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5.1 Introduction

In recent years, noncollinear magnetism has attracted constantly increasing
interest from the density-funetional-theory {DFT} commmunity (see, e.g. [1-
19]). These studies revealed a crucial role played by noncollinear magnetism in
understanding the ground state magnetic properties, excitations, transport
properties, and spin-dynamics in various magnetic systems. In the present
chapter, we mainly focus on one aspect of the physics of noncollinear mag-
netism: the interplay between the symmetry of a magnetic system, relativis-
tic interactions and magnetic structure. The impertance of the relativistic
interactions in physics of magnetism clearly follows from the fact that the
magnstocrystalline anisotropy, one of the properties most Important for appli-
cations, and the orbital magnetism in solids are conequences of the spin-orbit
_eoupling. Analysis of the symmetry properties allows us to make predictaom
imporiané for understanding the physics of the system.

5.2 Density Functional Theory
of a Noncollinear Magnet

In an early formulstion of the DFT by vou Barth and Hedin [20], the energy
oftheaystmmtmtedasaﬁ:mnanﬂnfthehm-bytwodmtymatnx
Correspondingly, the Kobn Sham equation {KSE) snd the effective electron
potential have matrix form. The consequent consideration of the matrix char-
acterofthedenmtyandeﬂwhvepoteﬂmlaﬂmtheDFTdmcnphmofsys-
tems with noncollinesr magnetization. Howsver, for many years the concrete
caleulations were performed for collinear magnetic systems only. In this case
the density and potential matrices are assumed to have & disgonal form. In
the problems where the S50 is not taken into account, the neglect of the
off-disgonal elements of the potential matri: leads to the spin-factorization
* of the problem: the spin projection of the ectron states on the global =~
axis 15 5 good quantwm number and there are two separsie equations for
" the electron states with oppesite spin projections. Such states being used to
calculate new density and potential matrices lead avtomatically to vanish-
ing off-diagonsl elements. Thus, if the S0 is negligible, the collinearity of
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the magnetization is reproduced in the DFT caleulations. Im this sense, the
states with collinenr magnetization are always self-repraducible and can be
considered 45 & possible ground state of a nonrelativistic syster.

In. the relativistic case, the neglect of the off-diagonal elements of the po-
tential atsix does not Tead to the spin-Factorization of the problem because
the SOC! does not commute with the operator of spin projection. Therefore,
the matrix form of the KSE cannot be reduced to two separate equakions
for the states with two opposite spin projections. The electron states hieve
a general spinor form .

- m{rl)

‘t(rj ‘bs[f:] 1
and the direction of the magnetization eomesponding to these states varies
fromx point to poing. .

Physically, it s usefitl to distinguish between interiomic and inbroadomic
magnetic noncollinearities. Under interatomic noncollinearity we understand
the noncellinearity of the atomic magnetic moments obtained by the integra-
tion of the magnetization over the atomic volumes. On the other band, the
intrastomic magnetic noncollinsarity is the nonesllinearity of the magnstiza-
tion within the volume of a given atom.

Since the relativistic K55 always has & matrix form, the intraatomic mag-
netization of & relativistic system is alweys noncollinear [4]. The intraatomic
magnetic noncollinearity of relativistic systems does not necessary lead to
the noncollinesrity of the moments of different atoms. If the ‘intreatomic
exchange interaction is stronger than the SOC, the neglect of the intrastomic
noncollinesrity of a relativistic system is a good approximation [21}- In this
chapter we will mestly be interested in the aspects of the interatomic non-
collinearity.

The calculationsl scheme used in the main body of the calculations dis-
cussed in this chapter is described in [11,22,23}. An important featuze of this
scheme is an allowed variation of the directions of the stomic moments from
iteration to iteration: The eigenstates of the Kohn-Sham Hamiltonian {K5H},
1, are used to caleulate the density matrix :

plry = 3 ulrivir)- (5.1}

After integration of (5.1} over stomic spheres one gets the atomic makrices
[22]. Disgonalizaticn of the atomic matrices gives the directions of the atomic
magnekic moments corresponding to these matrices. In general, calculated
directions of the atomic moments are different from the directions wsed in
the formadation of the HSH at the beginning of the iteration. In the self-
consistent state, the initial and calenlated directions of atomic moments
coincide. If the intrastomic noncollinearity of the apin magnetization is taken
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into seoount, the condition of self-consistancy is i i

; 1 ¥ is imposed on the magneti
density. According to the basic theorems of the DFT the groumnd ma.g'ueiaz
state corresponds to a self-consistent magnetic density [20].

5.3 Relation Between Symmetry and Stabil;
of Magnetic Structures i

The relation between the symmetry of a system and 3 magneti

has ?.ttracted ruch atéention in the history of solid—stf;t.e mag;::is:"n;f[tﬁ
mnsnderaﬁqn wad given to the predicticn of the magnetic structures that
can appear in the system as the result of a contimuous phase transition (see

e-g. [24,25]). We will focus on another aspect of the relation between the
symmetry and magnetic structure: the stability of & given magnetic corfigu-
I‘E.th{l, independent of the kind of phase transition into the megnetic state.

Applications of the DFT to the studies of complex nomeollinear magnetic cml:
figurations have shown that the magnetic structure chosen at the beginning
i:fthe DFT caleulation is, in general, unstable: the magnetic moments deviate
in the epurse of iterations from the indtial directions, tending to form ancther
miaguetic state. On the other hand, in some cases the maguetic moments

slthough allowed 10 move, keep their initial directions, The ability to predict
}'.o wh%ch of the two types of steuctures a given magnetic configuration belongs
i3 an important capability for the study of the magnetism of the system.

In [3,11,26,27) it was shown that there exists an intimate connection be-
tween the stability of the magnetic structure in the DFT caleulations and the
symmetry of the system. Here, we will generalize the approach suggested in
[3,11,26,27) by using the notion of symmetry constraint and appiy it to the
studies of the properties of varfous magnetic structures.

5.3.1 Symmetry Constraint: General Formulation

We begin with the proof of the statement that the symometry of
Kohn-Sham Hamiltonian is preserved in the itﬂaﬁnnﬂmlIDnPT czcul;]:zn?l:.ﬁ
us assume that the initial KSH of the problem commutes with the operators
of group G and show that the density matrix, obtained ‘with the use of
the sclutions of the Kohn-Sham equaticn, is invariant with respeck to the
operators of G. The concrete form of the KSH is not important here. For
uourelahvmhc problems the operations are of the {as|on)t} type where ag
1 & spin rotation, op s & space rotation, ¢ is & space translation [11). (Ex this
chapt.er-we do oot digtinguish between nonrelativistic and scalar-relativistic
cases, since from the symmetry viewpoint they are equivalent.) In the case
of relativistic problems o is always equal to o and the operators are of the
{orfcon |t} = {or[t) type [11,28]. In both cases these transformations can be
accompanied by time reversal.
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According to the basic theorems of quantum mechanies, if operator §
commutes with Hamiltonian B and 10 is an eigenfunction of H corresponding
to sigenvalue £, then §p is also an eigenfunction corresponding to the same
energy. A8 a consequence, all eigenstates of H can be separated into the
subsets such that the states of one subset correspond to the same energy
and form & basis of an irreducible representation of G. The contribution o
the density matrix {5.1) of any such subset is invariant with respect to the
operations of G. Indeed,

Y wdtriitr) = 3 s i) guir)) {5.2)
= S DA G S DR )
¥ L'}
= S B @phigwlel = 3 wirwiltn).
[ L

Here D7 is the jth irreducible representation of G.
Since i
_1 alr)+ m:{r) —imzir) + m‘-{'l":l ) :

#0)= 3 iy @) wP) ) ) -
the imvariance of the p matrix immediately means the iovariance of the par-
ticle density n and spin magnetic density wm with respect o §. Therefore the
effective potential - .

m{r)

wir) = vl + Bufnir), mie) o - o 54
caleulsted with the wse of densities n and m is also invariant with respect
to §. As a result, the KSH for the next iteration, which uses the ealculated
effective potential [5.4), is agnin, as the initial one, invariant with respect to
operations of G, .

Thus we have shown that the densities obtained in the calculations ars
invariant with respect to the symumetry operations of the initinl KSH and
sy symmetry operation of the initial KSH is preserved in the calenlations.
Since only the densities invariant with vespect to cperstions of & sppear
in the ealeulations, cne deals with a constrained minimization of the total
energy considered as a functional of the densities. We will refer to this type
of restrictions on the densities as symmetry constraint.

A genersl spproach to a constrained minimization of the energy 8¢ a func-
tional §20,30] of the charge and magnetic densities requires adding to the
functionsl the following tevom

[ artptr)antr) = nie)) + br)gmir) —smle))-

Thie term contains Lagrange parameters p{r) and b{r}, which play the role
of external felds stabilizing the constrained state.
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) A mm?.r!mble feature of the symmetry constraint is that the state provid-
ing the minimum of the functional wader the symmetry restriction does oot
need & noneero stabilizing external field. This followa from the property that
the symmetry of the KSH and densities is preserved in caleulations,

The proparty that a symmetry-constrained state doss not need an external
stabitizing field is of exxceptional importance since only such states can be the
ground state of the system. This property permits eardinal simplification of
the calculation of the ground state if the experimental data and theoretics]
considerations show the presence of certain symmetry in the system. Nots,
that the DFT allows, in principle, to begin ealoulations with a randam mag-
netization and, by carrying out the iterational process to sell-consistency, to
determine the magnetic state with the minimal energy, A highly symmetrical
ground state can be established in such calculations since, opposite 6o the loss
of symmetry, an increase of symmetry in the DFT calculatiors is possible.
These calculations are, however, extremely complex and time CONSUmMIng even
for the simplest magnetic systems. Therefore, the symmetry constraint is an
efficient tool in the DFT studies of magnetic systems. '

5.3.2 Two Types of Symmetry Constraints

We will distinguish two types of symmetry constraints. To introduce them we
congider in more detail the restrictions imposed on the megretization b the
condition that the magnetization is invariant with respect to the operations
of grouwp . .

Since, on the one hand, the symmetry operation § transforms the'magnetic
density m(r} and, on the othér hand, Jeaves f invariant, the magnetization
mmast fulfil the following condition [53]

f{osler [ttmir) = asmi{erlt] ~r] = mir). (5.5)

After integration of the magnetization over atomic spheres we get the restric- -
Hon .

m; = ogmy, {5.6)
imposed on the atomic magnetic moments, where 1 and § label the atoms
defined by the relation .

{erltla: = a;. ' - (5.7

Therefore the atoms that are transformed one into another by § possess
magnetic moments of equal magnitude, and the direction of one moment is
transformed into the direction of another under the action of §. In the case

- when the position of an atom is unchanged under the action of §, (5.5} takes

the form

r"“l' =a3-,nl'r
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.5.1. Symmetry constraints 1 and II {schemnatic picture). The continuou pa-
2:12:&: & ggmbaa different magnetic configurations. {a) The st.stamt.h 8=4d
corresponds to the symmetry conateaint {. This steke possesses add.luonal regulsr
featurea compared with the stakes with # # fo (b} Symumetzy c:onstr‘afnt. IL The
ctates with different § possess the same regular featurss. The probability that fa
sccidemtally coincides with frin 18 ne=gligible

a.ndimpccseaarmtﬁctionunthemomntafthisatmn,whid:com&sisofthe.

imvariance of the moment with respect to 4. If operation § contains time
reversal, (5.6} is modified as follows

Ty = —c:gﬂ'!-j . {5'3}

The restrictions [5.6-5.8) on the lengths and directions of the atomic
magnetic moments can be considered a5 regular features {regularities) of the
magnetic stractore that are the necessary consequences of & given syImEty
constraint. Two different situations can follow from relations (5.6-5.8). In
the first case, the gymmetry comstraint determines the magnetic structure
uniquely, This means that any deviation of the magnetic moments from the
imitial directions disturbs, at least, one of the gymmetry opersiions. Smee all
symmetry operskions must he preserved the structure cannot change in the
corse of caloulations. We will refer to this type of constraimt as symmetry
constraint T (Fig.5.1). o

In the second case (symmetry comstraint ITj there is an infinite set of
magnetic configurations that, first, satisfy the conditions {5.6-5.8} imposed by
the invariance with respect to & and, second, can be continuously transformed
into one saother without disturbing the symmetry of the system. Let _Erbe
a contimuous parameter that describes this set of msgnetic configurations.
{The oumber of parameters can be larger than one, but this does not change
the essence of the arguments.} As all magnetic configurations are describad
byihesamesymmetryumoithﬂﬂvaluﬁisdisﬁnglﬁshed. The purpose of
the DFT calculstions in this case is to find the value of f that corresp{mr!s
to the state with the lowest emergy. Since all § values are eguivalent, this
minimum cannct be predicted without calculations (Fig. 5.1). o

To begin the DFT calculation & value 8, of parameter § i3 seiect.?d. Since
it is improbable that &, accidentally equals 2in, providing the minimum of
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the-total energy, the inftial state in the cese of symmetry constraing Il is
unstable. In the iterational process, the magnetic structure deviates from the
state described by 8, tending fo assume the state with the lowest evergy.
Mote that a self-consistent DFT caleulation for the state with arbitrary #
is possible. This calculation needs, bowever, an additional [monsymmetry)
gonatraint on the system [29], This additional constraint requires application
of an external stabilizing feld.

The situation described by symmetry constraint I is related to many
interesting physical phenomena. In a typical case, the neglect of & part of the
interactions leads to the ground state of the system that belongs to constraint
I and, therefore is wniquedy determined by symmetry. With account for the
full Hamiftonian this state corresponds, however, to symmetry constraint IT.
Therefore, in the foll-Hamiltonian study it becomes unstable and & warlation
of the state must take place. Examples of such systems are, e.g- Fey(Ja and
MezSn, where the SO leads to the phenomencn of weak ferromaguetism [11].
" Summarizing this section we can formulate 2 number of conclusions. First,
a given magnetic structure is stable in the DFT caleulations only in the
case when it corresponds to symmetry constraint I. Second, if the structure
corresponds to symmetry constraint IT ita variation is subjected to restrictions
imposed by the relations (5.5-5.8). Thus, although the structure itself is
unstable, the regularities in the magnetic state that follow Eom (5.6-5.8)
are preserved features of the magnetic structure. On the other hand, an
assumed regularity in the initial maguetic structure that is not supported
by & symmetry operation is not & stable feature of the magnetic state of the
gyshern,

It is important to distinguish between the stability in the DFT caleuls-
ticms and the stability in the nature. Magmnetic confignrations atable in the
calenfaticms may not necessarily be the physical ground state, since random

" Auctuations characteristic of real systems sre absent in the DFT caleulations.

Therefore the symmetry constraiot is not efficient in the real systems. On the
other hand, the instability of s magnetic state in the DFT caleulations can
be directly related to the instability in oature, becouse this instability is
& ponseguence of the intersctions in the system. The latter property is of
primary impeortence for the discussion of concrete physical systems in the
next section. In the next sections we apply the symmetry piinciples to the
analysis of various megnetic systems. -

5.4 Siable Magnetic Structures
First, we comsider examples of magnetic structures distinguished by sym-

metry relative to the structures obtained by infinitesimal variaticn of the
directions of atomic moments. -
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5.4.1 Simple Standard Cases

With rare exceptions, the DFT calculations reporied in the literature are
performed under & symmetry constraint. Historically, the first calculations
were carried out for the nonmegnetic state of the systems. The magnetic
deunsity wae assumed to be zero at each point in the space. The study of
magnetically ordered systems begsn with the eollinear ferromagnetism of
elomentary metals, like Fe and Ni, and of the tmro-sublattics collinear anti-
ferromagnetism of Cr [31].

It can be easily shown that the regularities characteristic to all three
simplest magnetic states correspond to the symmetry constraint and, indeed,
mmst be stable in the calculations. The stability of the zerc value of the
magnetic moments in the nonmagnetic state 15 & consequence of the invariance
of the KSH with respect to the time reversal. The atahility of the equal
values and parallsi directions of the atomic moments in Fe and Ni are the
consequences of the transistional symmetry. The stability of the equal values
and antiparallel directions of the magnetic moments of two sublattices in
Cr are the consequence of the symmetry operation that combines a lattice
tramslation connecting two sublattices and the time reversal, Any disturbance
of the characteristic features of these magnetic states leads to the loss of the
invarlance of the FCSH with respect to the corresponding symmetry operation.

5.4.2 Magnetic Structures of UzPdaSn and Usb

The erystallographic unit cell of the UzPdzSn compound is shown in Fig 5.2.
The magnetic state of UaPdsSn was established in [32] where six magnetic
structures, shown schematically in Fig. 5.2, were considered in the analysis of
the newiron diffesction data. These six structures were selected on the basis
of the symmetry argunents of the Landan theory of the second-order phase
transitions. The noncollinear magpetic configuration NC1 was found to be
- the magnetic ground state of the system.

We performed the first-prineiples DFT calculations for all six megnetic

configurations. All of them correspond to the symmetry constraint I and are

stable in the calculations. For example, the magnetic structure NC1 possesses’

the following symmetry operations: {a) the 180° rotation about the z-axds, {b]
the 180° rotation sbout the & = y-axis, (c) the 907 rotation about the z-axis
sccompanied by imeision, (d) the 9P rotation about the -axis accompanied
~b time reversal. (Only the generators of the symumetry group are given} If
the coordinate ceater is chosen at the position of the central Sn atom (Fig. 5.2)
opecation (b) is accompanied by nonprimitive translation a({.5,0.5,0). Other
operations are pure point transformations. Any infinitesimal deviation of the
megnetic moments destroy the invariance of the system with respect to at
least ome of the symmetry operations. This additionsl syrometry of the NCI
structure is illustrated in Fig. 5.3, where we show the totad emergy of the
magnetic strictures obtained by the rotation of the NC1 structure by different
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Fig. 5.2. Unit cell of the U2PdsSn eryetal structure. The &% magnetic structures
atudied are indicated . '

angles about the z-axis. The structure NC1 can be transformed into NC4 by
a rotation by 90° aboat the z-axis, -

All structures lying between the NC1 and N{4 structures have the same
symimnetry and are invariant with respect to operations {a), (c), aad (d). They
are lese aymmetrical than the NC1 and NC4 configurstions. This property
results in the extrems of the total energy for NO1 and NC4 strustures. The
form of the curve shows clearly that in the case of the NCI configuration
we deal with symmetry comstraint I {Fig. 5.3). Note that al) intermediate
magnetic states in Fig, 5.3 are unstable and the nonsymmetry constraint was
used in the calculations of these statea.

Another example of & stable magnetic state is 8 socalled triple-k mag-
petic structuse in USh (Fig. 5.4). The list of the symmetry operations of this
stucture can be found in [33].

In the next sections, we consider relativistic instabilities of the regular
festires of megnetic structures, - -
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Fig. 5.8. Total energy of UpPdzSn as a function of ¢ caboulated wrkh S0C (.ral'.!'.d
fine) and withoot SOO [dashed kine). On the right-hand side the energies of the six
magnetic structures (sec Fig. 5.2} are indicated :

Fig. 5.4. Triple-k structure in USk

5.5 Relativistic Instability of Collinear Ferromagnetism

In nonrelativistic systems, collinear magnetic configurations are always stable
in the calenlations. The symmetry operations responsible for the stability of
this regularity are the pure spin rotations about the magnetization axis [11].
In the relativistic case, such operstions do not commute with the Hamiltonian
of the problem and cannot be symmetry operations of the system. The pure
spin robations are not the only symmetry operations that can be responsi-
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Fig.5.5. The total energy of UsPy as a function of the deviation of the magnetic
moments from the {111} axis, Solid/desfied line shows the result of the cabeulation
with,/without the spin-orbit coepling. The inset shows the projsction of the crystal
and magoetic structurs onto the [111) plane. Tha meagnetic moments form & cone
structure .

ble for the stability of & collinesr magnetic state. For axample, the lattice
translations and combined apin-space rotations sbout the axis paralled to the
magnetic moments are examples of such operations, If, however, the system
pomsasses nons of the symmetry operations responsible for the stability of
& collinesr magnetic configuration, this strecture must be unstable. Below,
we consider two examples of the system with instabilities of the eollinear
ferromagnetic structure. '

5.5.1 Magnetic Structure of TP,

The inset in Fig. 5.5 shows the experimentally determined magnetic structure
of U;P,. The atomic moments form a cone with the axis parallel to the
{111] sxis. The system possesees & strong ferrornagnetic component. The
DFT calculation started with all U moments parallel to the {111) axis results
immadistely in the noncollinear maghetic stractire similar to the structure
found in the experiment [3]. Analysis of the symmetry of the system shows
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that the deviation of the magnetic moments does not influence the symmetry
of the magnetic structure. Therefore, we deal here with symmetry copstraint
II and the initial collinear structure must be unstable. The minimum of the
total energy is at an accidental point.

" With the SOC being neglectad, the curve of the total energy as a function
of the deviation angle # is symmetrical with respect to the change of the sign
of # (Fig. 5.5). Therefore, the collinear configuration corresponding to §# =0
i distinguished by symmetry and is stable [2].

5.5.2 Atomically Disordered Relativistic Systems

Another example of the system with relativistic instability of collinear mag-
netic state is an atomically disardered relativistic system. According to the
symmetry principles formulated in Sect. 5.3.1 the magnetic struciure of rel-
ativistie systems with atomic disorder is always noncolfinear. Indeed, in the
presence of atomie disorder there is no spatial transformations that leave the
atomic positions invariant. Since the spin-orbit coupling eomnecta the atomic
and magnetic subaystems, & separate transformation of these subsystems is
not allowed, Correspondingly, the system possesses no symmekry operation
that can be respemsible for the collinearity of the atomic moments. This leads
fo the noncollinearity of the magnetic struciure.

To verify this conclusion, the following DFT caleulations have been per-
formed. First, undistorted bee Fe was considered. In this case the collinear
ferromagnetic structure is etable for beth relativistic and nonrelativistic cal-
culations {see Sect.5.4.1). At the pext stage, a supercell containing 8 atoms
was constructed and the atoms were shifted from their pesitions in the bee lat-
tice {Fig. 5.6 by different vectors collected in Table 5.1. These shifte destroy
the symmetey operssicns of the bec structure that tranaform the stoms of
the super cell into one another. As a result, there is no symmetry operation
that can be responsible for the stability of the collinesr directions of the
magnetic moments of any two atoms in the super cell. Therefore, according
to the symmetry analysis of Sect.5.3.1 each of the 3 atomic moments most
deviate from the initial direction. These deviations must be different for each
of the 8 atoms. )

The ealculations confirmed these predictions. At the beginning, all mag-
netic moments were directed parallel to the z-axis (Fig.5.5). Already she
first iteration resubted in different deviations of the moments of all 8 dtoms
from the imitial direction. The self-comsistent deviation angles are collected
in Table 5.1. It i3 important that not only the spin moments of different
atoms deviate differently but also the orbital and spin moments of the same
atom asseme different directions. This property is another consequence of the
loss of the symmetry in the system. The collinearity of the spin and orbitsl
moments of the same stom is a regularity that can be stable only if it is
supported by a gymmetry operation. In the case of symmetry constraint IT,
the directions of the spin and orbital atomic moments are alweys different.
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Fig. 5.6. Atomic disorder leads to the noncollinearity of the magnetic structure.
Breken arrows show the initial collinear structure

Teble 5.1. Nencollinesr magnetic structure of distarted boc iron: self-consistent
relativigtic calenlations. Atomic positions end shifta are given in the units of the
bec lattice parameter, the deviation angles in degrees

Deviation of atomic mornents

bee position shift tpin 8, & orbital &, &
{0,0,0} : {.61,185.8 1632155
f3.%,4)  (001,002,0.08) 0.79,193.6 0.96,206.8
{0,0,1} (0,0.01,0.01]  0.69,191.1 0.28,78.7
f3.4,.8)  (—0.02,0,—001) 0.73,1288 1.26,309.2
{010} {0,-0.03,0)  0.83,193.2 L37,1804
(3.3, 4 0.81,1%4.5 1.48,233.8

3L 0.72,195.4 0.93,78.4
1.4, 0.77,189.4 1.04,325.%

56 Helativistic Instability _
of Collinear Antiferromagnetic Structures .
Next, we discuss two enmples of the relativistic instability of collinear anti-
ferromagnetic structures.
5.6.1 - Weak Ferromagnetism in o-Feg O3

We begin with the phenomenon of wesk ferromagnetism in hematite, o-FepOyg
[34]. Dzisloshinski [35] suggested & model Hamiltonian -

H=fi_,'3i3_f +D;J--{S,- KSJ']'{"S;-K."Si, (5.9}
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that gave & basis for most of further work on weak ferromagnetism. In {5.9)
the indices 1 and j number the atoms in the lattice, Ji; and 2 are the
symmetric and antisymmetric exchange constants and the tensor K; contains
information about the single ion magnetecrystalline anisotropy. The first term
of the Hamiltonian {5.9), the symmetric exchange, is supposed to lead to
a compensated magnetic configuration. The next two terms, the anisotropic
exchange and the magnetacrystalline anisobropy teris, reapectively, can lead
to a small ferromagnetic moment in an otherwise antiferromagnetic crystal.

Moriya [35] showed that depending on the type of erystal structure either
of two mechanisms, antisymmetric exchange or magnetocrystalling anisot-
ropy, can be the origin for the canting of magnetic momenis. Thus, in the
case of o-FegOy it is the antisymmetric exchange that plsys the dominast
role, whereas in the case of NiFy antisymmetric exchange is ruled out in
favor of the magnetocrystalline anisotropy, which here is respomsible For the
appesrance of the ferromagnstic component. .

te-Fea Oy is & classical example of the weak ferromagnetism caused by the
antisymmetric exchange. The trizngalar sntiferromagnet MnaSn is considered
in Sect. 5.7 and Is a syetem where the antisymmetric exchange contributions
from different atoms cancel and canpot be & reason for the ohaerved wesk
ferremagnetism. In this case, the magnetocryatalline enisotropy term s sesn
o be regponsible for weal: fi jsm.

The crystal structure of Fep Oy ls shown In Fig. 5.7. This is & rhombohedral
laktice with a basis of two formula units per unit cell. The following operations
are the generators of the group cheracterizing the symmetry of the atomic
positions: rotation by 120° about the z-axis, rotation by 180° about the -
axis, and inversion.

Caleulations with the SOC neglected [37] have shown that the magnetic
state with the lowest energy is a collinear antiferromagnetic structurs of the
type [+ — —+} Here, + and — designate up and down directions of the Fe
moments with respect to some chosen soris. This result i in agreement with

- experiment. :

If we next choose the z-axis as the direction of the magnetic momente and
gwitch om SO, the following generstors remain in the symmetry group of
the Kohn-Sham Hamiltonian: rotations sbout the z-zxis and the mversion
{39]. The symmetry operations thek are of special importance for us are

" the rotations about the z-axis: none of them change the position of any

of the four Fe atoms lying oo the axis of rotation. The directions of the
megnetic moments ate parallel o this sxis and are not changed either, It
is clear that any deviation of the magnetic moments from the z-axis will
destroy the invariance of the crystal with respect to this operation. As the
gymmetry of the Hamiltonian cannot become lower during fterations this
change i8 forbidden by symmetry and the magpetic structure will remain
collinear during fterations even in the presence of SOT. This result agrees
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Fig. 5.7. The uait il of Fag Oy, Cross en the diagonal of the rhembohedron shows
the point of inversion. The sekd fne passing through the 1t cecygen stom indicates
2 two-fold symmetry axis. The collinesr {dashed arrow) and canted {solid armow)
directions of the Fe atoms ere ghown, The canting of the Fe moments in the sy
plane is illustrated differsntly in the lower righi sorner of the figure

with the experimental observation of a collinear antiferromagnetic structure
with moments oriented parallel to the z-axis below 260K {38].

The situation is changed completely. when the moments are parallsl to
the y-axis arrenged again in the sequence [+ — —+) {39]. Now ihe following
generators are left in the symmetry group of the KSH: the 180°-rotation
about the z-axis and the inversion, Joversion tvansforms the atoms of the
uppar FepOz molecule into the atoms of the Jower moleculs, see Fig.5.7.
Since the magnetic moments are axial wectors, they do not change under
this transformation. Hence, corresponding atoms of two molerules must keep
paraliel moments and one may restrict the considerstion to the lower molecule
in Fig.5.7. The only condition imposed on the momenta of the Fe atomas by
symmetry is the transformstion of the moment of atom 1 into the moment
of atom 2 by the rotation through 180° about the r-axis. However, to fulfil
this condition it is not necesssry for the atomic moments to be parallel to the
y-axis nor to remain collinear, Indeed, caloulations show that the magnetic
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motments move and deviate from their callinear directions toweard the direc-
ticn of the z-axis wnkil an “accidental” self-consistent magnetic stracture will
be achieved. Since, without 80O, the magnetic structure remains collinear,
the canting of the magnetic moments is a direct resubt of this interaction.
Because of the small value of S0 compared with the exchange coupling that
is responsible for the antiparallel directions of atomic moments, the canting
of the moments is rather small and leads in the calculation to a ferromagnetic
moment of about 0.002 ;g per Fe atom [39]. This estimate is i quite good
agresment with the experimental value.

5.6.2 Relativistic Instability of the Collinear Antiferromagnetism
in UPdSn

Much attertion was recently attracted by two magnetic phase transitions 4=

44} in UPdSn. The paramagnetic state Das the hexagonal Galeli crystal
lattice. Below 45K UPdSn becomes magnetic with a nomccllinear antifer-
romagnetic structore. In this phase (which we will refer to sa structure I
all magnetic moments of the Uranimm atoms lie parallel to s plane and
compensste one aoother completely. Simultaneously, crthorbombic latties
distortions are detected. As 20K, a sccomd phase transition is observed. Here,
the magnetic structure (structure I3 is still noricollinear and compensated,
however, the magnetic momenta deviate from the plane, developing compo-
nents perpendicular to it.

The calenlations [45} were siarted with the undistorted hexagonal Iat-
tice and uranium magnetic motnents directed along the z-axis and forming
a collinear antiferromagmetic structure {see Fig.5.8a). Allowed to rotate,
the moments deviated immediately from the z-axis keeping, however, their
equivalence and the compensated character of the magnetic structure. The
reanlting self-consistent directions of the magnetic moments are shown in
Fig. 5.8a; they form a mapnetic structure that is very similar to the exper-
imentat structure I. The symmetry principle, formulated sbove helpa us to
expose the physical reasons for the instability of the initia! collinesr structure.

The symmetry cperations of the initial collinear antiferromagmetic siruc-
ture sre collected in Teble 5.2. The analysis of the restriciions imposad by the
gymmetry operations on the directions of the magnstic moments shows that
=0 for each atom £. For the other two components the following conditions
Mtbﬂ&atiﬂﬁ&d:rﬂé,:!ﬁi=—fﬁi=—ﬂl§3ﬂdmi=—mg =mi = —mi.
This mesns that the initial collinear structure has the same symmetry as
& noncollinear structure satisfying these relations, The noncollinear magnetic
structure detected experimentally belongs to this type of structure. Thus, we
again deal with the case of symumetry comstraint II.

Weut, the influence of lattice distortions on the magnetic structure was
studied [45], First, following the experiment [42] we introduced s amall vari-

ation of the lsttice parameters o and b such that the relation b = +/3a, valid

for the ideal hexagonal lattice, is no longer satisfied, This distortion does not
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Fig.6.8. Projections of the crystal and magnetic siructure onto the zy and y=
planes. {a) Projsction of the orthorhombic unit cell onto the gz plane. Dotfed artows
show the initial megnetic structure esed to start the calowlstion, thick arows show
the resulting self-consistent directions of the magnetic moments, Thin arrows show
the experimentsl magnetic structure. (b} Projection of the ariborbombic unit cell
onto the cy plane. Both experimental and theoretical projections of the magnetic
mwomernts are parallel to the y-axis. {e)] Projection of the monoclinic unit cell onbo
the oy plane. Arrcws show schematically the deviations of the magretic moments
from the pz plane

affect the symmetry of the system because the magnetic structure has already
lowered the symmetry of the crystal From hexsgonal to orthorhombic. As
& result, no qualitative changes of the magnetic structure were observed due
to the arthorhombic lattice distortion and guantitative changes also apj:eared
{0 be very small,

A basically different response was obiained to the monoclinie distortions
[45]. In agreement with experiment the b-side of the basal rectangle (Fig. 5.8
was rotated by (.4° about the c-axds. We started the calculations with the
magnetic structure I Already after the first iteration all uranitem magnetic
momenta deviated from the y2 plane staying, however, mutuslty equivalent. -

] The compensating character of the magnetic stnzcture was also preserved.

Again, & gyminetry analysis helps to understand this process. The mon-
oclinie distortion decreases the symmetry of the system such that cnly cne
half of the symmetry operstions of the orthorhombic structure are left ower
in this case. These are the operations mambered in Table 5.2 as 1, 2, 5, and 6.
Operation 5 demands equivalence of atom 1 t0 atom 3 and atom 2 £0 atom
4. Simultaneously, the moments of the equivalent atoms must be amtiparallel;
my = —myg and m; = —my. Jperation 2 is responsible for the equivalence
of atoms 1 and 4 and the following relation between the componects of the
magnetic moments: wy = ~mj, my = —my, mL = mi. Thus, we see the
important difference between the crihorhombic and the memoclinic strue-
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Table 5.2. Bymmetry propertiea of the erthorhombic UTPdSe

TR e U )

= %{g,b’c:“ Ty = %{al 5,00 r3= .},{u,n,c} i R time reversal operation

Operation  Trensposition of U atoms BRestriction on 1 momente

1 {=la} no o
mg —thg
2 {Pnfr} 14,23 m‘.) =1 -m | 1i0J
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\ e i M/
r.rmm I'r—ms .
4 {aylrs} 14;2+ 3 mv) = my sierd
Wma f e/,
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{ m { mz
6 {Co|ra}i 1¢2;3a4 m,,] = wy | (fHd
CH R
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8 {ximlR 1++4;263 my | = omy | siei
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tures of UPdSn: in the monoclinic structure there is no symmetry operation
demanding the » component of the magnetic momenta to be zero. This means
that & deviatice of the magnetic moments from the = plane doss not change
the gymmetry of the systemn and therefore will take place according o our
symmetzy principle. Thus, the result of the caleulation for the monoclinically
distorted lattice and the corresponding symmetry analysis are in agreement
with the experimental data,
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57 Relativistic Instability of a Compensated
Noncollinear Magnetic Structure in MnzSn

The magnetic structure in MusSn is very close to compensated triangolar.
There 35, however, a weak ferromagnetic component f48).

In an eariier paper, Sticht et al. [22] studied & number of magnetic config-
uraticns allowed by Lardan’s theory of phase {ransitions, but S0C was ne-
glected. These caleulations showed that, compared to other magnetic states,
the triangular configurations have a distinetly lower total energy. Four of the
triangular structures are represented in Pig. 5.9. Caloulations withogt SOC
showed thet all four configurations are equivalent. Ancther property of all
four configurations is their stability during iterationa.

The account for SOC changes the situation drestically [F]. Fizst, the de-

- generacy is lifted, ie. all four magnetic configurations become ineguivalent

and, second, for two of them (e and 4} the magnetic moments deviate from
the initial directions, a3 depicted in Fig. 5.9. The symmetry analysis shows
thatatmcturesaandhmneepmdtos;unmetrymnstmimlmdmstable
in the calculatiome. Structures ¢ and d correspond to symmetry constraing 11

Mn Sn

=14 @ o

© =3 O o)
(a) (b} {c) (d)

Er S RS O
) RS I
Fig. 5.9. Crystal am] magpetic structure of MnaSn. Rotstions of the magnetic
moments beading to weak ferromagnetism in structures {e} and [d) are skown only
for atoms in the z = 0.25 plane (thin arrows). Moments of the atoms in the z = 0.75
plane are parﬂhlmthzmnmmafthempundingunmsofthe 2 = .25 plane
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and are unstable. it is interesting that the weak ferromagoetism in bMingSn is
different from the weak ferromagnetism in FepOz and cannot be attributed to
the anisotropic exchange interaction. The symmetry principle of the magnetic
instability is, however, universal and can be applied to both cases of weak
ferromagnetism.

5.8 Nonmagnetic Sublatiices
in Antiferromagnetic Systems

In this section we show that symmetry principle is ussful in the study of the
state of the nonmagnetic sublattices in antiferromagnetic systems. Although
the atoma of a nonmagmetic sublattice do not develop an Independent magp-
netism, the properiies of these atoms are inflienced by the interaction with
the electron atates of the atoms of the antiferromagnetic subaystem.

E.E.j. Intersublattice Interaction in UFegAlg

For & number of years the magnetic siructure of UFeyAly was the matter of
mutch controversy. The suggestions made on the basis of different experimen-
tal investigations ranged from simple one-sublattice ferromagnetism up o un-
ususl spin-glass state [47]. Becent investigation of & single crystal of UFe Alg
with the uss of unpolarized and polarized neutron difftaction revealed an
ordered magnetic atructure with a number of unique featurea [48] (Fig. 5.10).
Two magnetic sublattices were detected. The magnetic moments of the U
sublattice form a coliinear ferromagmetic structure. A strong noncollinearity
is, however, observed between the U and Fe magnetic moments, which are
almeost orthogonal to one another. The magnetic structure of the Fe sublattice
is close to a collinear antiferromagnetic {so called G-type antiferromagnatic
structure}. Additionally, there is 2 canting of the Fe moments, which leads
to the second type of noncollinearity in Fey Aly. The noncoilinearity within
the Fe sublattice results in a weak ferromagnetic moment paraflel to the U
momerts.

In [28] we have shown that the complex noncollinsar magnetic structure
of UFe Al is & necessary comsequence of the propersies of a much simpler
magnetic state with eollinese antiferromagnetistn of the Fe sublattice and
nonmsgnetic U sublattice (Fig. 5.10}. To stress the impaortance of this state
for understanding of the magnetiam of UFegAls we refered o it as the basic
state {BS).

The BS possesses a number of regular features: the Fe atoms have equal
tnagnetic moments, these magnetic moments are collinear, the magnetic mo-
merk of the U atoms has the value of zero. We emphasize that the property
that the 17 moment is equal to zero must be comsidered a3 a regular feature of
the system, which can be stable only in the case that thers exists a symmetry

P
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Fig. 5.50. Experimental magnetic structure and basic magnetic state of UFeyAly

operation that is responsible for the stebility of this festure in the sense of
our symmetry criterion. ) ) ’

The DF T calculation started with the BS [26] chows immediately thet two
of these three regular features are not' preserved by the system: An induced
moment appears at the U gite. It is orthogonal to the inftial directions of the
Fe moments. Simmltaneously, the Fe moments deviate from their collinear
directions and form a canted noncollinesr configuration. Thus, the BS is
transformed into the complex magnetic state obeerved experimentally. Sim-
metry analysis helps to understand the origin of this transformation.

In Table 5.3 we collect the generators of the symmetry group of the BS
of UFeyAly. One of the interesting questions to answer is about the phyEical
mechanism of breaking, by the planar magnetic state of the BS, the symmetry
between two opposite directions of the B-axis. Indeed, the ferromagnetism
of the U sublattice distinguishes one of the two directions. Two opposite
directions of the U magnetic moments ean be equivalent only in the case
when there is & symmetry operation of the system that reverses the direction
of the magnetic moment. In the present case it omusi be an operation that
reverses iy, Analysis of Table 5.3 shows that this condition is not fulfilled. 411
symmetry transformations leave f,, invariant. Ae & direct consequence of this
Property the appearance of a magnetic moment pazallel to the y-axis at the U
sites does not distarb any of the syrometry operations. Therefore we deal here
With symmetry constraied IT where the vaiue of the U magnetic moment plays
the role of the variable parameter. The symmetry predetermined instability of
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Table 5.3. Gewerators of the symmetry group of the besic atate of UFeytly Cag
and Ozy ate 180° rokasions ahout the o~ and p-axds, respectively; f inversion; &
time reyersal. In the last colwmn, for the U sublattice i = j; for the Fe sublattice {
and § according to the eolumn “Transpestbion of the Fe atoms™

Operation  Transposition Restrickion on magnetic moments

of Fe atoms of U and Fe atoms

{ e { ~ms
Coy 13264 My = My
\me/,  \omif,
T na no
{ me { —ma
Car B 1++4: 24+ 3 my = Ty -
e/, Ame ),

the nonmagnhetic state af the 1T atoms can be illustrated by the properties of
the total energy as a funckion of my, (Fig. 5.11). The most important feacure
of the E{m) curve is its asymmetry, which leads to an accidental position of
the minimum at a acnzero velue of ny,.

The orthogonality of the inducing and induced moments is also closaly
connected with the symmetry properties of the system since the appearance
of & nonzero m. or m, component of the I moment would disturb at least
one of the symmetry operations of the BS.

E{mRyd)

" .
Fig. 5.11. Total energy as a function of the U spin moment for the Fe moments
collinear to the a- (basic state) and c-axes. For the Fe moments parallel to the c-axdis
oo induced U moment appears

LT
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The same symmetry analysis shows that the collinear directions of the
Pe moments are alse not distingrished by symmetry and cannot be stable.
Both my, and m. components of the moments must appear. To preserve
the symmetry of the BS the m, components of different atomic moments
have different gigns and compensate one ancther. On the other hand, the
my, components of all atomic moments are equal and, in agresment with
experiment, Tesult in & weak ferromagnetic moment along the -axis.

Summarizing, if the sppearsace of the induced moments on nonwagnetic
atoms in an antiferromagnetic system does not destroy any of the symmetry
operations of the system, these moment: amst appear. The directions of
the induced moments do not aecessary coincide with the directions of the
induced moments and are determined by the condition that the symmetry of
the magnetic system muat be preserved.

We emphadize that the symmetry analysis and DET calculations reported -
in this section were performed taking account of the 30C. With the SOC
neglected, none of the effects discussed here appesr and the BS is stable.

5.8.2 Magnetic Structure of UX; Compounds

In [49] we have shown that the relation Detween the inducing and induced
moments that follows from the symmetry analysis discussed in the presious
sections catt be helpful in the deferminstion of the magnetic structure of
the inducing subeystem. In UX, neutron diffraction did not provide com-
plets information about the magnetic structure of the U sublattice. Since,
aceording to our symmetry principles, different directions of the U magnetic
moments regult in differsmt properties of the induced moments of the X stoms,
the study of the induced moments provides information about the magnetic
structure of the U sublattice. Measuring the hyperfine field cn the positions
of X atoms with, for example, the perturbed-angular-correlation technique

- gllows us to draw the conclusions about the induced moments. Figare 512

illistrates the properties of indwced moments of the X atoms for different
orientations of the U moments. The reader is referred to [48] for full details
of the study of the magnetic structuré of X3 compounds.

5.9 Helical Structures in Systems
with Relativistic Interactions

A wide vaxiety of systems has been reported to possess a helical magnetic
order with the periodicity incominensurste with the periodicity of the erystal
lattice (sce, e.g. [50,51]). However, almost all DFT calculations of helical
magnetic copfigurations have besn carried out for one system: +Fe [52,53),
{For an sweption, see the recent study oo the rare-earth metals [541.) The
reasons for the concentration oo Fe are connected wish a negligible role of
the S0C in the formation of the magnetic structure in this system. Here, we
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Fig. 5.1%. Models for the magnetic structure of UX; compounds. The induced
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[45] For adl details

consider two escamples of the systems where helical magnetic struciures were
reported to be chserved and the role of the S0C cannot be neglected.

5.6.1 Magnetic Structure of UPtGe

In accordance with the experimental situation we consider [27] plane helical
magnetic structures of the form

el = (voalga, + o), 0,sinlge, + $o)), {5.10)

where the @, are the positions of the U atoms and g 35 the helix vector.
ATthough not periodic with the undérlying lattice periodicity, the helical
structure is very regular. This regularity can be described by the generalized
translations [11) that combine laftice translations Ry, with spin rotations by
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qR,, about the y-axis. The scalar-relativistic Hamiltonian of the helix com-
mutes with the generalized transiations. This property allows us o reduce the
consideration of the incommensurate helical magnetic structire to s problem
in one chemical woit cell of the crystal and thereby drastically simplifies the
calculations.

The role of the symmetry with respect to the generahzed translations
is not, however, restricted to the technicel convenience. This symmetry is
crucial for the stability of the regularities characteristic of a helix. The spin-
orbit coupling term of the Hamiltonian does oot commute with the general-
ized tranglations. Therefore, the relativistic Hamiltonian cannot be invarian
with respect to the generalized translations. This leads to the instability of
the incommensurate helical structires for the systems where the 30C plays
any important role in the formation of the magnetic structure. The plysical
reascm for the distractive role of the 30O can be easily understood. Indeed,
regularity inherent in the helices asmmnes that onky the relative directions of
the magnetic moments are important, but not their directions with respect to
the crystal Inttice, The SOC connects the space and spin degress of freedom.
and makes mequivalent different orientaticns of the moments with respect to
the lattice. The destructive role of the SO0 provides an explanation for the
fact that the main body of the DFT atudies of helical structimres is restricted
to the case of the helical structure in v-Fe where the S0C can be neglected.

A much more complex aituation exists in the case of rare-earth metals
(REM]) [51]. Here, the exchange interaction favors the faormation of a heticsl
structurs. However, the influence of the 500 is-sironger then in --Fe and
cannot be neglected.

A furthermcreaseofthemlenftheSOCcanbeexpected mt.hecase
of mctinide systems. The considerable spatial extent of the 5f electron states
enhances the influence of the SOC on the directions of the atomic memente.
This property ig confirmed by the obaervation of a large magnetic anisotropy
{see, e-2- [55]} in almost all actinide compounds. Taking inbe account the
influence of the 8300 on belical structures, the formation of & helix in U
compounds can be comsidered as highly improbable [11,56). This conclusion

-peems to be in good agreemert with the sxperimental observations. There is,

however, one exception: UPtGe (Fig. 5.13) was reported to pogsess a helical |
ground-state structure [57,58]. An understanding of the nature of the unique
magnetism of UPtGe is essential! for the physics of incommensurate magnetic
structores. On the other hand, the unique magnetic structure makes UPLGe
an important test case for the verification of the capability of DFT to explain
the complex magnetism in 5f eystemas. Below, we discuss the explanation of
the properties of UPtGe suggested by Sandratskii and Lander [27],

Two different types of helices are known. The first typs is formed, For
example, in foe-Fe and REM and resuits from the propevties of the exchange
interactions. Neglecting the 30C and conpidering the total energy of the helix
as g function of g, E..(g], one obtains the minimum st an incommensurate



Fig. 5.13. The U positiogs in UPtGe. The magnetic strocture shown carresponds_to
g = (05, 0,0 and is & helix with the moments in the o=z plans with the propagation
along . Bxperimental velue of g is ((55-0.57,0,0) [67,568]
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Fig. 5.14. Schematic picture of the total energy as & function of ¢ for (&) exchange
oad (b) relativistic helices

a value (Fig. 5.14a). As stated above, such & helix can be formed only in the

¢ase when the 34 is much weaker than the interatomic exchange Interactions

determining the form of the E, (g} function.
in spparent contradiction to the arguments abowe, the second type of
helices in formed becsuse of the influence of S0C, e.g. the helix in M=nSi
[59.60]). The exchange interaction in MnSi favors a collinesr ferromagnetic
- ordering. This means that the minimum of the total energy as & function
of g, calculated nonrelativistically, is at ¢ = 0 {Fig. 5.14b). To explain the
formation of the helix in MnSi a modet Hamiltonian was used (see, e.g. [59]},
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which, in addition to the exchange interaction contains the Dkyaloshinski-
Moriya interaction (DMI) D&, x S2). Although the DMI is a copsequence of
the SOC, the simultaneons rotation of all atomic mements about the direction
of the I vector does not change the energy of the syastem. This property of
the DML allows the symmetry of the system with respect to the generaltized
tranglations to be maintained, whieh is a necessary condition for the stability
of helical structures. On the other hand, the DMI term disturbs the symmetey
of the E{g) curve with respect to the reversal of g and leads to the shift of

- the minimum of the total energy to an incommensurate g.

The DMI is oot, howeser, the cnly interaction resulting from the SOOC.
Ancther term, the magnetic snisctropy [36,59] {MA}, destroys the symmetry
of the problem with respect to the generslized translations, Therefors, to
allowr the formation of the helical structure of the MoSi type the SOC must
be present, but the magnetic anisotropy miest be smadler than the DML Sincs,
under certain conditions [36], the DMI is proportional o the SOC, and the
MA to the square of the SOZ, these requirements can be fulfilled in the case
of wesk 80C, e.g. in MaSi. The loug period (180 A} of the helix in MnSi is
a reflection of the weskness of the relativistic effects.

Since for both types of helices the smallness of the magnetic anisotropy
is important, we studied this quantity and compared its value with the value
of the interatomic exchange interactions. To eatimate the MA we compare
the totad-energy differences between the magnetic structures with the same
relative orientation of the atomic momeets but different ortentation with re-
spect to the crystal lattice [Table 5.4}. The interatornic exchange interaction
is estimated by comparison of the total energies of the ferromagnetic and
santiferromagnetic configurations with atomic moments collinear to an axis,

Calculations show that the M4 in the zz plane ia very small. Since the
80C is strong and there i9 no symmetry reasom for the smallness of the.
inplane anisctropy this property resujte from an accidental compensation
of the contributions of different electron states. An estimation of the 2x-
change interaction shows that it is much stronger than the fnplane magnetic
anisotropy [27]. )

The weakness of the inplane magnetic anisotropy 18 & necessary comdition
for the formation of the helical atructure. It does not, however, provide the
phy=ical mechaniam leading to the formation of the helic In Fig 5.15 we
show the ¢ dependence of the total energy that was calenlated neglecting the
S0C. A clear trend to the formation of the helix with an incommensurate g
value close to 0.5 ia obtained.

Omn the basis of the Fourier transformation of the E{g) curve the following
qualitative picture of the magnetism of UPtGe was suggested. The U posi-
thons in UPEGe form a structure rather close to aaimple hexagonal (Fig. 5.16).
The effective exchange interaction between the magnetic moments of atoma
0 and 2 is strong and antiferromagnetic. The exchenge interaction of the
magnetic moments of atoms 1 and 3 with the moments of atoms 0 and 2 is
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Table $.4. Important energy differences in mRyd/U atam. The energy of mag-
wetic anisotropy is estimated as the totalenergy difference between the magnetic
gtructures with the same relative crientation of the atomic moments but different
orientation with regpect to the crystal lattice. The interatomic exchange interac-
tion is estimated aa the difference of the total energies of the ferromagnetic and
antiferromagratic configurations with atomic moments collinear to the same axie

Magnstic anisatropy
Eppa (010)-Epp (100) 1.5
Eppa (010]-Eppg (001) L4

Epp (001)-Eppq (100} 0.1
Earn (0] -E pppe(100) L3
Eapp{tl0)-Eap{001) 2.2
Earmf001)-Eppp(100) 0.1

Exchanga interaction
Eapp{(10F-Eruf100)  —0.1
Earm{0W0-Bpuf010) 0.3
Earn{001}-Ery(001) 0.2
E.—(os00 Epm[100) -0.8
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Fig.5.15. Energy a8 & function of ¢ = {q,0,0)

much weaker. Evidently the antiparallel directions of the moments 0 and 2
lead to the frustration of the direction of the moments 1 and 3. The frustrated
magnetic interactions are the reason for the minimum of the total energy at
an incommensurate ¢ value {Fig.5.15). This result suggests that the helical
maguetic structue in UPEGe should be considered a5 an exchange helix.
Ouce further remarlmble experimental feature of UPtGe is, however, the
observation of the damains of only one chirality [58]. This property i charac-
teristic of the relativistic helices of the Mn3i type [60]. In [27] we have shown
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Fig. 6.16. Frustrated magnetic interactions. (a) |Ff2] << |f1]. (b) Helical magmetic
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Fig. 5.17. E(g} without DMI {dofted line) and with DME (solid lne). See [27] for
all detalls

that the inequivalerce of the domains of opposite chirality in UPiGe is a result,
of the SOC which leads to a substantial DMI in the system. Figure 5.17 shows
the total emergy ae a function of ¢ evaluated with and without the DMI
interaction. Summarizing, an accidentally small inplane magnetic anisciropy
provides a necessary condition for the formation of the incommensurate helie.
The formation and properties of the helix are determined by the frustrated
exchange interactions and refativistic DMI. The msgnetic structure of UPtGe
cannot be classified either as a pure exchange or pure relativistic helix, but
possesses the features of both ’

' 5.9.2 Helices in REM

A rich variety of complex magnetic configurations was experimentally found
ir the heavy REM [51,61). An important contribution to the understanding of
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the magnstic propercies of heavy REM is made by Jensen and collaboratars
{see the book [51] and references therein and later publicstions, e.g. [62])
who used a model spin-Hamiltonian to describe peculiar magnetism in these
systems. {See also [63] for an earlier phenomenological theory of the magnetic
ardering in REM.}

In comérast to the model-Hamiltonian approach, the contribution of the
DFT to the study of the complex maguetism in heavy REM is very modest.
Mast of the DFT calculations for REM were performed for £he collinear fer-
romagnetic structure of 4. To the best of the author’s knowledge, only two
direct first-principles DFT calculations of complex meagnetic confipurations in
beavy REM were reported. Nordstrém and Mavromaras [54] used the scalar-
relativistic approcmation to stedy the g dependence of the tatal energy
of planar gpiral stroctures. Here, ¢ is the propagation vector of the apiral.
The E(q) turves were compared with the Fourier components of the inter-
atomic exchange parameter J{q) determined experimentally. Perlov et al. [54]
employed s scalar-relativistic approximation to caleulate Jig) by examining
the conical spiral configurations. No studies of the influence of the SOC on
the magnetic configurations of heayy REM have been performed within the
framework of the DFT. The sacesss of the DFT in the investigation of the
magnetic properties of aclids and recent developments in the computational
technigues and facilities malke the complex magnetism of the heavy REM one
of the important topics for nearest-future studies. Combination of the model-
Hamiltonian and first-principles DFT spprosches should provide a new kevel
of the theoretical descripticn of HEM magnetism.

It is not a purpoae of this chapter to report & detailed DFT study of the
magnetizm of concrete REM. Rather we aim to provide one example of the
usefulness of the symmetry analysis and relativistic DFT calculations in the
studies of the REM.

. In the calculations, the 4f states were trested as pseudocore [63] states
and did not hybridize with the valence electron states. A scalar-relativistic
approximation was used in the description of the core states. The S0OC wma
congidered for the valence electrons only. The neglect of the SO0 in the 4f
states is & severe approcdmation in the physical model describing the effects of
the magnetic anisotropy in REM. For example, the SOC in the 4f states plays
an important role in the deseription of the magnetic properties of the 4f met-
als in terms of the model crystal-feld Hamiltomian [51]. Neglecting the SOC in
the 4f states we can expect that the strength of the magnetic anisotropy will
be substantially wnderestimated. To simulate a stronger magnetic anisotropy
within the given caleulasional scheme in some cases we performed calculations

- with the S0C enhanced by & factor of 2.

Several REM were reperted to possess a helical magnetic structure. Thus, .

a planar helix is observed in certain temperature intervals in Th, Dy, Ho, and
Er. A ferromagaetic helix {cone sttucture) is observed in Ho and Er.
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Teble 5.5. Generators of the symmetry groupe for three magnetic states in hep
metals, Number of stoms in the magnetic unit cell ng: characterizes the periodicity
ccf_th.e maguetic structure abong the c-axis. Cy is the 180° rotation sbowt the &
a.xm;o'.,andacmthereﬂecﬁonsinthephneurthugonaltatheamaandc
TeEspectively; R time reversal. Vectors in the column, “Operation” give the mnpnm:
Hive translations entering the symmetry operations. Veciors are given in units of «.
Adoms not presented in ihe column “Transposition” ere fovariant with respect to
the given symmetry operation. In the lasi cohumn,

o 3) (e ), - (3):

F)

Mg —ig '
type Coer | mg = —my |5 type A omy = —mg Here § and sccording
. me f . e J .
¥
to the column “Transposition™. Atom ¢ is transformed to atom § under the action
of the eymvmetry operation. For atoms iovariant under the action of the ByrImetry
opezration, j =1

BMaguetic . Tat Operation ‘Transposition Restriction cn
structure magnetic moments
helix, ab-plane  § Oy, 248,34 7; 4446y type Cap
{Fig. 5.18s} C OR{DD,2) 14 5;246; 3404 7; 40 8; type R
cycloid, beplans 8 Tag ZH8;38aT;4da6; type Coy,
(Fig. 3.18b) 00N 1 H5; 246,30 7T;4+5; type Oo,
RIDO0.Z) 165:206;37;4608,; type R
cycloid, ac-plane & (00,2} 1+ 5;3++4; 64+ 8; fype O
R0,0,2} 14+ 5; 2++6; 3+ T; 44+ 5; pe R

Here, using the example of Er, we will consider the influence of the S0C
on the helical magnetic structures in REM. A more extensive disenssion can
be found [56)].

In the case of Er, the atructures with g = 3 are of interest [51]. First, we
consider the influence of the SOC on a planar helix with g =  {Fig. 5.18a)
The generstors of the symmetry group are given in Table 5.5. Thera are
three groups of equivalent atoms: {1, 5}, {8,7}, {2,4,6,8}. The moments of
atoms ¥ and 5 must keep their initial directions pazallel to the b-aods. Aforoic
moments 3 and 7 devigte within the ae plane, no b component can appear.
Moments 2, 4, 6, § move both within the b plane and out of the ab plane,
No ferromagnetic component can appear. .

Numerical caleulations started with this helical structure gave an inter-
esting result that differs drastically with the results obtained in the calen
lations for Ho. For the SOO scaled by a factor of 20 the moments deviats
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Fig. 5.18. The 5-laysr magnetic configurations in bep Er. (@) The initial plapar
halical struciure. All moments are paralisl to the ab plane. (b] The calcutated
plansr megnetic structure. All momente are porallsl to the be plane

strongly from the ab plsne and result in the magnetic configuration shown
in Fig. 5.18h. Thus, the initial planar magnetic configuration with moments
parallel to the horizontal ab plane is replaced by & planar magnetic structure
pacallel to the vertical b plane. This transformation of the magnetic config-
wration is not forbidden by symmetry since sl the syrametry. elements of the
initial structure are pregerved. The final magnetic state Is more symunetrical
than the initial one since the symmetry group contains cme additional gener-
ator (Table 5.5). This example idusirates the property that the symmetry of
the state of the system can increase in the calculations. The planar vertical
structure obtained in the calculations is in good egreement with a yertical
planar cycloidal structure found experimentally in Br. Two structures are,
bowever, oot identical: The calculations resulied in a structure paraliel to the
te plane. The experimental structure is parsllel to the ae plane. A wobbling
of the vertical structure found experimentally is also nof reproduced in this
ealeulation. The reason for this disagreement is, again, connected with the
symmetry of the initial state. Indeed, the structure shown in Fig- 5.18a cannot
transform within the DFT calculations into the planar structure paraliel to
the ae plane since this transformation leads to 2 loas of symmetry oparations.

To understand the nature of the wobbling of the experimental vertical
structure we performed the symmetry analysis for 2 magnetic configuration
ghown in Fig. 5.18b but, in this case, parallel to the ac plane. The symmetry
of this structure preserves (i) the directions of the atomic moments 3 and 7,
(ii) the zevo c component of the moments 1 and 5, and {iii] the compensated
character of the stracture as a whole. Moments 24 and 6-8 déviate from the
ac plane leading to the wobbling observed experimentally. Note that 2 model
spin-Hamiltonian that contains only the terms of the second-order with re-
gpect Yo atomic spins: the Heisenberg exchange interaction and the single-
site magnetic anisotropy, fails to describe the wobbling. The fourth-order
“rigonal’ interactions must be added [62]. In the magnetic and relativistic
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i_'JFT calculations thess and higher-order interactions are automatically taken
inko aceount.

" Simce the mapnetic anisotropy is very sensitive to the detai
retic:ai model, future systematic DFT studies of the REM jﬁgs:gshtﬁx
consider _auch Iel&-cts as polar magnetic interaction of atomic moments and
lattice distortion caused by magnetoelsstic interactions [63]. The account
for the 30C in the 4F states is of grest importance. Another important
direction for the improvement of the caleulational scheme is & better account
fur the corvelation effects in.the 4f states. Here, self-interaction corrections
{67] orbital polarization corrections [68] or an LDAHU {69] scheme should
be considersd as possible approaches. Combination of these improvements
should make possible a frst-principles quantitative description of the delicats
balance of different interactions traditionally described in terms of a model
crystal-field Hamiltonian [51]. Detailed DFT study of the magnetism of hesvy
‘REI'-!I with account for the 50C and noncollinearity of the magnetic structurs
is an exciting topic for the nearest-future researches. The symmetry analysis
reported here presarves iss validity also for mare elaborate physical modsls,
We hope that the preseni symimetry analysis and results of numerical cal-
cul.:tions will stimulate further studies of the complex magnetism i BEM
syskems.

5.10 Inftraatomic Magnetic Noncollinearity

We_wili briefly comment on two Important aspects of the intrastomic mag-
netic noncoilinearity. The first sspect is the spatis] variation of the direction
of magnetization within the wolume of an atew [4,6,28,70,7H (Fig 5.19).
fﬁ.a already mentioned in Sect.5.2, in any relativistic magnetic system the
intrastomic spin density is always noncollinear. In terms of symmetry argu-
ments, this is an inevitable consequence of the property that the spin projec-
tion on 2oy selected axis cannot be & good quantum number characterizing
electron states. Also, the orbital intreatomic mepretization in noncollingar
[72], though the concrete Form of the orbital magnetization depends strongly
on the gauge chosen. In nonrelativistic systems, a collinear intraatomic spin
density is possible if the magnetic moments of diferent atoma are collinear.
Another type of intraatomic magnetic noncoliinearity is the noneollinear-
ity of the spin and orbital magnetic moments of the same atom [5,56,73]. The
collinearity of both atomic moments must be considered as a regularity in
the system that, according to our symmetry principle, is possible only in the
cage that thers is & symmetry operation that is responsible for this regularity.
o all cases where inferatomic magnetic noncollineatity &s predetermined by
symnmetry (gymmetry constraint I} the atomic spin and orbital motnents are
also noncollinear. {See, e.g. [5,56,73] for calculations of concrete systems.)



Fig. .19, Infrastomic spin magnetization in & U stom in UsBiy obtained in self-
consistent; (bEzck arrews} and nonself conslstent {grey arvows) calculations. Ses [21]
for all dekalla

5.11 Relativistic Spectroscopy
of Noncollinear Magnetic States

The 80C plays a crucisl role in the magneto-optical Kers effect of m.agm_zuc
systems. Here, we briefly discuss the fist DFT study of the magneto-optical
Kerr effect {MOKE) of & noncollinear system [74]. [See alse [?'?] for a re-
cent relativistic caleulstion of photoemission and Xiray absorption spectra
gyatemas with noncollinear magnetic configuration:

o The calculation wes performed for the UsPy compound (see Sect.5.5.1)
for different values of the cone angle (Fig. 5.5). Both npticfxl and ma.g;neto-
optical properties of a system can be deduced from the Dptlca;l conductivity
tensce e{i}). The expression for ofw) contains interband and n{traband con-
tributions, The interband part can be represented in the following form

; i E g} = F( B
dp =ty ¥ 3 [GE o

Rhsl.BZ :;’:‘

St lpstm. k > < m, kipaln k > {5.11}

w_hrlﬁf.’lﬁ.l_:‘&

whete w is the Frequency of the incident photons, By is the energy of the

dlectron eigenstate [n, k > labeled with the band index n and vector k in
the first Brillouin zone. Furthermors, p,, is the c-component of the elsctron
momentum cperator, F{E) i the Fermi-Dirac function, and § is a.phc?nnmmfn—
logicel parsmeter deseribing finite-lifetime broadening. The comparison with
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experiment was cartied cut with the normal-incidence reflectivity and the
polar Kerr rotation [74]. Assuming the z-axis to be normal to the surface of
the crystal the refiectivity takes the following farm

_m-1P4# . PPy
T mrraR TR

The simple expression for the polar Kerr sngle,

@K = 3 X" .
0'2,,-?'!1 + &g, .

ia applicable only in the case when the z-axis is a symmetry axis of at least
third order (see, e.g. [T5]). This is so for UsPy where the magnetization is
parallel to the crystallographic [111] axis, which is a three-fold symmetry axis.
Although the presence of magnetic ordering can substantially decrease the
symmetry, for the noncollinear ground-state magnetic sructure of UyP, the
symmetry with respect to the [111] axis stays intact. Thus, by directing the
z-axis along the erystallographic [i11) axis wa obtain the geometry necessary
for the calculation of the polar magneto-optical Kerr rotstion, Nate that
the expression {§.11) for the optical conductivity tensor is quite general and
applicable to both collinesr and noncollinear magnetic configurations. The
difference between both cases is contained implicitly in the electron eigen-
energies and eigenfunctions entering this farmula.

To study the sensitivity of the optical characteristics to the canting angle
we performed the calculation for different cone angles (Fig, 5.20). The depen-
dence of the reflectivity on the canting angle is seen to be surprisingly weal,
wheress the photon-energy dependence of the Kerr rotation practically scales
with the macroscopic magnetization given by the projecticn of the magnetic
moments oot the [111] axis. To understsnd the essential difference in the
angular dependence of the reflectivity and the Kerr angle note that the first
characteristic is determined by the diagonal component of the conductivity
tensor (5.11) in contrast to the second characteristic, which depends crucially
on the off-disgonal component of the temsor. Although the same electron
traceitions contribute fo both components the weight of the contribution is
different [75]: the absorption part of the dingonal component can be repre-
sented as a sum of the correspouding components for the right- and iefi-
circularly polarized light, opposite to the absorption part of the off-diagonal
component that can be seen as & difference of the corresponding charscter-
igtics for the right- and left-circular polarized light. As a direct consequence
of this property, the off-diagonal component of the conductivity tensor must
be zars for & canting angle of 90° because ir this case all atomic moments
ere parallel to the oy plane and the right- and left-cireularly polarized waves
become equivalent. Simultaneously, the Kerr rotation becomea zero. Thus,
she monctonic decrease of the Herr rotation with increasing caniing angle
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Fig. 5.20. Calculated [74] reflectivity {left) and polar Kerr rotation spectra [right)
of UaPy for different deviations # of the uraniom meagnetic moments from the
crystatlographic [111] direction -

that is obisined in our calculations can be treated as & natural consequence
of the symmetry properties of the magneto-optical effect. :

Seill, the very high stability of the reflectivity as a fanction of canting and
the simple sealing of the Kerr-rotation peal with respect to the = projection
of the magnetic moment are nontrivial. The very weak dependence of the
reflectivity on the magnetic structure for the whole range studied can be inter-
preted as Follows, The electron states enter the optical conductivity through
the eigenenergies and the matrix elements involving the eigenfunctions, both
of which can thus depend only weskly on the change of the directions of the
atomic moments. This means, first, the U 5f states — a8 geen from the [oced
atomic eoordinate syatem having the qoantization axis parallel to the atomic
mement — are almost unchanged for any magnstic configuration. Second, the
hybridization of the U 5f states with the nonmagnetic valence states, eg.
P 3p states, does not change substantially with rotation of the U 5f states,

. These propertiss result in the wesk dependence of the energy values and near
invariance of the transition probabilities. : ’

Thus we desl with the case of & well-defined magnetic U moment that
is formed by the itiperant Bf electzons: the moments can rotate without
substantiaily changing the 5f electron states as seen from the local atomic
reference system. This phenomencn is kmown from studies of the 3d slements
and thelr rompounds [76}. This result is crucial for the understanding of
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the properties of the compound st finite temperstures, in particular for the
Curie-Weiss behavior of the magnetic susceptibility [Tﬁ’].

512 Conclusign

Summarizing, we bave shown that the spin-orbit coupli i

roke in the formation of the magnetic structure and pmyz&?fﬂmﬁ
magnetic syetema. The modemn density fanctional theory allows the study of
these effects within a parameter-free caleulstional scheme. We have shown
that the analysis of the symmetry aspecta of the problem is very belpful in
the predicting and understanding the resuits of the DFT calenfation. On the
baeia of the notion of the symmetry constraint we formulated a symmetry
principle of the stability of regular features of the magnetic configuration and
demonstrated the efficiency of this principle by application to very differant
magnetic systems. K is to be expected that noncollinear magnetic states
will play an incressing role in the firture of solid-siate physics. Mote, that
the modern engineered nanomaterials poasess, 28 & rule, peculiar symmetry
properties. This gives the principles and methods discussed here an enormous
application potential in the new Belds of mapgnetism. :
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