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Magnetic Casimir effect
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The Casimir effect results from alterations of the zero-point electromagnetic energy introduced by boundary
conditions. For ferromagnetic layers separated by vacuum~or a dielectric!, such boundary conditions are
influenced by the magneto-optical Kerr effect. We will show that this gives rise to a long-range magnetic
interaction and discuss the effect for two different configurations~magnetization parallel and perpendicular to
the layers!. Analytical expressions are derived for two models and compared to numerical calculations. Nu-
merical calculations of the effect for Fe are also presented and the possibility of an experimental observation
of the Casimir magnetic interaction is discussed.
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I. INTRODUCTION

Since its discovery, the Casimir effect has gradually
come a much-discussed subject in physics. Originally,
understood by the Casimir effect the attractive force betw
two metal plates in vacuum as a result of zero-point quan
fluctuations @1#. Nowadays the term is used for a muc
broader range of effects, all involving the influence
boundaries on fluctuations. As such, the Casimir effect pl
a role in quantum-field theory, atomic and molecular phys
condensed-matter physics, gravitation, cosmology, and so
A thorough review of the Casimir effect in all these fiel
was published recently@2#.

For two uniformly magnetized ferromagnetic plates he
parallel to each other, it is shown in a previous paper@3# that
the interplay of the Casimir effect and the magneto-opti
Kerr effect gives rise to a new long-range magnetic inter
tion. In Ref. @3#, this magnetic Casimir force was found
decay with interplate distanceD asD25 in the limit of long
distances, and asD21 for short distances. In this case, th
ferromagnetic plates were described with a Drude model
the magnetization was defined to be perpendicular to
plates. In view of future experimental investigations of th
new magnetic Casimir force, it would be useful to study t
case where the magnetization is parallel to the plates s
this situation is easier to obtain in an experimental set
This subject will be studied in the present paper and a fo
that decays asD26 in the long-distance limit and asD23 in
the limit of short distances is found when the Drude mode
used. This behavior is interesting since it means that
force is larger, and thus easier to measure, for in-plane m
netization than for perpendicular magnetization at su
ciently small distances. Next to the Drude model, anot
more realistic model is also studied. In this so-called hyb
model, a plasma model is used for the diagonal elemen
the dielectric tensor of the magnetic plates, and a single
sorption line model for the off-diagonal element. As for t
long-distance limit, the force in this model goes likeD28 for
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the case of perpendicular magnetization and asD210 when
the magnetization is parallel to the plates, while the behav
in the short-distance limit is unchanged. Finally, we w
present some numerical calculations of the interaction for
in which experimental data for the elements of the dielec
tensor are used. An experimental setup to measure the m
netic Casimir force is also discussed.

II. GENERAL THEORY

Consider two uniformly magnetized ferromagnetic pla
of infinite lateral extension held parallel to each other. T
Casimir interaction energy per unit area atT50 between the
plates can be expressed@4# as

E5
\

~2p!3E0

1`

dvE d2kiIm Tr ln~12RARBe2ik'D!,

~1!

where k' and ki are the components of the wave vect
perpendicular and parallel to the mirrors. The 232 matrices
RA andRB contain the reflection coefficients of the two mi
rors:

RA(B)5S r ss
A(B) r sp

A(B)

r ps
A(B) r pp

A(B)D . ~2!

The indexs ~p! corresponds to a polarization with the ele
tric field perpendicular~parallel! to the incidence plane. We
will adopt here the usual convention that thes axis remains
unchanged upon reflection. Since the reflection coefficie
are dependent on the direction of the magnetization of
mirrors, it is clear from Eqs.~1! and ~2! that the magnetic
Casimir energy between the mirrors will differ for the situ
tions in which the magnetizations of the two mirrors a
parallel @ferromagnetic~FM!# or antiparallel@antiferromag-
netic ~AF!#. This will result in a net magnetic Casimir forc
per unit areaDF[FAF2FFM between the mirrors, differen
from the ordinary Casimir force discussed in Ref.@1#.

If a change of integration variables (v,ki)→(v,k' ,w) is
performed and complex integration methods are used a
Ref. @4#, Eq. ~1! can be written as
©2002 The American Physical Society02-1



e sign.

G. METALIDIS AND P. BRUNO PHYSICAL REVIEW A66, 062102 ~2002!
E5
\

~2p!3E0

1`

dk'k'E
0

2p

dwE
0

k'c

dv Re Tr ln@12RA~ iv,ik' ,w!RB~ iv,ik' ,w!e22k'D#. ~3!

In general, the reflection coefficients contain terms of different orders of the magneto-optical constantQ. In our calculation,
only terms up to first order inQ will be conserved. When the magnetization direction is reversed, these terms will chang
Since the first-order terms are usually much smaller than 1, and than the terms that are independent ofQ, it is possible to
expand expression~3! to lowest order in the linear terms.

A. The polar configuration

After some algebra, we find for the situation with magnetization directed perpendicular to the plates~we will call this the
polar configuration from now on!:

DE'5E AF
' 2E AM

' '2
\

p2E0

1`

dk'k'E
0

k'c

dv ReF ~r sp
' !2e22k'D

~12r ss
2 e22k'D!~12r pp

2 e22k'D!
G , ~4a!

DF'52
dDE'

dD
'2

2\

p2E0

1`

dk'k'
2 E

0

k'c

dv ReF ~r sp
' !2@12r ss

2 r pp
2 e24k'D#e22k'D

~@12r ss
2 e22k'D#@12r pp

2 e22k'D# !2G , ~4b!
h
de
ion
e

n
en

th
u-

s
ag

gr
ffi-
gra-
n

where the reflection coefficients have to be evaluated
imaginary perpendicular wavevector and frequency. In t
equation, the reflection amplitudes are supposed to be i
tical for the two mirrors. Otherwise, the squared reflect
coefficients have to be replaced by the product of the co
ficients for the separate mirrors~e.g. r ss

2 →r ss
A r ss

B ). The inte-
gral over the anglew is already performed. The reflectio
coefficients for a mirror in the polar configuration are giv
in Ref. @5# as

r ss~ iv,ik'!5
k'c2j

k'c1j
, r pp~ iv,ik'!5

«xx~ iv!k'c2j

«xx~ iv!k'c1j
,

~5a!

r sp
' ~ iv,ik'!5r ps

' ~ iv,ik'!5
2k'c v «xy~ iv!

@k'c1j#@«xx~ iv!k'c1j#
,

~5b!

with j5Av2@«xx( iv)21#1(k'c)2.

B. The in-plane configuration

For the case where the magnetization is parallel to
plates~we will refer to this situation as the in-plane config
ration from now on!, not only r sp , but alsor pp will contain
a term that is linear in the magneto-optical constant. A
consequence, we find two contributions to the Casimir m
netic interaction energy. The first one (DE 1

i ) results from the
longitudinal Kerr effect, while the second term (DE 2

i ) is a
consequence of the transversal Kerr effect. Again the inte
over w can be performed directly. We obtain~for identical
mirrors!
06210
at
is
n-

f-

e

a
-

al

DE 1
i '

\

2p2E0

1`

dk'k'

3E
0

k'c

dv ReF ~r sp
i !2e22k'D

~12r ss
2 e22k'D!~12r pp

2 e22k'D!
G ,

~6a!

DE 2
i '

2\

4p2E0

1`

dk'k'E
0

k'c

dv ReF Dr pp
2 e22k'D

~12r pp
2 e22k'D!2G ,

~6b!

DF 1
i '

\

p2E0

1`

dk'k'
2

3E
0

k'c

dv ReF ~r sp
i !2@12r ss

2 r pp
2 e24k'D#e22k'D

~@12r ss
2 e22k'D#@12r pp

2 e22k'D# !2G ,

~6c!

DF 2
i '

2\

2p2E0

1`

dk'k'
2

3E
0

k'c

dv ReFDr pp
2 ~11r pp

2 e22k'D!e22k'D

~12r pp
2 e22k'D!3 G .

~6d!

Of course,DE i5DE 1
i 1DE 2

i and DF i5DF 1
i 1DF 2

i . For
two different mirrors, the squares of the reflection coe
cients have to be replaced as mentioned above. The inte
tion over the anglew is already performed. The reflectio
coefficients in Eq.~6! are given in Ref.@5#:
2-2
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MAGNETIC CASIMIR EFFECT PHYSICAL REVIEW A66, 062102 ~2002!
r sp
i ~ iv,ik'!52r ps

i ~ iv,ik'!

5~21!
Av22~k'c!2v «xy~ iv!~k'c!

~k'c1j!@«xx~ iv!k'c1j#j
,

~7a!

Dr pp~ iv,ik'!5
2Av22~k'c!2«xy~ iv!~k'c!

@«xx~ iv!k'c1j#2
, ~7b!

again withj5Av2@«xx( iv)21#1(k'c)2. r ss( iv,ik') and
r pp( iv,ik') are still given by Eq.~5a!. Note that the contri-
butions arising from the longitudinal and transversal K
effect are of opposite sign and therefore tend to cancel e
other. On the basis of Eqs.~4!–~7!, we will calculate the
Casimir magnetic energies and forces for two simple mod
in the next two sections. In Sec. V, we will use these eq
tions to numerically calculate the interaction for iron plate

III. THE DRUDE MODEL

Consider two identical magnetic mirrors with a dielect
tensor described by the Drude model:

«xx~ iv!511
vp

2t

v~11vt!
, ~8a!

«xy~ iv!5
vp

2vct
2

v~11vt!2
. ~8b!

In this equation,vp is the plasma frequency defined byvp
[4pne2/m!; vc is the cyclotron frequency given byvc
[eBeff /m

!c, whereBeff is the effective magnetic field ex
perienced by the conduction electrons as a result of excha
and spin-orbit interactions; andt is the relaxation time. In
the usual situation,vct!1!vpt.

There are three important distance regimes to conside
the long-distance limit (D@ct) the dominant part in the
integrals in Eqs.~4! and ~6! comes from the regionv<k'c
'c/D!1/t. In this range, one has

«xx~ iv!'«xx~ iv!21'
vp

2t

v
@1, ~9a!

«xy~ iv!'
vp

2vct
2

v
. ~9b!

With these approximations, one finds for the reflection co
ficients:

r ss~ iv,ik'!'2r pp~ iv,ik'!'21, ~10a!

r sp
' ~ iv,ik'!'2

vc

vp
Avt, ~10b!

r sp
i ~ iv,ik'!'2

vc

vp
2
Av22~k'c!2, ~10c!
06210
r
ch

ls
-
.

ge

In

f-

Dr pp~ iv,ik'!'
2vc

vp
2

vAv22~k'c!2

k'c
. ~10d!

For the polar configuration, we arrive at

DE''2
3z~3!

16p2

vc
2t

vp
2

\c2

D4
, ~11a!

DF''2
3z~3!

4p2

vc
2t

vp
2

\c2

D5
. ~11b!

While for the in-plane configuration, it is found that

DE 1
i '2

z~4!

4p2

vc
2

vp
4

\c3

D5
, DE 2

i '
z~4!

10p2

vc
2

vp
4

\c3

D5
,

~12a!

DE i5DE 1
i 1DE 2

i '2
3z~4!

20p2

vc
2

vp
4

\c3

D5
, ~12b!

DF 1
i '2

5z~4!

4p2

vc
2

vp
4

\c3

D6
, DF 2

i '
z~4!

2p2

vc
2

vp
4

\c3

D6
,

~12c!

DF i5DF 1
i 1DF 2

i '2
3z~4!

4p2

vc
2

vp
4

\c3

D6
. ~12d!

The second regime is that for intermediate distances (c/vp
!D!ct). Now the integrals in Eqs.~4! and ~6! are domi-
nated by the range 1/t!v<k'c'c/D!vp . For the ele-
ments of the dielectric tensor, one then finds

«xx~ iv!'«xx~ iv!21'
vp

2

v2
@1, ~13a!

«xy~ iv!'
vp

2vc

v3
. ~13b!

In this case, the reflection coefficientsr ss, r pp , r sp
i , and

Dr pp still satisfy Eqs.~10a!–~10d!, while

r sp
' '2

vc

vp
. ~14!

Since the reflection coefficients for the in-plane configurat
in this regime are not different from the ones in the sho
distance limit, the expressions~12! are still valid for the Ca-
simir magnetic energies and forces in the in-plane confi
ration. However, for the polar configuration, one has

DE''2
1

24

\c

D3

vc
2

vp
2

, ~15a!
2-3
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G. METALIDIS AND P. BRUNO PHYSICAL REVIEW A66, 062102 ~2002!
DF''2
1

8

\c

D4

vc
2

vp
2

. ~15b!

The third regime to be considered is the limit of short d
tances (D!c/vp). Here one has to distinguish between tw
regions:~i! v<k'c!vp and~ii ! vp!v<k'c. In region~i!,
the dielectric tensor elements are given in Eqs.~13!, so the
reflection coefficientsr sp

' , r sp
i , and Dr pp are the same a

those in the intermediate distance regime, but we will n
make an expansion forr ss andr pp around21 and 1, respec-
tively,

r ss~ iv,ik'!'211
2k'c

vp
, r pp~ iv,ik'!'122

v2

vpk'c
.

~16!

In region ~ii !, the dielectric tensor elements are given by

«xx~ iv!21'
vp

2

v2
!1, ~17a!

«xy~ iv!'
vp

2vc

v3
. ~17b!

We then find for region~ii !,

r ss~ iv,ik'!'0, r pp~ iv,ik'!'
vp

2

2v21vp
2

, ~18a!

r sp
' ~ iv,ik'!'2

vp
2vc

2

1

~k'c!~2v21vp
2!

, ~18b!

r sp
i ~ iv,ik'!'2

vp
2vc

2

Av22~k'c!2

~k'c!2~2v21vp
2!

, ~18c!

Dr pp~ iv,ik'!'2vp
2vc

vAv22~k'c!2

~k'c!~2v21vp
2!2

. ~18d!

With these approximations for the reflection coefficients
regions~i! and ~ii !, one finds the following expressions fo
the energies and forces~only the dominant term is given!:

DE''2
1

16A2p
vc

2Avp

\

c3/2D1/2
, ~19a!

DF''2
1

32A2p
vc

2Avp

\

c3/2D3/2
, ~19b!

DE 1
i '2

1

96A2p
vc

2Avp

\

c3/2D1/2
, ~19c!

DF 1
i '2

1

192A2p
vc

2Avp

\

c3/2D3/2
, ~19d!
06210
-

DE 2
i '

1

16A2p
(
n50

1` F ~4n13!!!

~n11!~4n16!!! Gvc
2

vp

\

D2
, ~19e!

DF 2
i '

1

8A2p
(
n50

1` F ~4n13!!!

~n11!~4n16!!! Gvc
2

vp

\

D3
. ~19f!

From these expressions, it is obvious thatDE i'DE 2
i and

DF i'DF 2
i for distances small enough. Note that for th

polar configuration, the exponent of the dependence with
spect toD obtained here in the short-distance limit diffe
from the one obtained in Ref.@3#. This is due to the effect of
multiple reflections, which were neglected in Ref.@3# in this
regime. It is interesting to note that although the reflect
coefficients are much smaller than 1 in this high-frequen
limit, the effect of multiple reflections is so important th
the analytical dependence withD is modified. This is a
unique feature of the magnetic Casimir effect.

It is clear that in the polar configuration, the energies
always negative. For the in-plane configuration, howev
DE 2

i is positive, whileDE 1
i is negative, so the sign of th

resulting energyDE i5DE 1
i 1DE 2

i will depend on the mag-
nitude of these two terms in the different regimes. As a
sult, a change of sign of the interaction is observed; in
long and intermediate-distance regimes, the total energyDE i

is negative, while for short distances it is positive. S
whether the magnetic Casimir interaction is negative or po
tive depends on the distance between the mirrors.

We numerically calculated Eqs.~4! and~6! and compared
them to the analytical expressions derived above. Detail
the numerical procedure will be given in Sec. V. The ab
lute values of the magnetic Casimir forces per unit area~both
numerical and analytical results! for distances between 1 nm
and 10mm for the two configurations are plotted in Fig.
Since typically t'10213 s, the long-distance regime (D
@ct'10 mm) will not be visible in these plots. For th
plots, a Drude model is used with\vc55.9 meV and\vp
59.85 eV. As expected from the analytical results, the fo
in the in-plane configuration will be larger than that for th
polar configuration for small enough distances (D
,10 nm). The discontinuity atD'40 nm in the plot of the
in-plane case depicts the change of sign. The analytica
sults are in pretty good agreement with the numerical ca
lations.

IV. THE HYBRID MODEL

The Drude model is not very realistic. Although it de
scribes rather well the diagonal part of the dielectric ten
~except of course for the effect of interband transition
which are not very important here!, the off-diagonal part of
the dielectric tensor is poorly described. This is because
latter is dominated by interband transitions. We therefore
troduce a model~called ‘‘hybrid model’’! in which «xx is
described by a plasma model,

«xx~ iv!511
vp

2

v2
, ~20!
2-4
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FIG. 1. Absolute values of the magnetic Casimir force~per unit area! with the mirrors described by a Drude model. Numerical resu
~solid curves! are compared with the analytical expressions~dashed curves! for the polar configuration~a!, the in-plane configuration~b!, the
term DF 1

i resulting from the longitudinal Kerr effect~c!, and the term from the transversal Kerr effectDF 1
i ~d!.
r-

s
a

ng

n
e
ls

so a-
and where«xy is described by a single absorption line inte
band transition:

Re«xy~v!'v0«xy
effd~v2v0!. ~21!

In real systemsv0 will be of the same order of magnitude a
vp . The off-diagonal element of the dielectric tensor
imaginary frequency can be obtained by the followi
Kramers-Krönig relation:

«xy~ iv!5
2

vpE0

1`

dv8
v82Re«xy~v8!

v821v2
, ~22!

and in this way we arrive at

«xy~ iv!5
2

p

v0
3«xy

eff

v~v0
21v2!

. ~23!

For this model, we will only have two different integratio
regimes; the long-distance (D@c/vp) and the short-distanc
regime (D!c/vp). In the long-distance regime, the integra
in Eqs. ~4! and ~6! will be dominated by the rangev<k'c
!vp . In this range, we can approximate the dielectric ten
by
06210
t

r

«xx~ iv!'«xx~ iv!21'
vp

2

v2
@1, ~24a!

«xy~ iv!'
2

p

v0«xy
eff

v
. ~24b!

One then finds for the reflection coefficients

r ss~ iv,ik'!'21, r pp~ iv,ik'!'1, ~25a!

r sp
' ~ iv,ik'!'2

2

p

v0«xy
eff

vp
3

v2, ~25b!

r sp
i ~ iv,ik'!'2

2

p

v0«xy
eff

vp
4

Av22~k'c!2v2, ~25c!

Dr pp~ iv,ik'!'
4

p

v0«xy
eff

vp
4

Av22~k'c!2v3

k'c
. ~25d!

With these approximations, we obtain for the magnetic C
simir energies and forces~per unit area!:
2-5
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DE''2
p2

210

v0
2~«xy

eff!2

vp
6

\c5

D7
, ~26a!

DF''2
p2

30

v0
2~«xy

eff!2

vp
6

\c5

D8
, ~26b!

DE 1
i '2

p4

1050

v0
2~«xy

eff!2

vp
8

\c7

D9
, ~26c!

DF 1
i '2

9p4

1050

v0
2~«xy

eff!2

vp
8

\c7

D10
, ~26d!

DE 2
i '

p4

945

v0
2~«xy

eff!2

vp
8

\c7

D9
, ~26e!

DF 2
i '

p4

105

v0
2~«xy

eff!2

vp
8

\c7

D10
, ~26f!

DE i'
p4

9450

v0
2~«xy

eff!2

vp
8

\c7

D9
, ~26g!

DF i'
p4

1050

v0
2~«xy

eff!2

vp
8

\c7

D10
. ~26h!

As in the Drude model, the force in the polar configurati
will be negative. However, the total force for the in-pla
configuration will be positive for the hybrid model in th
distance regime.

In the limit of short distances, one has to distinguish b
tween three different integration ranges while performing
integrals in Eqs.~4! and ~6!: region ~i! where v<k'c
!vp , region ~ii ! k'c@vp , v!vp and region~iii ! k'c
@vp , v@vp . In region~i!, r ss and r pp are defined by Eq.
~16!, while r sp

' , r sp
i , and Dr pp are given by Eqs.~25b!–

~25d!. In regions~ii ! and ~iii !, we will do the calculations
without multiple reflections @i.e., we put r ss( iv,ik')
5r pp( iv,ik')'0]. In region ~ii !, the dielectric tensor ele
ments are given in Eqs.~24!, and the magneto-optical reflec
tion coefficients are given by

r sp
' ~ iv,ik'!'2

1

p
v0«xy

eff v2

~k'c!~2v21vp
2!

, ~27a!

r sp
i ~ iv,ik'!'2

1

p
v0«xy

eff
Av22~k'c!2v2

~k'c!2~2v21vp
2!

, ~27b!

Dr pp~ iv,ik'!'
4

p
v0«xy

eff
Av22~k'c!2v3

~k'c!~2v21vp
2!2

. ~27c!

In region ~iii !, the dielectric tensor can be approximated b
06210
-
e

«xx~ iv!21'
vp

2

v2
!1, ~28a!

«xy~ iv!'
2

p

v0
3«xy

eff

v3
. ~28b!

One then finds for the magneto-optical reflection coefficie
in region ~iii !:

r sp
' ~ iv,ik'!'2

1

p
v0

3«xy
eff 1

~k'c!~2v21vp
2!

, ~29a!

r sp
i ~ iv,ik'!'2

1

p
v0

3«xy
eff

Av22~k'c!2

~k'c!2~2v21vp
2!

, ~29b!

Dr pp~ iv,ik'!'
4

p
v0

3«xy
eff

Av22~k'c!2v

~k'c!~2v21vp
2!2

. ~29c!

With these equations by hand, we made an interpolation
the reflection coefficients in regions~ii ! and~iii !. This makes
the calculation of the integrals less labor intensive beca
we can calculate the two regions at the same time. We h
put

r sp
' ~ iv,ik'!'2

v0
3«xy

eff

p

v2

~k'c!~2v21vp
2!~v21v0

2!
,

~30a!

r sp
i ~ iv,ik'!'2

v0
3«xy

eff

p

Av22k'c2v2

~k'c!2~2v21vp
2!~v21v0

2!
,

~30b!

Dr pp~ iv,ik'!'
4v0

3«xy
eff

p

Av22~k'c!2v3

~k'c!~2v21vp
2!2~v21v0

2!
.

~30c!

With these expressions for the reflection coefficients, we
finally ready to calculate the magnetic Casimir energies
forces for the short-distance regime. The result is

DE''2
1

4A2p3

v0
6~«xy

eff!2

~vp1A2v0!3

\

c2
lnS c

v!D
D , ~31a!

DF''2
1

4A2p3

v0
6~«xy

eff!2

~vp1A2v0!3

\

c2D
, ~31b!

DE 1
i '2

1

8A2p3

v0
6~«xy

eff!2

~vp1A2v0!3

\

c2
lnS c

v!D
D , ~31c!

DF 1
i '2

1

8A2p3

v0
6~«xy

eff!2

~vp1A2v0!3

\

c2D
, ~31d!
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FIG. 2. Absolute values of the magnetic Casimir force~per unit area! with the mirrors described by the hybrid model. Numerical resu
~solid curves! are compared with the analytical expressions~dashed curves! for the polar configuration~a!, the in-plane configuration~b!, the
term DF 1

i resulting from the longitudinal Kerr effect~c!, and the term from the transversal Kerr effectDF 1
i ~d!.
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DE 2
i '

1

64A2p3

v0
6~«xy

eff!2~vp15A2v0!

vp~vp1A2v0!5

\

D2
, ~31e!

DF 2
i '

1

32A2p3

v0
6~«xy

eff!2~vp15A2v0!

vp~vp1A2v0!5

\

D3
, ~31f!

with v! a cutoff frequency of the order of the plasma fr
quencyvp . It is clear thatDE i'DE 2

i and DF i'DF 2
i for

distances small enough. The force for the in-plane confi
ration is positive in this short-distance regime too, so th
will not be a change of sign for this model.

We did the same numerical calculations as for the Dru
model and compared the results with the analytical exp
sions in the different regimes. The following paramete
were used in our hybrid model:\vp59.85 eV, \v0

53.9 eV, «xy
eff51.531022, and we have put v!

52 exp(1)vp . In Fig. 2 the numerical and analytical resu
for the absolute value of the magnetic Casimir force
shown to be in rather good agreement.

V. NUMERICAL CALCULATIONS ON Fe

The Drude and hybrid model will not provide an accura
description for the dielectric tensor of the mirrors in a re
06210
-
e

e
s-
s

e

l

system. This is because interband transitions will start pl
ing a role at photon energies of a few eV, and these are
contained correctly in either of the models. In order to obt
an estimate of the magnitude of the magnetic Casimir fo
in such a real system, it is necessary to perform numer
calculations of Eqs.~4! and ~6! where the reflection coeffi-
cients are calculated with experimental data for the dielec
tensor. In this section, we will present such calculations fo
system with iron plates. Similar calculations for the nonma
netic Casimir force have already been performed for Al, A
and Cu@6,7#.

Experimental values for the imaginary part of«xx(v) for
Fe are given in Ref.@8#. The diagonal element of the dielec
tric tensor at imaginary frequency can then be obtained
the causality relation

«xx~ iv!511
2

pE0

1`

dv8
v8Im «xx~v8!

v821v2
. ~32!

Of course, it is impossible to perform the numerical integ
tion over the entire interval@0,1`#, so we have to define
our integration range in more detail. In our calculations,
complete range of data extending from 4 meV to 10 k
available in Ref.@8# was used, along with a Drude mod
below 4 meV, as shown in Fig. 3. The following paramete
2-7
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FIG. 3. The imaginary part of the diagonal element of the dielectric tensor evaluated at real frequencies~a! and the diagonal element a
a function of imaginary frequency~b!.
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for the Drude model were found by extrapolation of t
available data at low frequencies:\vp53.5 eV and\/t
519 meV. The quantity«xx( iv)21 calculated in this way
is shown in Fig. 3 to decay roughly asv23/2 ~for v.\/t),
so it cannot be completely described by a Drude~or plasma!
model.

Experimental data for the off-diagonal element of the
electric tensor is rather scarce. Some data for Re«xy(v) can
be found in Ref.@9#. They are shown in Fig. 4. With the
causality relation ~22!, it is then possible to calculat
«xy( iv). Since we only have data available between 0.1
and 6 eV, we had to perform the integration in Eq.~22! over
this range. This, of course, is a rather rough approximat
The results of the calculation depicted in Fig. 4 show t
«xy( iv) decays the same way as in our hybrid model@cf.
Eqs.~24b! and ~27b!#.

The magnetic Casimir force and energy are now cal
lated by numerical integration of Eqs.~4! and ~6!. We are
interested in plate separations between 1 nm and 10mm.
These separations correspond to frequencies in the r
1022–102 eV, so we will have to perform the integratio
between, say, 1025 eV and 104 eV. Figure 5 shows the
06210
-

V

n.
t

-

ge

resulting force and energy~per unit area! for the polar
and in-plane configurations. In the short-distance lim
the force decays asD22 for the polar configuration and
as D23 for the in-plane case. For long distances we find
D26 power law for the polar configuration andD28 for
the situation with magnetization parallel to the plates.
change of sign of the interaction for the in-plane configu
tion is also visible from the figure~the discontinuity at
D550 nm). The power laws differ~except for the in-plane
configuration at short distances! from those obtained for
the Drude and the hybrid model. This can be explain
as due to the different behavior~because of interband
transitions! of the dielectric tensor for Fe compared
that of the models. In view of future experimental investig
tions of the effect, distancesD.10 nm are the most inter
esting. In this range, the effect will be greatest for the po
configuration. For two parallel plates of Fe~with infinite lat-
eral extension!, the force per unit area in this configuration
approximately 40 mN/m2 at D510 nm, and decays to
0.1 mN/m2 at D5100 nm. Whether such forces can b
observed experimentally will be discussed in the followi
section.
FIG. 4. The real part of the off-diagonal element of the dielectric tensor evaluated at real frequencies~multiplied by v2) ~a! and the
off-diagonal element as a function of imaginary frequency~b!.
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MAGNETIC CASIMIR EFFECT PHYSICAL REVIEW A66, 062102 ~2002!
FIG. 5. Absolute values of the magnetic Casimir force per unit area~a! and the magnetic Casimir energy per unit area~b! between two
iron plates~of infinite lateral extension!. The solid curve corresponds to the in-plane configuration, while the dashed curve describes th
configuration.
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VI. EXPERIMENTAL SETUP

Since it is hard to experimentally maintain two paral
plates uniformly separated by distances smaller tha
1 mm, one of the plates is most often replaced by a le
shaped mirror. Recently, a number of experiments has b
performed using this geometry to measure the nonmagn
Casimir force with an atomic force microscope@10–12#. For
this plate-cylinder geometry, the Casimir force can be
tained from the plate-plate geometry by means of the fo
proximity theorem@13#:

DF52pR DE~D !. ~33!

In this equation,R is the radius of curvature of the lens
shaped mirror andDE(D) is the Casimir energy per unit are
for the configuration with two plates. One has to be care
to distinguish betweenDF andDF; the former is the force
for the plate-lens geometry, while the latter is a force per u
area for two parallel plates. With the numerical results fro
the preceding section, we are able to estimate the magni
of the magnetic Casimir force in the plate-lens geometry
Fe. If we takeR5100 mm and a distanceD550 nm, a force
uDFu'10 fN is found for the polar configuration. In the in
plane configuration, the force will be two orders of mag
tude smaller. Such small forces can probably not be m
sured with the AFM technique. However, sensitivities
0.1–10 fN in ‘‘magnetic resonant force microscop
~MRFM!’’ have been reported@14,15#. More recently, the
detection of forces in the attonewton range has b
achieved@16,17#.

A possible MRFM setup is already discussed in detai
Ref. @3#. A thin film ('10 nm) of ferromagnetic materia
with hard magnetization is deposited on a substrate tha
placed on a piezoelectric actuator. The lens-shaped mirr
attached to a cantilever by first depositing a small drople
polymer on the cantilever, which can then be covered
evaporation with a thin ('10 nm) layer of soft ferromagne
~such as permalloy!. In this way, one is able to create the le
shape, with a curvature radius of say 100mm. The distance
between the samples can be controlled easily with the pie
06210
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actuator. By applying an ac magnetic field, one is able
modulate the magnetization of the soft sample at the re
nance frequency of the cantilever. This will generate an
cillating magnetic Casimir force that causes the cantileve
vibrate. The deflection of the cantilever can then be m
sured with a laser. In this way, the magnetic force (DF
5FAF2FFM) can be measured. The force resolution achi
able using a freely vibrating cantilever is fundamentally lim
ited by intrinsic thermomechanical noise. This force no
can be controlled by the geometry of the cantilever; o
needs a high-Q cantilever that is thin, narrow, and long t
obtain the best sensitivity. With ultrathin silicon cantileve
force resolutions in the attonewton range have been obta
@16#. More information on the sensitivity of MRFM can b
found in Ref.@15,16#.

Since the nonmagnetic Casimir effect is independent
the magnetization direction of the samples, only the m
netic contribution to the Casimir effect will be measured
using this modulation technique. Parasitic electrostatic for
~caused by a difference in potential between the magn
samples! are also automatically taken care of in this wa
The exchange interaction between the samples does not
tribute much at the separations of interest (D.10 nm). An-
other parasitic magnetostatic interaction is the dipole in
action between the ferromagnets. This dipole force can
made as small as needed by taking a ferromagnetic p
with sufficiently large lateral extension and sufficiently sm
thickness. The plate should also be as uniformly magneti
as possible. With a plate of radius 1 cm and a thickness o
nm, this parasitic magnetostatic force can be estimated t
below 1 aN. Interaction of the soft sample with the ac ma
netic field will yield a signal at two times the modulatio
frequency, so this can be filtered out effectively by using
lock-in amplifier. Thus with MRFM, it should be possible t
measure the magnetic Casimir interaction without much
fluence of other effects.

VII. CONCLUSION

In this paper, the magnetic Casimir interaction discove
in Ref. @3# was generalized to the case where the magnet
2-9
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G. METALIDIS AND P. BRUNO PHYSICAL REVIEW A66, 062102 ~2002!
tion is parallel to the plates. The calculations for the Dru
model in the short-distance limit were revised, and anot
model was introduced. The behavior of the interaction w
discussed in the different distance regimes, and it is seen
the interaction in the two models decays quite differen
with interplate distance. Numerical calculations for a re
system with iron plates were also presented. Here we u
experimental data for the dielectric tensor of the mirrors. T
results from this numerical work on Fe could not be fitted
one of the introduced models, because interband transit
play a prominent role in Fe, and these were not implemen
correctly in the models.

It was made acceptable that the new Casimir magn
interaction can be measured with magnetic resonance f
ep

n
,

06210
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microscopy. However, to obtain an accurate comparison
the theory with eventual experimental results, more wo
is needed on the theoretical side. A detailed analysis
the geometrical effects would be valuable; the proxim
force theorem does not provide reliable estimations a
level of accuracy of a few percent. Also, one has to consi
other corrections already calculated for the nonmagn
Casimir effect; e.g., surface roughness corrections wo
probably play an important role@18#. Finally, more
experimental data on the off-diagonal element of t
dielectric tensor for several ferromagnetic materials
also necessary in order to obtain a better estimate of
magnitude of the interaction from the numerical proced
presented.
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