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Abstract
Domain walls can significantly modify electronic properties of ferromagnetic
metals. In this paper we consider theoretically the influence of domain walls
on transport properties of ferromagnetic materials and the results are compared
with recent experiments. In the case of diffusive transport through a thick
domain wall, the semiclassical approximation is applied and a local spin
transformation is performed, which replaces the system with a domain wall
by the corresponding system without a domain wall but with an additional
gauge field. Due to a redistribution of single-particle electron states at the
wall, one obtains then either negative or positive contributions to resistivity.
The situation is different for very narrow and/or constrained domain walls. In
such a case, the semiclassical approximation is not valid. Instead of this the
approach based on scattering matrix is applied. The domain wall then gives
rise to a large positive contribution to electrical resistivity. The corresponding
magnetoresistance can be therefore very large, which is in agreement with
recent experiments. The limiting case of narrow domain walls in systems
with a single conduction channel is analysed in detail, with the effects due
to electron–electron interaction taken into account. In this particular case the
magnetoresistance due to a domain wall can be extremely large.

PACS numbers: 76.60.Ch, 75.70.Cn, 75.75.+a

1. Introduction

Domain walls (DWs) can have a significant influence on the behaviour of conducting electrons
in ferromagnetic metals. On the other hand, conduction electrons can have an impact on DWs
as well. It has been well known for a long time that DWs in a ferromagnetic metal influence its
electronic transport properties by producing an additional contribution to electrical resistivity.
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Since DWs give rise to electron scattering [1, 2], one could expect that this contribution is
positive. This expectation was also supported by early experiments. It was only very recently
that a single DW contribution to electrical resistivity could be extracted in a controllable way
from the total resistance [3–6]. Surprisingly, it turned out that the resistance of a system
with DWs in some cases was smaller than in the absence of DWs [3, 4], whereas in other
cases it was larger [7–9]. This intriguing observation led to considerable theoretical interest
in electronic transport through DWs [10–14]. The interest is additionally stimulated by
possible applications of the associated magnetoresistance in magnetoelectronic devices. This
is because creation and destruction of DWs can be controlled by a weak magnetic field. The
corresponding magnetoresistance can then be either positive or negative.

Recent experiments on magnetic point contacts showed that constrained DWs formed
at the very contact between ferromagnetic wires give an unexpectedly large contribution to
electrical resistivity, and consequently lead to large negative magnetoresistance [15]. The
characteristic feature of DWs in point contact geometry is their very small width (a few
Ångstroms) [16, 17], which is much smaller than the DWs width in bulk materials, thin films
or in wires.

In the following we will describe theoretically basic features of the electronic transport
through DWs, and will present an explanation of the above described experimental
observations. Two limits will be analysed in detail—the limit of thick DW, when electronic
transport through the wall is diffusive, and the limit of narrow DW, when the transport is
ballistic. In the former case the theoretical treatment is based on a semiclassical approach,
which is valid for kF↑(↓)D � 1, where kF↑ and kF↓ are the Fermi wavevectors corresponding
to the two spin channels, and D is a characteristic length of the magnetization variation (DW
width) [18]. In such a case DW can lead to redistribution of single-electron quasi-particles,
and this can lead either to positive or negative contributions to resistivity. Another mechanism
which leads to a negative contribution is based on the suppression of weak localization
(WL) corrections to conductivity by DWs [10]. At sufficiently low temperatures quantum
interference effects in a magnetically uniform system (without DWs) lead to an increase in the
resistivity due to enhanced back scattering [19, 20]. Creation of DWs destroys the interference
effects and therefore diminishes the resistivity of the system.

When, however, the DW width D is of atomic size, as in some nanoconstrictions [16], the
condition of semiclassical behaviour is not fulfilled. In that case, one has to use a different
approach, such as for instance the one based on the scattering matrix and Landauer formalism.

In section 2 we consider the limit of a thick DW, where electronic transport through
the wall is diffusive. We take into account electron–electron interactions and analyse the
charge accumulated by the wall. The limit of atomic-size DWs is considered in section 3.
In particular, we consider there the case of DWs in one-dimensional systems. The role of
electron–electron interactions in such a case is also discussed. Concluding remarks are given
in section 4.

2. Diffusive transport through a thick domain wall

2.1. Model

Assume a simplified model of a ferromagnetic metal, in which conduction electrons with a
parabolic energy spectrum interact with a nonuniform magnetization that smoothly varies
across a certain DW. Assume also that the electrons are scattered by defects with the
corresponding scattering potential being independent of the spin orientation (in a general
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case this potential can be spin dependent). When the domain wall is sufficiently thick, D � l,
where l is the electron mean free path, electronic transport across the wall is diffusive.

The single-particle Hamiltonian describing conduction electrons locally exchange-
coupled to the magnetization M(r) takes the form

H0 = − 1

2m

∂2

∂r2
− Jσ · M(r) (1)

where J is the exchange parameter, σ = (σx, σy, σz) are the Pauli matrices, and the unit
system with h̄ = 1 is used.

The domain wall is characterized by a magnetization profile M(r). For the sake of
simplicity we assume |M(r)| = M0 = const. Thus, we can write

JM(r) = Mn(r) (2)

where n(r) is a unit vector field specific to a particular type of DW (to be defined later), and
M = JM0 is measured in energy units.

In order to control the charge density of the electron gas, we include the Coulomb
electron–electron interaction in the mean-field approximation via the term

Hint = eφ(z) (3)

where e is the electron charge (e < 0) and the field φ(z) is the mean-field electrostatic potential
in the presence of the wall, which obeys the equation

d2φ(z)

dz2
= −4πe(〈ψ †ψ〉 − n0) (4)

with 〈· · ·〉 denoting the ground state average, n0 being the electron gas density in the absence of
DWs, and ψ and ψ † denoting the spinor field operators. The potential φ(z) has to be calculated
self-consistently, which assures that the total charge accumulated at the wall vanishes, though
the charge neutrality may be violated locally.

To include the spin-dependent interaction, we introduce the contact coupling in the form

Hs
int = −g2

s

2

∫
d3r(ψ †σzψ − s0)

2 (5)

where gs is the corresponding coupling constant. Choosing s0 as the spin density far from the
wall guarantees that this interaction vanishes when there is no domain wall. This means that
the effects due to magnetization of the conduction electrons in a system without domain wall
are included by the parameter M in the one-particle Hamiltonian. The effect of a domain wall
is then to modify the internal magnetization, resulting from a redistribution of the spin density.
The effects due to interaction (5) can be taken into account by adding to the Hamiltonian a
new term,

Hs
int =

∫
d3r mz(z)ψ

†σzψ (6)

where the internal magnetization field mz(z) is determined by the saddle-point equation

mz(z) = −g2
s (〈ψ †σzψ〉 − s0). (7)

The total Hamiltonian H of the system can then be written as

H = H0 + Hint + Hs
int (8)

where H0,Hint and Hs
int are given by equations (1), (3) and (6), respectively.
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2.2. Gauge transformation

The key point of the approach is a local unitary transformation

ψ → T (r)ψ T †(r)T (r) = 1̆ (9)

where 1̆ is the 2 × 2 unit matrix. T (r) transforms the problem of electrons in a system with
nonuniform magnetization to an equivalent problem of electrons in a system with uniform
magnetization, but with an additional gauge field [10, 18]. In other words, T (r) transforms
the second term in equation (1) as

T †(r)σ · n(r)T (r) = σz. (10)

Explicit form of T (r) is given by [21]

T (r) = 1√
2

(
1̆
√

1 + nz(r) + i
ny(r)σx − nx(r)σy√

1 + nz(r)

)
. (11)

Generally, the above transformation can be applied not only to simple DWs, but also to other
types of topological excitations in ferromagnetic systems, for instance to helicoidal waves,
skyrmions and others.

The non-Abelian gauge field A (r) related to the transformation (11) is given by

A(r) = T †(r)
∂

∂r
T (r). (12)

According to (11) and (13), the gauge field A(r) is a matrix in the spin space.
Assume now a more specific DW in a bulk system, which is translationally invariant in

the x–y plane: M(r) → M(z) and n(r) → n(z). For a simple DW with M(z) lying in the
plane normal to the wall one can parametrize the vector n(z) as

n(z) = (sin ϕ(z), 0, cos ϕ(z)) (13)

where the phase ϕ(z) determines the type of DWs. The transformation (11) is then reduced to

T (z) = 1√
2

(
1̆
√

1 + cos ϕ(z) − iσy

sin ϕ(z)√
1 + cos ϕ(z)

)
(14)

and the gauge field acquires the simple form

A(z) =
(

0, 0,− i

2
σyϕ

′(z)
)

(15)

where ϕ′(z) ≡ ∂ϕ(z)/∂z.
Taking into account the above formulae one can write the full transformed Hamiltonian

in the form

H = − 1

2m

∂2

∂r2
− (M − mz)σz + eφ(z) +

mβ2(z)

2
+ iσy

β ′(z)
2

+ iσyβ(z)
∂

∂z
(16)

where

β(z) = ϕ′(z)
2m

. (17)

When kF↑(↓)D � 1, the perturbation due to the DW is weak and the semiclassical
approximation is well justified. The last three terms on the right-hand side of equation (16)
can then be treated as a small perturbation.

If one assumes the domain wall in the form of a kink shown schematically in figure 1,
then

ϕ(z) = −π

2
tanh(z/L) (18)
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Figure 1. Variation of the magnetization in the domain wall.

Figure 2. Distribution of the excess spin density near the domain wall for different values of the
coupling constant gs .

with L = D/2, and the parameter β(z) is given by

β(z) = − π

4mL cosh2(z/L)
. (19)

Using equations (16) to (19), one can calculate self-consistently the distributions of spin
and charge densities near the domain wall. The results are presented in figures 2 and 3. They
also show how the spin coupling constant gs affects both the spin accumulation (figure 2) and
charge accumulation �ρ(z) (figure 3). This effect is a result of self-consistency, because by
controlling the magnetic density one modifies the magnetic wall, and this in turn influences
the electron density.
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Figure 3. Distribution of the charge density near the domain wall for different values of the
coupling constant gs .

2.3. Local conductivity

The general formula for the local conductivity (without localization corrections and for electric
field applied along the axis z) has the following form:

σzz = e2

2πm2
Tr

∫
d3k

(2π)3
(kz − mβσy)G

R
k (kz − mβσy)G

A
k (20)

where the gauge potential A(z) given by equation (16) is taken into account, and the retarded
(R) and advanced (A) Green functions are both evaluated at the Fermi level,

G
R,A
k = −εk − Mrσz − kzβ(z)σy + µr(z)

[−εk↑(z) + µr(z) ± i/2τ↑(z)][−εk↓(z) + µr(z) ± i/2τ↓(z)]
. (21)

Here, Mr = M − mz, εk = (
q2 + k2

z

)/
2m with q2 = k2

x + k2
y, µr(z) = µ − mβ2(z)/2 − eφ(z)

with µ denoting the chemical potential, and

εk↑(↓)(z) = εk ∓ [
M2

r + k2
zβ

2(z)
]1/2

(22)

where the upper (lower) sign refers to ↑ (↓). The quasi-particle energies εk↑(↓)(z) are the
eigenvalues of the whole Hamiltonian (poles of the Green functions). They correspond to
pure spin states only outside the wall, whereas inside the wall they have no pure spin-up (spin-
down) form because of spin mixing by the wall. Finally, τ↑(z) and τ↓(z) in equation (21)
are the relaxation times, which for impurity scattering potential V0 independent of the electron
spin have the form

1

τ↑(↓)(z)
= mV 2

0

2π

[
kF↑(z) + kF↓(z) ± Mr

β(z)
arcsinh

kF↑(z)β(z)

Mr

∓ Mr

β(z)
arcsinh

kF↓(z)β(z)

Mr

]
(23)

where kF↑(↓)(z) are the appropriate Fermi wavevectors,

k2
F↑(↓)(z) = 2mµr(z) + 2m2β2(z) ± 2m

[
2mµr(z)β

2(z) + m2β4(z) + M2
r

]1/2
. (24)
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Figure 4. Domain wall contribution to local conductivity, calculated for L = 50 Å, Fermi energies
EF↑ = 3 eV and EF↓ = 2.5 eV, and for impurity scattering potential leading to the bulk
conductivity (without domain wall) σ = 0.67 × 105 �−1 cm−1.

The difference in scattering times is due to a difference in the density of states at the Fermi
level for ↑ and ↓ states.

The local conductivity σzz is a smoothly varying function of z, σzz = σzz(z),

σzz(z) = e2

2π2m

∑
σ=↑,↓

τσ (z)

(
k3
Fσ (z)

3
+ m2β2(z)kFσ (z) − m2Mrβ(z)arctan

kFσ (z)β(z)

Mr

)
.

(25)

Given the conductivity σzz(z), the average resistivity of a sample of length d with a domain
wall can be found as

ρ = 1

d

∫
dz

σzz(z)
. (26)

The DW contribution to the local conductivity, �σzz, is shown in figure 4 as a function
of z. It is evident that this contribution is positive, i.e., the conductivity is enhanced within
the wall. The enhancement shown in figure 4 is not large, but it could be larger when
one assumed appropriate spin asymmetry of the impurity scattering potential. It should
be noted, however, that by taking opposite spin asymmetry for the impurity scattering
potential, the enhancement can be diminished or can even change sign, i.e., the conductivity
within the wall can be lower than outside the wall. Thus, this model can account for both signs
of the magnetoresistance associated with DWs. This sign depends on the spin asymmetry of
the impurity scattering potential.

3. Transport through an atomic-size domain wall

3.1. Scattering states

Let us consider again the Hamiltonian (1) describing electrons in a spatially inhomogeneous
magnetization M(r). For a very narrow constrained DW one may consider only a few channels
for electronic transport. A limiting situation is when there is only a single transport channel.
In such a one-dimensional case the Hamiltonian (1) can be rewritten as

H = − 1

2m

d2

dz2
− JMz(z)σz − JMx(z)σx. (27)
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We will make use of the scattering states taken in the form

χR↑k(z) =




(
eik↑z + rR↑ e−ik↑z

r
f

R↑ e−ik↓z

)
z � −L

(
tR↑ eik↓z

t
f

R↑ eik↑z

)
z � L

(28)

where k↑(↓) = √
2m(E ± M), and E is the electron energy. This state describes the spin-up

electron wave incident from −∞ and partly reflected and transmitted into the spin-up and
spin-down channels. The coefficients tR↑ and t

f

R↑ are the transmission amplitudes without and

with spin reversal, respectively, whereas rR↑ and r
f

R↑ are the relevant reflection amplitudes.
The analogous forms have the scattering states related to the spin-down wave incident from
left to right (labelled with R ↓ k), as well as the scattering states related to electron waves
incident on DW from the right.

Now we integrate the Schrödinger equation Hψ = Eψ with the Hamiltonian (27) over
z from −δ to +δ in the vicinity of z = 0 (where the domain wall is located). Assuming
L � δ � k−1

↑(↓), under the integral we can expand the scattering functions (28) in the vicinity
of z = 0 and restrict ourselves to the first term in this expansion. Then one obtains

− 1

2m

(
dχn

dz

∣∣∣∣
+δ

− dχn

dz

∣∣∣∣
−δ

)
− λσxχn(0) = 0 (29)

where n is the electron state index (n ≡ R (L) ↑ (↓)k) and λ is a factor defined as

λ 
∫ ∞

−∞
dzJMx(z)  ML. (30)

Equation (29) has the form of a spin-dependent condition for transmission through a δ-like
potential barrier located at z = 0.

Taking into account the scattering states (28) and condition (29), in combination with
the continuity condition for the wavefunctions, one finds the following expressions for the
transmission amplitudes:

tR↑(↓) = tL↓(↑) = 2v↑(↓)(v↑ + v↓)

(v↑ + v↓)2 + 4λ2
(31)

t
f

R↑(↓) = t
f

L↓(↑) = 4iλv↑(↓)

(v↑ + v↓)2 + 4λ2
(32)

where v↑(↓) = k↑(↓)/m.
According to (32), the magnitude of the spin-flip transmission coefficient can be estimated

as

|tf |2 ∼
(

λv

v2 + λ2

)2

∼
(

Mε0

εF ε0 + M2

)2

(kF L)2 (33)

where εF = k2
F

/
2m, and ε0 = 1/mL2. For kF L � 1 one finds ε0 � εF . Taking εF ∼ M ,

one obtains

|tf |2 ∼
(

M

εF

kF L

)2

� 1. (34)

Thus, a sharp domain wall can be considered as an effective barrier for the spin-flip
transmission.
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It should be noted that the conservation of flow has the following form:

v↑(1 − |rR↑|2) − v↓
∣∣rf

R↑
∣∣2 = v↓|tR↑|2 + v↑

∣∣tfR↑
∣∣2

(35)

and analogous equations hold also for the other scattering states.

3.2. Resistance of the domain wall

To calculate the conductivity we start from the current operator

ĵ (z) = eψ †(z)v̂ψ(z). (36)

Expanding ψ(z) in the scattering states (28), and performing quantum mechanical averaging,
one obtains the following formula for the current:

j (z) = −ie
∑

n

∫
dε

2π
eiεδGn(ε)χ

†
n(z)v̂χn(z) (37)

where n is the index of scattering states. The matrix elements of the velocity operator
v̂ = −(i/m)∂z can be calculated on the basis of the scattering states, and one obtains

vR↑(↓) ≡ 〈R↑(↓)k)|v̂|R↑(↓)k〉 = v↓(↑)|tR↑(↓)|2 + v↑(↓)

∣∣tfR↑(↓)

∣∣2
(38)

and similar expressions for the other states.
The retarded Green function Gn(ε) in equation (37) is diagonal on the basis of scattering

states. Assuming that the transmission of electrons through the barrier is small, one can take
the chemical potential constant µ = µR for z < 0, and µ = µL for z > 0. This corresponds to
the voltage drop U = (µR − µL)/e across the barrier. The Green function GR↑k(ε) acquires
then the following simple form:

GR↑k(ε) = 1

ε − εR↑(k) + µR + iδ
(39)

where εR↑(k) = k2/2m − M . The other components of the Green function have a similar
form.

After integrating over ε, one finds

j (z) = e

∫
dk

2π

{
v↑χ

†
R↑k(z)χR↑k(z)θ [µR − εR↑(k)] + v↓χ

†
R↓k(z)χR↓k(z)θ [µR − εR↓(k)]

− v↑χ
†
L↑k(z)χL↑k(z)θ [µL − εL↑(k)] − v↓χ

†
L↓k(z)χL↓k(z)θ [µL − εL↓(k)]

}
.

(40)

In view of the conservation of charge, the current does not depend on z, and therefore can be
calculated for z = 0. Moreover, the total current from the states εR↑(↓)(k), εL↑(↓)(k) � µL

vanishes and only the states obeying the condition µL < εR↑(↓)(k) < µR contribute to the
current. The conductance G can then be found as a linear response to small perturbations (in
the limit of U → 0), and one finds

G = e2

2π

(
v↓
v↑

|tR↑|2 +
∣∣tfR↑

∣∣2
+

v↑
v↓

|tR↓|2 +
∣∣tfR↓

∣∣2
)

(41)

where all the velocities and transmission coefficients are taken at the Fermi level.
Finally, using equations (31) and (32), one can write the conductance in the form

G = 4e2

π

v↑v↓(v↑ + v↓)2 + 2λ2
(
v2

↑ + v2
↓
)

[(v↑ + v↓)2 + 4λ2]2
. (42)
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Figure 5. Relative conductance of the magnetic quantum wire in the presence of a domain wall as
a function of the domain wall width L. The different curves are calculated for indicated values of
the parameter p = M/εF .

In the limit of v↑ = v↓ and λ → 0 one obtains the conductance of a single spin-degenerate
channel, G0 = e2/π .

The dependence of G/G0 on the wall parameter L is shown in figure 5 for different values
of the parameter p = M/εF . We calculated this dependence numerically, whereas solution
(42) describes the dependence on L at small L � k−1

F . Thus, the results shown in figure 5
are valid for arbitrary values of kF L. The numerical modelling has been done by direct
calculation of the spinor wavefunction using equation (27), starting at z � L in the form of
two transmitted spin-up and spin-down waves with arbitrary numerical coefficients. Then we
restored the function in the region z � −L and, by numerically projecting the obtained spin
components on the right- and left-moving waves (in accordance with equation (28)), we found
the amplitudes of incident and reflected waves.

One can note that the conductance in the presence of a domain wall is generally much
smaller than in the absence of the wall. Accordingly, the associated magnetoresistance can be
rather large (about 70%, which corresponds to G/G0 < 0.6), in agreement with experimental
observations. It is also worth noting that the resistance of an abrupt domain wall can be smaller
than the resistance of a thicker domain wall (provided the conditions assumed for the model
are fulfilled).

3.3. Electron–electron interaction

Electron–electron interactions in one-dimensional systems can play a crucial role in electronic
conductivity. This is because electron tunnelling even through a weak impurity potential can
be renormalized to suppress completely the transmission coefficients. Here, we calculate the
electron–electron corrections to the transmission coefficients through a domain wall, assuming
that transmission with and without spin reversal is small.
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Let us consider the model with the point-like electron–electron interaction described by
the following term in the Hamiltonian

Hint = g

2
(ψ †ψ)2 +

gs

2
(ψ †σzψ)2 (43)

where g and gs correspond to the charge–charge interaction and the spin-dependent exchange
interaction, respectively.

Following the method of Matveev et al [25] one finds the first-order correction to the
scattering states as

ψ(z) = ψ0(z) +
∫ ∞

−∞
dz′G0(z, z

′)�(z′)ψ0(z
′) (44)

where �(z) is the self-energy. Restricting considerations to the point-like interaction, we
calculate the self-energy as a Hartree diagram which includes two contributions corresponding
to the two interaction terms. The Green function G0(z, z

′) in equation (44) is a matrix in the
space of scattering states. As the basis functions we use the scattering states calculated in the
case of no electron–electron interaction.

Using equation (44), one can calculate corrections to the transmission coefficients t and
tf in the first order of small transmission. After calculating the renormalized amplitudes [25],
one finds the following dependence of the transmission coefficients near the Fermi level

tR↑  t
(0)
R↑

(
k − kF

kF

)γ

(45)

t
f

R↑  t
f (0)

R↑

(
k − kF

kF

)γf

(46)

where

γ = rL↑
4πv↓

[g + gs

2
(rR↑ + rL↑) + (g − gs)rL↑)

]
(47)

γf = rL↓
4πv↓

g + gs

2
. (48)

Thus, the electron–electron interaction suppresses to zero electron transmission near the Fermi
level. As a result, the low-field conductance in 1D systems drops to zero in the presence of a
domain wall.

4. Conclusions

We have presented a theoretical description of the domain wall contribution to the electrical
resistivity of metallic ferromagnets. Two limiting cases were analysed in detail—the case of a
thick domain wall with diffusive electron transport across the wall, and the limit of an atomic-
size and constrained domain wall, which effectively could be described by a one-dimensional
model. These two possibilities are not the only ones. In very pure systems electronic transport
across a thick domain wall can be ballistic, despite the fact that the domain wall itself may be
considered quasi-classically [24]. Apart from this, transport in real nanoconstrictions involves
more channels and should be described by a more general theory. However, such an approach
may be useful particularly in the cases of point contacts based on new semiconductors heavily
doped with magnetic impurities, such as ferromagnetic GaMnAs or related compounds.

In the case of a smooth domain wall, we found a small positive contribution to the
conductivity near the wall. However, our calculations show that for a choice of realistic
parameters, this contribution is of the order of 0.01%. In the opposite case of a sharp domain
wall, the theory gives a large negative magnetoresistance.
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