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Abstract

We demonstrate that the discrete dipolar sums can be separated into two contributions: thickness- and geometry-
dependent parts. The geometry-dependent part is analogous to the shape dependence of the continuum approach. The
correct normalization of the dipolar energy eliminates the apparent discrepancies of the discrete summation with the
experimental results and continuum Maxwell theory. The superposition of the two contributions explains a new
phenomenon, i.e. the size-dependent spin reorientation transition and/or enhancement of the effective perpendicular

anisotropy.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Magnetism at small length scales has lately
attracted considerable scientific attention (see for
review Ref. [1]). Interesting physical phenomena
occur in magnets with all three dimensions on the
nanometer scale. We call such structures ultra-low
dimensional as they have small but finite dimen-
sions. An array of such ultra-low-dimensional
magnetic particles can potentially provide a huge
gain in information storage density (see for review
Ref. [1]). Hence, the understanding of the micro-
magnetic ordering in ultra-low-dimensional ob-
jects is of high significance for the fundamental
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physics of magnetic materials as well as for
technological applications. The increased ratio of
boundary to non-boundary atoms in such struc-
tures can lead to unusual physical phenomena.
The orientation of magnetization in a magnet is
determined by the balance between the exchange
energy, the magneto-crystalline anisotropy and the
dipolar energy. The strong exchange interaction
tends to line up the magnetic moments in the same
direction but does not prefer any orientation in
space. In ultra-thin platelets with lateral size L and
thickness ¢, magnetization configurations are
mainly determined by the competition between
the anisotropy and the dipolar energy. In ultra-
thin objects the surface(interface) contribution of
the magneto-crystalline anisotropy is often re-
sponsible for perpendicular magnetization. The
angle dependence of the free energy of such an
uniaxial system can be written as Ej =
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Ky, sin? 0, where K| is the first-order anisotropy
constant and 0 is the angle to the film normal [2].

The dipolar interaction is smallest when all
magnetic moments compensate each other and the
total magnetic charge is equal to zero. The dipolar
energy Ep increases whenever magnetic poles are
created in a material or at the boundaries. In
magnets with L>¢, Ep prefers an in-plane
orientation of the moments. The contribution of
Ep to the total anisotropy energy is called shape
anisotropy. The shape anisotropy of a finite body
(AEp) is described by the demagnetizing tensor N:
AEp = N -2nM3, where Ms is the saturation
magnetization and 2nM3 the shape anisotropy of
the infinite continuous magnet. Neglecting the
discrete nature of matter, N can be analytically
calculated for uniformly magnetized bodies like
ellipsoids.

2. Demagnetizing factors in continuum and discrete
approach

Sufficiently large and thin, disk-shaped platelets
(L>1t) are usually considered to have the demag-
netizing factors of an oblate spheroid (special case
of ellipsoid).

The demagnetizing factors of such spheroids are
well known [3,4]. For an oblate spheroid the shape
anisotropy depends only on the ratio k = L/t and
can be represented by an universal curve AEp =
f(k) (Fig. 1). For the sake of simplicity, the shape
anisotropy energy is normalized with respect to
2nM§ in Fig. I. AEp deviates from unity only for
structures where L and ¢ are comparable.

In literature [5-9], it is argued that in the limit of
a few atomic layers the approximation of the film
system by a magnetic continuum fails. The ultra-
thin magnet must be regarded as an assembly of
discrete magnetic dipoles on a crystalline lattice.
For a laterally infinite discrete lattice of magnetic
point-dipoles calculations of the dipolar interac-
tions have shown that the dipolar (demagnetizing)
field is not uniform as in the continuous ellipsoid
approximation. The dipole field changes with
depth and depends on the film thickness. The
shape anisotropy of every atomic plane for
different lattices has been calculated [7-11]. The
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Fig. 1. Analytically calculated magneto-static energy density
AEp = (N, — NH)-ZnMg as a function of the dimensional
aspect ratio k = L/t for the oblate spheroid in continuum
approximation. The demagnetizing energy is normalized with
respect to 2nMZ.

average AEp for a film containing Ny atomic
layers has been  defined as AEp =
Zf\;]v]”‘ AEDi/NML = C(NML) . AED Here NML =
t/d with d for the distance between two successive
atomic layers. AEp of an infinite film can deviate
from AEp of a continuum film by more than 10%.
The deviation has been attributed to the change of
the demagnetizing tensor N = ¢(¢)- N. The cor-
rected demagnetizing factors for vertically magne-
tized infinite ultra-thin films N, = Nz are listed
in Refs. [7-9]. The in-plane demagnetizing factors
are calculated as NH =Nyy =Nyyr=(1— ]\Nfl)/2
[8,9] as the sum rule for the demagnetizing field
states that the diagonal sum of the demagnetizing
tensor is unity inside the sample, i.e. Nyxy + Nyy +
Nzz = 1. From data given in Refs. [8,9] one can
deduce that the in-plane demagnetizing field (and
demagnetizing factors) of an infinite ultra-thin film
is no longer zero, which is in disagreement with
Maxwell’s equations. In Ref. [7] this problem is
avoided by assigning the change of the demagne-
tizing energy as an anisotropy contribution.
Nevertheless, the authors claim that the N-tensor
is thickness dependent. For the simple cubic lattice
N is even negative as N > 1. All these statements
are in contradiction with the continuum theory
where the demagnetizing factor is introduced as a
geometric parameter. The discrepancies of the
continuum theory and the discrete calculations
have lead to the opinion that the discrete summa-
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tion of point-dipole fields can give questionable
values of the demagnetization factors [9]. In this
paper, we will show the connection between the
classical continuous ellipsoid approach and the
discrete dipolar model and solve the apparent
controversy.

3. Results

We have investigated the size- and thickness
dependence of the shape anisotropy in the ultra-
thin platelets numerically. The platelets are disks
of finite diameter L and thickness t = Ny -d on a
discrete lattice. We have considered the samples
with dimensional ratio £>40, i.e. with L>t. The
shape anisotropy has been calculated as the
difference between the dipolar energy of the
vertical and the in-plane single domain state:
AEp = Ep(Ll) — Ep(]). The dipolar energy of 1-
6 monolayer (ML) thick disks has been calculated
by direct lattice summation. Note that the discrete
lattice sums are absolutely convergent due to the
two-dimensional configuration of dipoles and
finite sample dimensions.

The results of the calculations for a triangular
lattice with HCP stacking are shown in Fig. 2 as a
function of k = L/t for 1-4ML thick films. The
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Fig. 2. Numerically calculated demagnetizing energy density
AEp as a function of the dimensional aspect ratio k = L/d for
1-4 ML films on a triangular lattice with HCP stacking. AEp is
normalized with respect to the demagnetizing energy in the
continuum limit 2z M2. The straight horizontal line corresponds
to the perpendicular magneto-crystalline anisotropy Ea. The
dashed vertical lines denote the critical size kc of the
reorientation.

calculated energies are normalized with respect to
2nM3. For other lattices similar results were
obtained.

The exact calculation of the dipolar sums
deviates strongly from the magneto-static energy
obtained from the continuum ellipsoid-ansatz
(Fig. 2). The energy depends on thickness and size
(AEp = f(L, 1)) and not solely on the ratio k. The
demagnetizing energy of a platelet of 100 x 1, for
example, is 1.2 times smaller than that of a platelet
of 300 x 3 although k=100 for both and the
demagnetization factors should be the same
(Fig. 2). AEp is changing significantly up to high
k-ratios (k= 500) while in the continuous ellipsoid
model AEp is almost constant and equal to 2 M2
for large k. With increasing thickness the differ-
ences between the individual AEp(k,f) curves
vanish. For > 5ML Ep(k, ) merges into AEp =
f(k). The function AEp = f(k) for t>5ML is
close to that of the continuous spheroid. The
interpolation of AEp = f(L,t) to infinite L gives
values which are in good agreement with the data
given in Refs. [7,8] for infinite expansion. Thus, the
rigorous calculation of the dipolar sums reveals
that the shape anisotropy is size dependent. The
size dependence of AEp is in disagreement not
only with the conventional shape effect AEp =
f(k) but also with the common assumption that
the dimensions are only important for L~ ¢. It has
been never considered before that in the range
L >t the size of the sample can define the magnetic
behavior. Next we want to solve the puzzle that
emerges from the exact calculation.

4. Discussion

Generally, the total demagnetizing energy AEp
is normalized to 2nMZ = const. The deviation of
the total demagnetizing energy from 2nM3 is then
attributed to the demagnetizing tensor N: AEp =
N - 27rM§. Following this assumption, however,
means that one has to postulate that N depends
not solely on geometry (i.c. ratio k) but also on ¢,
as claimed in Ref. [7], and on L. This assumption is
in contradiction to the concept of the demagnetiz-
ing factors based on Maxwell theory, as already
mentioned.
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On the other hand, the dipolar energy of the
atoms in the top most layers of the film deviates
from that of the bulk atoms. The ratio of
boundary to non-boundary atoms in such struc-
tures is increased. Consequently, the average
demagnetizing energy of an ultra-thin film can
deviate from 2nMZ even if N is unchanged. Hence,
we may conclude that the discrepancy between the
continuous ellipsoid AEp and the discrete AEp
approximation may have different reasons, i.e. N
(geometry effect), (27%M§) or the combination of
both. In Refs. [7-9] it was not possible to
distinguish between the three cases as those
calculations are related to objects of the same
shape, i.e. infinite ultra-thin films (k = o0). In our
calculations, the geometry of the sample can be
varied from k = 1 to co. Thus, we can analyze all
possible situations explicitly.

Taking the assumption AEp = N-AEp as in
Refs. [7-9] we find Nyy + Nyy + Nzz#1 for
k< oo. This means that the sum rule for the
demagnetizing field fails. Assuming AEp =
(2AM3) = X - AEp we find that (2&M2) should
strongly decrease with decreasing size for a given
sample thickness. This outcome makes no sense as
for t = const the dipolar sum differs only for
magnetic moments at the sample edge [6] and X
should be a constant as long as L> t. Besides, it is
unreasonable to neglect completely the geometry
effects. The only remaining explanation of the
inequality AEp #AEp is the superposition of the
thickness dependence of the dipolar sums and the
geometry effect AEp = X - N-AEp. In order to
decide whether this statement is true or not it is
necessary to separate both effects, to compare
N,(2#M3) with N,2nMZ, and to check the sum
rule for N.

In the ellipsoid approximation N; =1 and
N =0 for laterally infinite ultra-thin films of
any thickness. Assuming N (c0) = N (o0) =1
the ratio AEp(L = «0)/AEp(L = o) is nothing
else but the factor X. As discussed before, X is a
constant for a constant thickness < L. Hence,
dividing AEp by X for finite samples of different L
but equal #, the pure geometry effect AEp/X =
N - AEp can be separated.

The normalized curves AEp/X = f(k) are given
in Fig. 3. The functions are identical for all

thickness and represent N(k). Thus, an universal
curve is found which one must expect from the
classical continuum approximation as shape effect.
More than that, the demagnetizing factors ex-
tracted from Ep(Ll)/X =N, -2zMZ and
En()/X = N|-2nM2 give Ny +2-Nj=1 for
all L and ¢, i.e. the sum rule for N is confirmed.
The demagnetizing factors are reasonable and
close to those of the spheroid. The discrete model,
however, gives a geometry dependence that
saturates at higher k-values compared to the
spheroid model. The reason for the minor
difference between N and N is the fact that the
discrete model describes precisely the geometry
which deviates from that of an ideal ellipsoid.
Thus, the rigorous calculation of the dipolar sums
for finite ultra-thin magnets are in accordance with
the continuum approach.

The discrete summation, however, is more
precise as it includes the thickness-dependent
inhomogeneity of the dipolar energy while in the
ellipsoid approximation 2nM3 is introduced as a
constant. The values calculated in Refs. [7-9] are
not the demagnetizing factors but the coefficients
X as those calculations have been performed for
infinite extended films with equal N. We have
demonstrated that in contrast to the continuum
ellipsoid approximation the demagnetizing energy
in finite ultra-thin magnets is a two-variable
function AEp =f(L,7). The discrete dipolar
sums can be separated into two contributions:
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Fig. 3. Comparison of the shape effect of a continuous oblate
spheroid and the geometry-dependence extracted from the
numerically calculated AEp of disks with thickness of 1-6 ML
on a triangular lattice with the HCP stacking. The demagnetiz-
ing energy is normalized with respect to 2nM3.
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thickness- and geometry-dependent parts. The
geometry-dependent part is analogous to the shape
dependence of the continuum approach.

We have checked the geometry effect and -
dependence of the demagnetizing energy for other
lattice types. The results are presented in Tables 1
and 2. In Table 1, the demagnetizing factors of the
platelets for 40<k<1000 are listed. N depends
only on the ratio k. The geometry effect does not
depend on a lattice type. N is always lower than
unity and identical for all lattices. The coefficients
X found numerically for Ny <6 are given in the
Table 2. They depend on the type of the lattice and
on thickness. The calculated X-values are in good
agreement with values of the “reduced anisotropy”
given in Ref. [7]. In contrast to NV, the coefficients
X can be lower or larger than unity. Thus, neither

Table 1
The demagnetizing factors calculated numerically for ultra-thin
disks

k:L/I NH N, NL—N‘
1000 0.001 0.998 0.997
600 0.003 0.995 0.992
350 0.005 0.989 0.984
250 0.007 0.985 0.978
220 0.008 0.983 0.975
200 0.009 0.982 0.973
180 0.010 0.981 0.971
160 0.011 0.979 0.968
140 0.012 0.976 0.964
120 0.014 0.973 0.959
100 0.016 0.968 0.952
80 0.019 0.961 0.942
60 0.024 0.951 0.927
40 0.034 0.932 0.898
Table 2

N nor X are size dependent. However, the
superposition of the geometry effect and the
thickness dependence of 2nMZ leads to the new
behavior, i.e. L and ¢-dependence of the demagne-
tizing energy. The L, t-dependence is different for
different lattices.

Tables 1 and 2 are universal to find the L,¢-
dependence of the demagnetizing energy for disks
with 40<k<1000 and thickness Ny = t/d<6.
As example, we find the demagnetizing energy of a
platelet of diameter L = 750a and thickness
NmL =3 on FCC[100] lattice. The distance
between two subsequent layers is d = a/ V2 (see
Table 2). Hence, t = Ny -d = 3a/\/§ and k =
L/t~350. We find the coefficient X = 0.922 from
Table 2 and N, — Ny = 0.984 from Table 1. Thus,
the demagnetizing energy AEp = (N; — N|)- X -
2nM3~0.9-2nM3, ie. 10% less than expected
from the continuum theory. Coefficients X for
platelets with Ny > 6 can be derived from Ref.
[7]. However, the values of X for thicker films have
only minor deviations (<0.2%) from the values
given for Nyp=6. X1 for Ny >6. The
demagnetizing factors for platelets with k> 1000
coincide with those of an oblate spheroid, i.e. are
also close to unity [3,4]. Hence, the demagnetizing
energy merges into 2nM§ for Nyp>6 and
k>=1000.

5. Size-dependent spin reorientation transition

A manifestation of the above model is the size-
dependent spin reorientation transition and the
apparent enhancement of the perpendicular

The thickness-dependent coefficients X calculated numerically for the ultra-thin platelets with thickness Ny <6 and the distances d
between two successive layers. The apparent differences between the coefficients X for the structures having square lattice at 1 ML
(SC(100), BCC(100), FCC(100)) are due to the different lattice constants a

Lattice NML: 1 NML:2 NML:3 NML:4 NML:5 NML:6 d:N;ML
SC[100] 1.079 1.039 1.026 1.020 1.016 1.013 a
BCC[110] 0.924 0.962 0.975 0.981 0.985 0.987 av/2/3
BCC[100] 0.564 0.783 0.856 0.892 0.914 0.929 a//é
FCC[111] 0.931 0.966 0.977 0.983 0.986 0.988 a/\/m
FCC[100] 0.765 0.883 0.922 0.941 0.953 0.961 a/\/i
HCP[0001] 0.932 0.966 0.976 0.982 0.986 0.988 a\/2/3
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anisotropy in ultra-low-dimensional objects as
reported recently [12]. In ultra-thin objects, the
surface/interface anisotropy Es which often favors
out-of-plane magnetization is competing with the
dipolar energy Ep which prefers an in-plane
orientation. The magnetic anisotropy is a local
property and constant for a given thickness. Thus,
it can be represented by a straight line in Fig. 2.
The intersection of AEp and Ea gives a critical
length Lc = k¢ - t, where the magnetization or-
ientation switches, i.e. reorientation appears. As
the dipolar energy is size dependent the reorientation
of the magnetization can take place far beyond the
L¢ range deduced from the ellipsoid approximation
(see Fig. 2).This fact has been confirmed by means of
Monte-Carlo simulations [12]. Thus, in contradiction
to the analytical ellipsoid assumption the spin
reorientation transition in finite ultra-thin platelets
is size- and lattice dependent.

6. Conclusions

In conclusion, we demonstrate that the dipolar
sum can be separated into two contributions:
thickness- and geometry-dependent parts. The
geometry-dependent demagnetizing factors found
by means of the discrete summation are identical
to those found in continuum ellipsoid approxima-
tion. The demagnetizing energy of the ultra-thin
magnets is size- and lattice dependent. The size-

and lattice dependence of AEp is due to the
superposition of the geometry effect and the
thickness dependence of the demagnetizing energy.
The combination of these two effects leads to a
new phenomenon: size-dependent spin reorienta-
tion transition and/or an enhancement of the
effective perpendicular anisotropy Er with
shrinking size. Critical size L¢ of the reorientation
can be very large compared to the film thickness.
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