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Abstract
In this letter a theory is developed for the treatment of the ejection of two
correlated electrons from binary alloys with substitutional disorder upon the
impact of fast electrons. It is shown that, under certain conditions specified
in this letter, the target’s electronic properties can be disentangled from the
correlated two-electron scattering. For a numerical realization we employ
the Korringa–Kohn–Rostoker coherent potential approximation and the virtual
crystal approximation for the description of respectively the bound states and the
high-energy scattering states of the electrons. Numerical results are presented
and analysed for the energy correlation within an electron pair emitted from a
copper–nickel alloy surface.

1. Introduction

Since the early days of quantum mechanics electron beams have been employed to study a
variety of material properties. For example the characteristic response of a solid surface can
be probed by monitoring the probability for the energy E = h̄ω and the wavevector q transfer
to the target by a fast impinging electron [1]. Usually this method is utilized to study the
frequency (ω) and the wavevector (q) behaviour of collective modes. On the other hand the
incident electron beam may induce the emission of electrons with energy E and wavevector
q. For a detailed study of this channel one has to resolve at the same time the quantum
numbers of the scattered and the emitted electrons. Such a measurement, referred to as the
(e, 2e) experiment, has been successfully conducted on condensed matter targets in recent
years [2–9]. Using a surface as a target the (e, 2e) experiment may be performed in two
modes: (1) the transmission [3] (figure 1(a)) and (2) the reflection modes [2, 5] (figure 1(b)).
In the transmission mode a valence-band electron is knocked out from the surface upon the
passage of an energetic electron through a free-standing thin film. The scattered and the emitted
electrons are detected in the forward direction with respect to the incoming beam. Since in this
mode fast (compared to the Fermi velocity) vacuum electrons are involved the (e, 2e) process
is well modelled by a direct, single collision between the projectile and the bound electron. In
this case it has been demonstrated [10] that the (e, 2e) cross section is related directly to the
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Figure 1. A sketch of the (e, 2e) process in (a) the transmission mode and (b) the reflection mode.

spectral properties of the (single quasi-particle) hole state. In the reflection mode all electrons
propagate in the same half-plane (figure 1(b)), i.e. the emitted and the scattered electrons
propagate in the direction opposite to the incident projectile. Therefore it is imperative to
include in the theory, in addition to the electron–electron interaction, the scattering from the
crystal potential [11]. In the reflection mode the energy of the electrons is low (0.5–500 eV)
and one studies the dynamics of the electron–electron scattering at surfaces [8, 9, 12].

The (e, 2e) process has been studied theoretically and experimentally for a variety of
ordered materials [2, 6, 7, 10, 12, 13]. First (e, 2e) experiments on alloys are presently in
preparation. Therefore, it is timely to develop a theoretical framework for the investigation of
the (e, 2e) process for disordered systems. This is done in this letter.

In the case of (e, 2e) from alloys one has to account for the effects of disorder on the
scattering states of the correlated electron pairs as well as on the initially bound electronic
state. As shown below, the structure of the (e, 2e) spectra are generally determined, in a non-
trivial manner, by the properties of the initial and the final states as well as by the strength of
disorder as quantified by the concentrations of the constituents of the alloy. Nevertheless, under
certain conditions deduced below, one can achieve a decoupling of the scattering factors from
initial state properties which, in this case, renders possible the use of (e, 2e) as a spectroscopic
tool for the investigation of the electronic structure of alloys. Furthermore, to elucidate with
numerical results the effect of disorder on the collision dynamics and examine the interplay
between collisional effects and the target’s electronic structure we utilize the Korringa–Kohn–
Rostoker coherent potential approximation (KKR CPA) [14–16] for the description of the
ground state whereas the emitted (vacuum) electrons’ states are treated within the virtual
crystal approximation (VCA). The numerical results are performed for the transmission and
the reflection mode (e, 2e) from the surface of a copper–nickel alloy. Unless otherwise stated,
atomic units (au) are used throughout.

2. General formulation

For a theoretical formulation we consider the (e, 2e) process in which, upon the impact of an
electron with a wavevector k0 and energy E0 onto a solid surface, two electrons are emitted
with wavevectors ks,ke and energies Es, Ee (hereafter the subscript s (e) refer to the scattered
(ejected) electron). The fully differential (e, 2e) cross section is given by [11]

σ

dEs dEe d�s d�e
= kske

(2π)5k0

∑
iocc
si s0
ss se

|〈ksss ,kese|T(e,2e)|k0s0, isi 〉|2δ(Es + Ee − E0 − εi). (1)

The emission direction of the two final-state electrons are specified by the solid angles �s(e).
The final state of the two electrons having asymptotic wavevectors ks,ke and spin projections
ss , se is described by the correlated two-particle state |ksss ,kese〉 which tends asymptotically



Letter to the Editor L43

to |ksss〉 ⊗ |kese〉. The initial state |k0s0, isi 〉 is a direct product of the projectile spinor state
(with wavevector k0 and spin s0) and a valence band state |isi 〉 with a spin projection si . The
sum in (1) runs over the electrons’ spin projections and over all occupied one-particle target
states with energy εi = Es + Ee − E0.

The transition operator T(e,2e) in the frozen-core approximation has the form [11]

T(e,2e) = Vs + Wse + (Vs + Ve + Wse)G+
se(Etot)(Vs + Wse), (2)

where Vs , Ve and Wse are effective (optical) electron–solid and electron–electron scattering
potentials, respectively. G+

se(Etot) is the two-electron Green operator involving the potential
Vs + Ve + Wse and the energy of the electron pair Etot = Es + Ee.

2.1. Transmission mode

For (e, 2e) in the transmission mode we consider the experimental set-up that has been employed
successfully to map out the electron-momentum spectral density of ordered materials. This
technique is known as electron momentum spectroscopy (EMS) [10]. In EMS the two electrons
are emitted with high energies (Es ≈ Ee ≈ E0/2 ∼ 20–30 keV) and are detected with
wavevectors that correspond to quasielastic (classical) knockout of the valence electron by the
incident electron. The free-standing films have a thickness of ∼100–300 Å. In this situation the
transition operator (2) is well approximated by the plane wave impulse approximation (PWIA),
i.e. it reduces to

T(e,2e) ≈ Wse + WseG+
(se)(Etot)Wse, (3)

where G+
(se)(Etot) is the two-electron propagator in the potential Wse. The screening of the

electron–electron interaction by the surrounding medium is negligible, because the momentum
and energy transfer is huge (with respect to the Fermi values). Hence Wse is a bare Coulomb
potential. In the case of unpolarized electrons we deduce from (1) and (3)

dσ

dEs dEe d�s d�e
= kske

(2π)3k0

(
dσ

d�

)
ee

A−(k, ε), (4)

where ( dσ
d�

)ee is the Mott scattering cross section that includes the effects of exchange between
the colliding electrons. The quantity

A−(k, ε) =
∑
iocc

|〈k|i〉|2δ(ε − εi) (5)

is the spectral function of the hole with the wavevector k = ke + ks − k0 and the energy
ε = Etot−E0. The spectral function (5) contains all relevant information on the (spin-averaged)
electronic structure of the sample. Since k, ε and dσ/dEs dEe d�s d�e are determined
experimentally one can deduce from the experiment A−(k, ε) according to (4). This fact
is valid irrespective of the nature of the target.

2.2. Reflection mode

In the case of (e, 2e) in the reflection mode and at moderate electron energies, we treat (2)
only to a first order in the electron–electron interaction Wse. This approximation is equivalent
to the distorted wave Born approximation (DWBA). To validate this procedure we choose
the kinematics such that E0 � εF ,�E (�E ≡ E0 − Es). In this context we note that
the electron–electron interaction in solids is short-ranged due to the screening and hence a
perturbative (Born series) treatment is appropriate. The DWBA transition operator is

T(e,2e) ≈ [1 + (Vs + Ve)G+
(s,e)(Etot)]Wse[1 + G+

(s,e)(Etot)Vs], (6)
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where G+
(s,e) is the two-electron Green operator involving the potential Vs + Ve. Furthermore,

as in the kinematical approximation employed in the theory of low-energy electron
diffraction (LEED) [17], we account only for a single scattering off the multi-centre potential
Vs . Thus (6) reduces to

T(e,2e) = (1 + VeG+
e )(Vsg(0)+

s Wse + Wseg(0)+
0 Vs), (7)

where G+
e is the propagator of the ejected electron involving the potential Ve. Furthermore,

g(0)
s and g(0)

0 are the free propagators at energies Es and E0, respectively. Refraction of the
electrons at the surface and the damping inside the surface are accounted for by the use of
renormalized propagators gs and g0 instead of g(0)

s and g(0)

0 in (7).
For the evaluation of (1) it is advantageous to couple the spins of the electrons to a total

electron-pair spin S. As the transition operator (7) does not contain spin-flip terms, the sum
over the spin projections in (1) is an average of the cross section over the singlet (S = 0) and
the triplet (S = 1) channels [18] and the basic quantity from which the (e, 2e) cross section is
evaluated is

dσ

dEs dEe d�s d�e
= kske

(2π)5k0

∑
iocc

|〈χke |M(ks ,k0)|χi〉|2δ(ε − εi). (8)

Here |χke〉 = (1+G−
e Ve)|ke〉 is the time-reversed scattering state of the ejected electron subject

to the potential Ve and |χi〉 is the state of the bound electron. The effective one-electron
transition operator is

M(ks ,k0) = 〈ks |Vs g+
s Wse + Wseg+

0 Vs |k0〉. (9)

3. Configurational average of the cross section

For simplicity we consider a substitutionally disordered binary alloy Ax B1−x consisting of two
components A and B with concentration cA = x and cB = 1 − x . We assume full randomness
(cA + cB = 1) and neglect any sort of statistical correlation in the occupation of the lattice
sites. Furthermore, we employ the single-site approximation discarding local environment
effects [14, 15]. Thus, the lattice potential Vs(e) is expressed as a sum of muffin-tin potential
functions V j

s(e) located at sites R j , i.e. Vs(e) = ∑
j V j

s(e). Introducing the occupation indices ξ j

(where the random numbers ξ j = 1 if the site j is occupied by the atom of type A and ξ j = 0
if j is occupied by atom B), the single-site potential is

V j
s(e) = ξ j V jA

s(e) + (1 − ξ j )V jB
s(e). (10)

The configurational average 〈ξ j 〉 of ξ j is deduced from the probability for the atom A to
occupy the site j , i.e., 〈ξ j 〉 = x (hereafter we use the angle brackets 〈· · ·〉 for configurationally
averaged quantities).

3.1. Transmission mode

To obtain the configurational average of the (e, 2e) cross section in the transmission mode, as
given by (4) we note that the Mott cross section does not depend on the space configuration of
the atoms. Hence we deduce that〈

dσ

dEs dEe �s d�e

〉
= kske

(2π)3k0

(
dσ

d�

)
ee

〈A−(k, ε)〉. (11)

Thus, the (e, 2e) cross section under EMS conditions delivers direct information on the spectral
function 〈A−(k, ε)〉 of disordered systems. We recall that both k and ε are measured by an
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EMS experiment and hence 〈A−(k, ε)〉 can be mapped out in complete detail. This confirms
a long-standing expectation that the EMS is most suitable for the study of disordered systems
where the lack of translational symmetry hinders a determination of the k dependence of
〈A−(k, ε)〉 via ultraviolet photoemission experiments (the UV photon transfers energy but no
momentum to the target).

3.2. Reflection mode

For the calculation of the configurational average of the (e, 2e) cross section in the reflection
mode (equation (8)) the matrix element (9) is written as a sum over the lattice sites:

M(ks ,k0) =
∑

j

M j (ks ,k0), where M j (ks ,k0) = 〈ks |V j
s g+

s Wse + Wseg+
0 V j

s |k0〉. (12)

From equation (10) it follows that M j (ks,k0) = ξ j M jA(ks ,k0) + (1 − ξ j )M jB(ks,k0).
Substitution of (12) into (8) yields

dσ

dEs dEe d�s d�e
= kske

(2π)5k0

∑
j j ′

〈χke |M j (ks ,k0)A−(ε)M+
j ′(ks,k0)|χke〉, (13)

where the one-electron spectral function is given as

A−(ε) =
∑
iocc

|χi〉〈χi |δ(ε − εi). (14)

Performing the configurational average of (13) we decouple the on-site quantities related
to the different electrons, i.e. we neglect all two-electron on-site correlated terms in the
configurational average and obtain〈

dσ

dEs dEe d�s d�e

〉
=

〈
dσ coh

dEs dEe d�s d�e

〉
+

〈
dσ incoh

dEs dEe d�s d�e

〉
. (15)

The terms〈
dσ coh

dEs dEe d�s d�e

〉
= kske

(2π)5k0

∑
j j ′

〈〈χke |〈M j (ks,k0)〉A−(ε)〈M+
j ′(ks,k0)〉|χke 〉〉 (16)

and〈
dσ incoh

dEs dEe d�s d�e

〉
= kske

(2π)5k0

∑
j

{ ∑
α=A,B

cα〈〈χke |M jα(ks,k0)A−(ε)M+
jα(ks,k0)|χke〉〉

− 〈〈χke |〈M j (ks,k0)〉A−(ε)〈M+
j (ks,k0)〉|χke〉〉

}
(17)

represent the coherent and the incoherent part of the (e, 2e) cross section which originate from
the coherent and incoherent backscattering of the fast electron, respectively.

4. Results and discussion

Now we present and analyse numerical results for the energy correlation within the electron
pair emitted from copper–nickel alloys. The bound electron state is derived from a self-
consistent KKR CPA treatment based on the density functional theory within the local density
approximation. This method has proved to be adequate for the electronic structure calculations
of alloys of transition metals [14]. In the high-energy transmission mode the scattering
dynamics is unaffected by disorder (cf equation (11)). In contrast, in the reflection mode
we have to account for the influence of disorder on the propagation and the scattering of the
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Figure 2. The dependence of the (e, 2e) cross section in the transmission mode on the distribution
of the total electron-pair energy Etot between the two electrons emitted from the (001) face of
a copper–nickel alloy target. The energies are Etot = E0 − � (� is the work function) and
E0 = 50 keV, i.e. the ejected electron originates from the Fermi level. The polar angles are
θs = θe = 45◦ with respect to the [001] direction and the wavevectors of all the vacuum electrons
are in the (010) plane.

excited electrons (cf equations (16) and (17)). We do this within the VCA [14], which is
justified by the rather high (vacuum) electron energies and therefore by the weak scattering of
the ejected electrons off the crystal potential1.

Figure 2 shows the dependence of the transmission mode (e,2e) cross section on the energy
sharing of the two electrons for a fixed total energy of the electron pair. We choose an initial
electron energy which is typical for EMS (E0 = 50 keV). The incident projectile momentum
is parallel to the [001] direction. The peaks in the energy sharing distributions correspond
to the ejection of the bound electron with a Fermi crystal momentum. Their positions are
determined by the energy and momentum conservation laws. So that by varying the energy
sharing one effectively studies the crystal momentum distribution of the bound electrons at the
Fermi energy. For the clean copper sample there is a one-fold Fermi surface and as anticipated
there are two narrow peaks in the energy sharing distribution, each of them corresponding to the
Fermi surface crossing (the positions of these peaks are essentially symmetrical with respect
to the point of equal energy sharing). The wide peaks in the case of clean nickel correspond to
the crossing of the three-fold Fermi surface. Thus one can clearly trace in figure 2 the evolution
of the Fermi surface from the one-fold in copper to the three-fold in nickel.

In figure 3 the energy sharing distributions are depicted for the case of reflection mode. The
initial electron energy is E0 = 200 eV and the projectile momentum is antiparallel to the [001]
direction. For all concentrations there is a structure in the domain 0.5 > |(Es − Ee)/Etot| and
two wings in the domains 1 � |(Es − Ee)/Etot| > 0.5. These correspond to the diffraction
of the electron pair [6, 19] involving the reciprocal lattice vector g‖ = (00) and ±(11),
respectively. In contrast to figure 2 the information on the electronic structure in the energy
sharing is overshadowed by the influence of matrix elements. Nevertheless, the evolution of
the Fermi surface with the increase of the concentration of nickel in copper can be seen in
figure 3. Here the peaks in the energy sharing distribution correspond to a crossing of the
Fermi surface in the (001) plane. This follows from the conservation of the surface parallel
momentum in (16) as well as from the negligible incoherent contribution (17) in the case of
copper–nickel alloys. The latter is due to the small difference between the muffin-tin potentials
in copper and nickel that enter (10).

1 We omit the technical details regarding the numerical evaluation of the (e, 2e) matrix elements due to the shortage
of space.
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Figure 3. The same as in figure 2 but in the case of reflection mode (cf figure 1(b), θs = θe = 45◦).

5. Conclusion

In this letter we considered theoretically the (e, 2e) process from binary substitutional alloys.
In the transmission mode the (e, 2e) measurements allow direct access to the alloy’s electronic
structure. In the reflection mode the (e, 2e) cross section is determined by the alloy’s electronic
structure as well as by the collision dynamics averaged over the disorder. Numerical results
have been presented and analysed for the case of copper–nickel alloys using the KKR CPA
(for ground-state electrons) and VCA (for vacuum electrons). The footprints of the alloy’s
electronic structure have been identified in the (e, 2e) cross sections. We have shown that this is
generally possible in the case of the high-energy transmission mode and also in the case of the
reflection mode, if the difference between the muffin-tin potentials of the alloy’s constituents
is small enough to neglect the incoherent backscattering of the fast projectile electron.
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