallel to tReaxis ory axis[see
= SC—Sf, 9) Figs. 11a) and 11b) in Ref. 11]. The oscillation reported in
Gset G this work arises due to a change in magnetization direction
while keeping all other parameters fixed, see Fig. 4, where
whereG¢. and G4 are spin-conserved and spin-flip conduc- the conductance is shown as a functiordaind ¢. Also we
tance, respectively. The quanti®in Eq. (9) corresponds to would like to point out that Ref. 12 reports experimental
the quantity given in Eq(7) and also lies betweert 1 and  results for change in resistance when the magnetization of
—1. This is plotted in Fig. 3. FM1 and FM2 is changed from parallel to antiparallel con-
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FIG. 5. Polarization as a function of angle for diffusive case. _. FIG. 6. Conductance as f_unctlon of angle corres_pondl_ng to the
= - - . Fig. 5. Herek¢| =10, wherel is mean free path.Configuration av-
Herek;l =10, wherel is the mean free path. Configuration averag- eraqing was performed over 15 different confiquration. The other
ing was performed over 15 different configuration. The other pa- arglmgt;vrs arr)e the samevas i Fil 3 The dolggas;le d straiht line
rameters are same as in Fig. 3. P 9. o 9

shows the conductance in the absence of spin-orbit interaction.

figuration. Our results for conductance calculation pertains tgng Fig. 5 for diffusive transport. It is seen that the polariza-
the situation when the magnetization of FM1 and FM2 argjon which is transported is not affected much by the pres-
always parallel but points in a directiom,($) as explained gnce of disorder which is consistent with the fact that the
in the introduction. Hence our result is not related with theg,spnpa spin-orbit interaction is independent of disorder
experimental data of Ref. 12. strength.

The results presented above were in the ballistic regime. |, summary we have demonstrated that spin and charge
To verify that these results survives in a diffusive case Weansport in the presence of Rashba spin-orbit interaction are

show polarization and conductance in Figs. 5 and 6, respegisqiropic. These anisotropies are consequence of breaking
tively, for the diffusive case. We have taken Anderson modey rgtational invariance due to the presence of the spin-orbit

for disorder with width 3t|, corresponding to a mean free nteraction.

path ofl =10a. The other parameters are same as those for

Figs. 3 and 4. It is clearly seen that the anisotropy survives The author would like to thank G. Bouzerar and P. Bruno

even in the diffusive case. for helpful discussions and a critical reading of the manu-
It is instructive to compare Fig. 3 for ballistic transport script.
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