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1. INTRODUCTION

Over the past few decades there has been an impressive and a steady
progress In computational material science [1, 2, 3]. This development is fu-
eled by the ever growing computational resources and by the demand for yet
more precise information on technologically relevant material properties, such
a8 the optical, transport and magnetic characteristics. A microscopic descrip-
tion of these properties entails the knowledge of the quantum spectrum of the
system under atudy. Thus for real materials one has to deal with the notori-
ously difficult many-body problem in & computationally acceptable manner,
For this purpose remarkebly successful and efficient conceptual schernes have
been' developed where the multi-particle system is mapped onte a one body
problem for a particle moving in an effective {non local) Beld created by all
the sther constituenis of the system [1, 2, 4). Ususlly, this effective field is
- further simplified according to certain recipes auch as the local density approx-
imation within the density functional theory [5]. These computationally maa-
ageable concepts have rendered possible the routine and accurate caleulation
of » wezlth of static material properties, such as the ground state energies.
O the other hand, however, it has been observed that the ground-state of
certain compounds, e.g. transition metal oxides, is not described adequately-
withiz a single particle picture [2]. In addition, for the theoretical description
of the excitation spectrum [6} and for the treatment of dynamicsl processes,
such a8 many particle reactive scattering, methods have to be envisaged that
go beyond the effective single particls model.

For example, correlated many-body states are p prerequisite for the theo-
retical formulation of recent measurements of the double and triple electronic
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exeitation of localized or delocalized electronic eompounds by one ultn?.vioIet
photon [7, 8, 9]. Recent technological advances have made it even poaaible to
explore in full details the many-body continuum spectrom of four and more
interacting particles [9, 10, 11, 12, 13, 14, 16] where numerical calcula.tu':-nﬂ
are absent. Thus, it is desirable to develop, for interacting systems, & genuing
many-body theory (in a sensp specified below) that is conceptually sound and
allows for systematic approximations that can be implem?ntedl r}ume:.rma}ljr.
This is particularly important in view of the current tre_r‘Ld in miniaturization
techriques that ultimately aim at the fabrication of atomic-gize syst.ems whose
features are controlled primarily by the quantal behaviour of a finite oumber
of correlated particles. .

In this theorsiizal work a strategy is presented that enables us to-derlve
approximate expressions for the spectrum of mal?y—body, interacting finite sys-
tems by utilizing the knowledge of the properiies of other mferencsa sy:_;terc!s
with & less number of interactions. The treatment is not pertu:bg.tw?e, Le. it
does not rely on pre-assumptions regarding the strength of a certain inter-
sction or characteristic parameter in the system. _Furthermore, the_ met.!md
provides & systematic and msathematically sound scheme for a.ppl:amma.tmns
that are computationally tractable and allows, when desirable, to incorporate
well established single particle and perturbative approaches.

2. FORMAL DEVELOPMENT

The fundamental quantity from. which we derives the micrnsm?ic prop-
erties of N body quentum systems is the Green operator G which is the
resolvent of the total Hamiltonian, It is defined by the Lippmann-Schwinger
integral equation GV} = Go +GytrMIGN) where Gy is the Green operator of
s reference IV pacticle system which is usually chosen a8 2 noninteracting 33?-
vom. U atands for total interaction and is given formally by UM =671 -G5™
Equivalently one msy determine the dynamical behaviour of & system _by
mesas of the transition operator TU¥) which satisfies the integral equation
PN = ¥} 4 7 GETIN). These integral equations for GM) and T} pro-
vide & natural framework for perturbative treatments, as they can be expanded
in terms of interaction U/} or some parts of it which are deemed small. How-
ever, for N > 3 the application of the above Lippma.nn-Schv?ipger Fqua.hons
{and those for the state vectors) is hampered by ma.in%y two difficulties: 1.) as
shown in Refs.[17, 18] the Lippmann-Schwinger equations for the state vectors
do not have s unique solution, and 2.) as shown by Faddeev [19, 20] the kernel
of these imtegral equations K = GoU™) is not a square integrable operator
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for N > 3, i.e. the norm K| = [Te{K K1)]Y/? is oot square integrable. The
kernel K is also not compact. The origin of these obstacles les in the presence
of the so-called disconnected diagrams that correspond to procesass in which
one of the & particles is a spectater, i.e. oot correlated with the other ¥ -1
particles. Therefore, for three-particle systems Faddeev and others {19, 22, 23]
suggested an alternative set of equations for G'™) and T™) that are free from
disconnected diagrams (the behaviour of these equations for infinite range po-
tentials, such as Coulomb potentials, is still the subject of current research
i) ' . '

The scope of this study is three fold: {a) We aim at deriving a resursive
procedure that expresses the Hamiltonian of &N interacting body systems in
terms of Hamiltonians of systems with & reduced number of interactions.

(b) This reduction scheme should not be a perturbative one, and the diagrams
should be arranged in & way that disconnected terms are excluded. The pro-
cedure should be linear in &, ie. it should relate GI¥! and TUN o GIV-M)
and T¥-M) (where M =1,2,---, N — 2) it & Jinear manner in .

{¢) The method should provide & systematic and mathematically sound scheme
for approximations that could be computationally realized (here we evaluate
the continuum spectrum of four interacting Coulemb particles and two particle
excitations at surfaces).

To thie end we consider a nonrelativistic system consisting of & interacting
particles. Total potential is assumed to have the form U™ = T8 . w;,
where v; stands for a two-particle interaction without any farther specification
of its analytical form.

Based on geometrical considerations {cf. Fig.1) one can express the poten-
tial I/} exactly in terms of recurrence relations:

N
1 N-13
= 3, (m
N-245
P L—Euif“’],j%k. (2)
7 N-3Z7

(-1

In these equations u ia the total potential for a aystem of N - | interacting

particles, i.e. u;-N_l} is obtained from U{N} by detaching particle § from the
particle system. In terms of the pair interactions vy, the following relation ap-
plies vy = TN wei Ymn, M # § # n. Since the kinetic energy operator is
an additive single particle operator the expansions (1,2} are reflected in similar
recursion relations for the total Hamiltonian, Fig. 1 illustrates how, according
to Eqs.(1,2), the potential of & system of six inferacting particles is expressed
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in terms of potentials of five correlated particles. The latfer potentials can be
further expressed in terms of four body potentials {ef. Eq.{2)). This procedure
is repeated until a potential with a desired number of interactions is reached.

6 1 & t 7
2ed
3 7 3 :
5- 6 1 5
L & B
* k] 3

_Figure 1: A pictordal interpretation of the total potential expansion (3} for six in-
tuacﬁngpuﬁdeemumeratedmdmmhedhythsfulldwatthewmﬂsofthe
hexagon. The hexagon indicatea the full patential I of the six correlated particles.
Eath pentagon symbolizes the full five body potential 47" = ug.“) 14 of those Bve

particles that are at the corners of the pentagon. The particle being not at & corner
of & pentagom is Eee {disconnected). :

From Fig. 1 it is clear that this "minimal geometric reduction” schame {Eqs.{1,2])
treats all interactions on equal footing and provides maximal Aexibility to re-
duce systematically the N body potential (Hamiltonian) to sums of N — M
potentials {Hamiltonians) with M = 1,2,---, ¥ — 2.

The geometric expansion (Egs.(1,2)), as visualized in Fig.l, has a wide
ranging consequences in that the transition and the Green operators can be
expanded aloog the same lines!.

This cani be seen as follows: According to the decomposition (1), the inte-
gral equation for the transition operator can be written as

N
LD 3% - @
| 3=
HED o N LG, f 1. @

f
physical meaning of the operators (4) is illustrated in Fig. 2 for the system

Here we introduced the scaled potentials & = (uE” -11) J(N —2). The

depicted in Fig. 1.

The transition operator t&”'n_ for a system of ¥ — 1 particles interacting

via the scaled potential G} is

(W—1} _ AN=1} | AN—~Them JEN—
t = u} + u} Gutg- . 1.
With this relation Eq.{4} can be reformulated to yield

-1 N1} | N - AN | (W=
T} b tf,— }+t5 ”'G.}T':”]'—tj-n RleR (u}” lJ+1'.-L§‘”qr 13'9,}1"{”])

N
t}h"—l} +t_E-N_1}Go (T[N:' _ T}N—l}) = tj_.i'lr—l} +E}N_1]G.n ETIEN_I}’

ks
{5)
Eq.{5) can be expressed compactly in the matrix form
i MR L7 -1
- -1 I%N—i}
L = : + K1 : . (6}
[N=-1) (1] {1}
Tor . B . Ty
Bty {1y FaN~1)
Ty iy ATy
The kernet [K(N-1} is a matrix operator and is given by
- R A el ¢#-1)
KR I e SR (el
[I(EN—”]= T SE PRI [ ¢\ (N
: (¥-1] (w1} N
B0 e G0 0 A
I it B St

From Eq.(2) we deduce that £ ™7 is exprassible in terma of transition op-
erators of the ¥ — 2 interacting subsystems as t_E-N'l} = Ei";}l Tj:{ﬁ_zl. The

operators T % are deduced from £q.(6) with N being replaced by N — 1.
From the relation G = &y + G713 we conclude that the Green
operator of the interacting & particle system has the form

N
G{N} = Gﬂ + ZG‘}N-I]_

=1



The rveduoedﬁpera.tm G':N 1 are related to the Green operators g{N -1

systems in which only ¥ — 1 particles are correlated by virfue of u[N 1]' This
relation is readily deduced from the sbowve dﬂ'watmn for t:ranmtmn operator
and reads

of

~ - N—

HN (e -

G[N ) &7 _ gy G[ -1}

N N | O
_ - N-1

Gw N -G GH‘T—II

G{N—l} g0 g, e it

where the kernel is now redefined as [K(¥ -1 = Go[KW -Gy

= == 3 ﬁ:

Figure 2: A diagremmatic representation of Eq.(4) for & system of gix correlated par-
ticles {¢f. Fig. 1}. The hexagons and the pentagons (with = specific orfentation) label
the same potentials as explained in Fig. 1. Each of the pictures stands for a transition
operator of the six body system (the particles are labeled by straight lines). E. g,
the diagram TP}' means that the fve particles 2, 3,4, 5 and 6 interact ficst, propagate
and then all § particles interact with each other. The system then propagates and
finally the five particles 2,3,4,5 and § interact again.

From Eqs.(6,8) we conclude that if the Green operator of the interacting
N —1 body system is known the Green operator of the N particles can then
be deduced by sclving a set of N linear, coupled integral equations {namely
Fqs.(6,8)). According to the above equations, if only the solution of the N—M_'
problem is known where M = 1,2,---, N — 2 we have to perform a hierarchy
of calculations starting by obtaining the solution for the N — M +1 problem
and repeating the procedure to reach the solution of the & body problem.
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It is straightforward to show that any iteration of the kernels of Eqs. (6,8)
is free of disconnected terms since the disconmnected terms occurs only in the
off-diagonal elements of [K¥~¥] and [K¥~M]. For ¥ = 3 the present scheme
reduces to the well established Faddeev equations.

g - S S R - <ol
Figure 3: A diagrammatic representation of the approximation {9). The square rep-

resent the four-body total potential whereas the triangles are the scaled, total three-
body potentiale of those three particles whose lines cross the respective triangle.

3. EXCITATION SPECTRUM OF FOUR CHARGED PARTICLES

‘Tb demonstrate the applicability of the present approach we consider the four
charged-particle problem. This is of a particular interest, since a substantial
amount of knowledge on the three particle prohlem has been accumulated over
the years whereas theoretical studies on the four body problem are still scare.
Cn the other hand, in recent years an impressive progress has boen made on
the experimental side [9, 10, 11, 12, 13, 15] which renders possible a detailed
insight into the four body contiouum spectrum. -

Using the method outlined above of the four body Green operstor can be
expressed in terme three body Green operators for which approximate selu-
tions may be employed. For & = 4 the first iteration of Eq.(8) yields

f
Gl = Y 93(3] — 3Gy, 9

. §=1

where g;-a:' is the Green operator of an interacting three body system {particle
§ is pominteracting). For the latter Green function we utilize the method

developed in Ref.[24] (it is important to note in this context that the fhres-
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body Green function defined here is called in quantum field theory the fwo-
particle Green function which is defined thraugh the Bethe-Salpeter equation).
According to the theory in Ref[24] the Hamiltonian of a general three bedy
system reduces to a sum of three commuting Hamiltonians h?} in which only
two particles are interacting (particle k is free). The Green operators ggaj in
Eq.(9) can therefore be written as

(3 2 9 2
9,1 ﬁGE' ]:[Q}= 1k?EjE{1:233!4}:
k=1

where g}f} is the resclvent of hiﬂ:' {this approximation for the thres-body
Green functions corresponds to summing all the diagrams in the ladder ap-
' proximation whickl is done numerically). Thus we obtain from Eq.(%) G =
[Ci. G5 M ef®] - 360, 5 # &

Now we employ this four-body Green function for the description of three
excited, interacting electrons (or two electrons and a positron) that moves in
the Coulomb field of a residusa! positively charged ion. Such a state is achieved
following the electron and positron impact double ionization.

Tigs. 3(a,b) show the results for the electron and the positron impact dou-
ble jonization of the ground state of atomic helium along with the experimental
data [10, 15) and a full numerical evaluation of the first order perturbation se-
ries {first Born term) within a convergent close coupling (CCC) method [25].
The first Born approximation (FBA) corresponds to one term in Eq.{9) where

" the projectile motion is decoupled from the rest of the system. As a result of
the perturbative treatment the calculations within the FBA are insensitive to
the projectile charge state.

A5 seen from Fig. 4, the present model is capable of describing adequately
the experimental cross sections in shape and magnitude. The origin of the
peaks observed in the spectrum has been discussed in Refs. [15, 26]. The
present model and the FBA theory yield similar results since the experimenia
are performed in the validity range of the perturbation theory. However, the
differences between the positron and the electron impact case indicate that
the Born Limit is not yet fully reached.

$. THE TWO-PARTICLE EXCITATION AT SURFACES

Now let us turn to the application of the theory to ectended systems.
In pacticular the method will be applied to evaluate the simultaneous two-
particle excitation at surfaces upon the absorption of a single VUV photon.
Such experiments have been done recently (8] on Ni{001) and Cu{001}. In the
experiment one resolves the wave vectors k; and ks (l.e. the energies BB
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Figure 4: The Fully resolved doubls ionization cross section of He{' §%) following elec-
tron (solid lines) or positron {dotted line) impact. The seattering geametry is shown
by the inses in {d). kg and k; are the initia) and final state momenta of the projectile '
while kg and ky refer to the momenta of the two gjected electrops. The incident
energy is 5.6keV and &§/2% = k3 /2 = 10€F. All angles are measured with respect to
kq. The projectile is scattered through an sngle of 0.45°. The emission angle 8z of
one of he electron js fixed at the yalue indicated on the fligures while the cross section
is scanned as function of the emission angle &; of the second electron. The thick
solid {dotted) line is the result of the present model for electron [positron impact)
wheresa the light solid curve is the outcome of the CCC method within the frst Born
approxdimation [25]. The data {full square [15]) are on absolute scale.

and emission angles ki, kq} of the two photoelectrons emitted simultanecusly
fromm the sample upon the absorption of & single VUV photon with energy fiu.
The probability for such a reaction is given by [28, 27} (E = By + Ey)

W(ky, B, ko, Bz, heo) oc {ka, beg| [, & STIa(E — Aw)A Il k. (10}

Here ITZ, is the particle-particle (p-p) propagator [26] appropriate for the de-
scription of the two interacting photoelectrons in the presence of the surlace.



The method presented in this paper can be utilized upon the following as-
sumptions: 1. We treat the two electrons as independent ones in which case
the single parsicle Green function for each electron can be deduced by con-
ventional methods, such as density functional theory {we employ the layer
Korringa Kohn Rostoker technique). 2. The electrostatic interaction be-
tween the two electrons is assumed local and is renormalized accordiog to
the Thomas-Fermi theory of sereening. With this information we are now in a
position to write down the p-p propagator 4s sum of three quasi-particle prop-
agators. More details concerning the range of validity of the approximations
will be given elsewhere. In Fig.5 the two-electron energy correlation function
is shown along with the experimental resuits on Cu(001). As evident, the
emission probability of one of the photoelecirons with certain energy depends
strongly of the properties of the second photoelectrons which endorses the im-
portance of a realistic treatment of the coupling between the electrons.

Cu{001}

B

=

Cross Sectlon (arb. units)
hy G

=)

-1.0 -0.5 0.0 0.5 1.0

(E\-E¥E
Figure 5: The one-photon two-electron emission from Cu(001). The photon with
memrh;:ﬁe\?isEnmpa]arizadandﬂswawvadmisnarmﬂmample. The
two photoelectrons are detected co-planar with the photon wave wector and under
emission sngles of 40° to the left and to the right of the incident photon direction (e
inset). The total energy of the two escaping electrons is B = 35 eV, The emismion
crosa section i scanned as function of sharing of the total energy E between the two
photoelectrong
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