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Kondo Effect in Quantum Dots Coupled to Ferromagnetic Leads
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We study the Kondo effect in a quantum dot coupled to ferromagnetic leads and analyze its properties
as a function of the spin polarization of the leads. Based on a scaling approach, we predict that for
parallel alignment of the magnetizations in the leads the strong-coupling limit of the Kondo effect is
reached at a finite value of the magnetic field. Using an equation of motion technique, we study
nonlinear transport through the dot. For parallel alignment, the zero-bias anomaly may be split even in
the absence of an external magnetic field. For antiparallel spin alignment and symmetric coupling, the
peak is split only in the presence of a magnetic field, but shows a characteristic asymmetry in amplitude
and position.
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the k dependence of the tunnel amplitudes Vrk � V.
The Kondo effect [1] in electron transport through a
quantum dot (QD) with an odd number of electrons is
experimentally well established [2,3]. Screening of the
dot spin due to the exchange coupling with lead electrons
yields, at low temperatures, a Kondo resonance. The main
goal of the present work is to investigate how ferromag-
netic leads influence the Kondo effect. In the extreme case
of half-metallic leads, minority-spin electrons are com-
pletely absent; i.e., the screening of the dot spin is not
possible, and no Kondo-correlated state can form. What
happens, however, for the generic case of partially spin-
polarized leads? How does the spin-asymmetry affect the
Kondo effect? Is there still a strong-coupling limit, and
how are transport properties modified?

Based on a renormalization group scaling analysis, we
first show that the strong-coupling limit can still be
reached in this case if an external magnetic field is
applied. This is familiar from the Kondo effect in QDs
with an even number of electrons [4–7], which occurs at
finite magnetic fields, although the physical mechanism is
different in the present case. In the second part of the
Letter we analyze within an equation of motion (EOM)
approach the nonlinear transport through the QD. We find
that for parallel alignment of the lead magnetizations the
zero-bias anomaly is split. This splitting can be removed
by appropriately tuning the strength of an external mag-
netic field B. In the antiparallel configuration of the lead
magnetizations no splitting occurs at zero field.

The Anderson Hamiltonian for a QD with a single level
at energy �0 coupled to ferromagnetic leads is

H �
X
rk�

"rk�c
y
rk�crk� � �0
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where crk� and d� are the Fermi operators for electrons
with wave vector k and spin � in the leads, r � L;R,
and in the QD, Vrk is the tunneling amplitude, Sz �
�dy" d" 	 dy# d#�=2, and the last term is the Zeeman energy
of the dot. (Stray fields from the leads are neglected.) We
assume identical leads and symmetric coupling, VLk �
VRk. The ferromagnetism of the leads is accounted for by
different densities of states (DOS) �r"�!� and �r#�!� for
up- and down-spin electrons.

In the following we study the two cases of parallel (P)
and antiparallel (AP) alignment of the leads’ magnetic
moments. For the AP configuration and zero magnetic
field and bias voltage, the model is equivalent (by canoni-
cal transformation [8]) to a QD coupled to a single lead
with DOS �L" � �R" � �L# � �R#. In this case, the usual
Kondo resonance forms, which is the same as for non-
magnetic electrodes [1].

This changes for the P configuration. In this case, there
is an overall asymmetry for up and down spins, say, �L" �
�R" > �L# � �R#. To understand how this asymmetry af-
fects the Kondo physics we apply the scaling technique
[9], performed in two stages [10]. In the first stage, charge
fluctuations dominate and lead to a renormalization of
the QD’s levels. Since the renormalization for the spin-
down level is stronger than for the spin-up level, a level
splitting between the two spin orientations is generated.
This is one of the key mechanisms for all the effects
discussed below. To reach the strong-coupling limit, it
is, therefore, essential to apply an external magnetic field
to compensate for the generated spin splitting. In the
second stage, the resulting model is mapped onto a
Kondo Hamiltonian, and the degrees of freedom involv-
ing spin fluctuations are integrated out. For simplicity we
assume for the scaling analysis flat DOSs �r� and neglect
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First we reduce the cutoff D from D0, which is the
smaller value of the bandwidth and the on-site repulsion
U [10]. Charge fluctuations lead to the scaling equations

d��
d ln�D0=D�

�
� ���

2�
; (2)

where we defined �� � 2�jVj2
P

r�r�, and ��� is oppo-
site to �. This yields the solution �~�� � ~��" 	 ~��# �
	�1=��P� ln�D0=D� � ��0, where P � ��r" 	 �r#�=
��r" � �r#� measures the spin polarization in the leads,
� � ��" � �#�=2 ,and ��0 � gBB is the Zeeman split-
ting. The empty-dot state j0i hybridizes with states where
the dot is singly occupied j1�i with either spin-up or spin-
down, while the singly occupied state j1�i hybridizes
only with the empty-dot state j0i (for U� j�j — asym-
metric Anderson model). Because of the spin-dependent
DOS in the leads the hybridization is spin dependent,
which is the physical origin of the generated �~��.

To describe Kondo physics (for ~�� < 0) we terminate
[10] the scaling of Eq. (2) at ~DD	~��, and perform a
Schrieffer-Wolff transformation. Using the renormalized
parameters ~DD and ~��, we get the effective Kondo
Hamiltonian

HKondo �
X
rr0kk0

fJ�S
�cyrk#cr0k0" � J	S

	cyrk"cr0k0#

� Sz�Jz"c
y
rk"cr0k0" 	 Jz#c

y
rk#cr0k0#�g ; (3)

plus the term 	2Sz ~DD��"Jz" 	 �#Jz#� and a potential scat-
tering term. The initial values for the coupling constants
are J� � J	 � Jz" � Jz# � jVj2=j~��j � J0. To reach the
strong-coupling limit we tune the external magnetic field
B such that the total effective Zeeman splitting vanishes,
�~�� � 0 (the field B will also slightly modify the DOS in
the leads [6]). During the second stage of scaling, spin
fluctuations will renormalize the three coupling con-
stants J� � J	 � J�, Jz", and Jz# differently. The scaling
equations are

d���J��

d ln� ~DD=D�
� ��J���"Jz" � �#Jz#�; (4)

d���Jz��

d ln� ~DD=D�
� 2���J��2 (5)

with �� �
���������
�"�#

p
, �� �

P
r�r� [11]. To solve these equa-

tions we observe that ���J��2 	 ��"Jz"���#Jz#� � 0 and
�"Jz" 	 �#Jz# � J0P��" � �#� is constant as well. That is,
there is only one independent scaling equation. All cou-
pling constants reach the stable strong-coupling fixed
point J� � Jz" � Jz# � 1 at the Kondo energy scale,
D kBTK. For the P configuration, the Kondo tempera-
ture in leading order,

TK�P� � ~DD exp

�
	

1

��" � �#�J0

arctanh�P�
P

�
; (6)

depends on the polarization P in the leads. It is a
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maximum for nonmagnetic leads, P � 0, and vanishes
for P ! 1.

Finally, we point out an interesting consequence of the
spin polarization in the leads. With nonmagnetic leads,
the Kondo Hamiltonian couples the spin of the QD to the
spin of the leads only, but not to its charge. To analyze the
analogous situation in our case, we introduce the (pseudo)
spin ~�� � �1=2�

P
kk0rr0��0cykr����0ck0r0�0=�2 ~DD

�������������
����0

p
�,

where the spin-dependent normalization factor is crucial
to ensure the proper spin commutation relations, and
the (pseudo) charge en � e

P
kk0rr0�c

y
kr�ck0r0�=�2 ~DD���.

The last term in Eq. (3) can, then, be written as
2 ~DD��"Jz" � �#Jz#��zSz plus ~DD��"Jz" 	 �#Jz#�nSz. The first
term is analogous to the Kondo model with nonmagnetic
leads, while the second term couples spin to charge. The
latter does not scale up and the associated additional
renormalization of the Zeeman splitting, 	�1=��P�, is
negligible as compared to �~�� in the limit D0 � j�j.

The unitary limit for the P configuration can be
achieved by tuning the magnetic field appropriately, as
discussed above. In this case, the maximum conductance
through the QD is GP

max;� � e2=h per spin, i.e., the same
as for nonmagnetic leads. This yields that the amplitude
of the Kondo resonance for up- and down-spins at the
Fermi level are different, since GP

max;�  ���EF�$��EF�
and, therefore, $"�EF�=$#�EF� � �1	 P�=�1� P�. For the
AP configuration, the maximal conductance is reduced,
GAP

max;� � �1	 P2�e2=h, and vanishes for P ! 1.
In the remainder of this Letter we analyze the DOS of

the QD and address nonequilibrium transport. For a
qualitative discussion, we should employ the simplest
technique which accounts for both the formation of
Kondo resonances and the influence of the spin-dependent
renormalization of the dot level on spin fluctuations. The
EOM technique with the usual decoupling procedure
[12,13] for higher-order Green functions satisfies the
first requirement but not the second. We, therefore, extend
this scheme by calculating the level splitting �~�� self-
consistently. For a more quantitative analysis, one could
include higher-order (than usual) Green’s functions in the
EOM approach or higher-order diagrams in the resonant-
tunneling approximation [14], or use more advanced
schemes such as real-time [15] or numerical renormal-
ization group [16] methods. These techniques are, how-
ever, much more complex [17] and are not pursued here.

Within the Keldysh formalism, the transport current
I �

P
�I� through a QD for �R��!� � &��L��!� is

I� �
e
�h

Z
d!

�L��!��R��!�

�L��!� � �R��!�
�fL�!� 	 fR�!��$��!�;

(7)
where $��!� � 	�1=�� ImGret

� �!�. For strong interac-
tion (U ! 1), the retarded Green’s function is

Gret
� �!� �

1	 hn ���i

!	 �� 	 �0��!� 	�1��!� � i0�
; (8)

where �0��!��
P

k2L;RjVkj
2=�!	"k�� is the self-energy
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FIG. 1. Spin-dependent DOS for spin-up (solid line) and spin-
down (dashed line), calculated for P and AP alignment (as
indicated), for a spin polarization of the leads P � 0:2. The
parts (d),(e) include the effect of an applied magnetic field B
and (b),(e) of an applied bias voltage V. The other parameters
are T=� � 0:005 and �=� � 	2.
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for a noninteracting QD, while

�1��!;�~��� �
X

k2L;R

jVkj
2fL=R�"k ����

!	 ��~��	 "k ��� � i �h=2) ���
(9)

appears for interacting QDs only. The average occupation
of the QD with spin � is obtained from hn�i �
	�i=2��

R
d!G<

� �!�. Extending the standard derivation
[12], we replaced on the right-hand side of Eq. (9) �� !
�~��, where ~��� is found self-consistently from the relation

~�� � � �� � Re��0��~���� � �1��~���;�~���� ; (10)

which describes the renormalized dot-level energy,
where the real part of the denominator of Eq. (8) van-
ishes [1]. We emphasize that without this self-consistency
relation the Kondo resonances will, in general, appear
at different positions, which disagree with the conclu-
sions from the scaling analysis [19]. The procedure
simulates higher-order contributions and the influence of
the renormalization of the dot-level on spin fluctuations.
Following Ref. [12] we introduce, in a heuristic way, a
lifetime )��L;R; ~��"; ~��#� which describes decoherence
due to a finite bias voltage V or level splitting �~��. It is
obtained in second-order perturbation theory and de-
pends on the electrochemical potentials in the leads,
L�R�, and the level positions. Again, we replace the
bare levels by the renormalized ones. In the numeri-
cal results presented below we use Lorentzian bands of
width D � 100�.

For nonmagnetic leads, P � 0, and zero magnetic field,
B � 0, the proposed approximation is identical to the
standard EOM scheme [12]. For finite magnetic field,
B � 0, the self-consistency condition yields a splitting
of the Kondo resonances which is slightly smaller than
2gBB, in agreement with both experimental [2] and
theoretical findings [20,21]. For B � 0 and P > 0 in the
parallel configuration, we obtain a value of the splitting
�~�� comparable to the result from scaling, Eq. (2).

In Fig. 1 we plot the DOS of the QD for spins in AP and
P configurations with spin polarization P � 0:2 in the
leads. In the AP configuration there is one Kondo reso-
nance [Fig. 1(a)] and the DOS is the same as for the case
of nonmagnetic leads. For the P configuration, however,
the Kondo resonance splits [Fig. 1(c)], which can be com-
pensated by an external magnetic field B [Fig. 1(d)]. In the
latter case, the amplitude of the Kondo resonance for
spin-down significantly exceeds that for spin-up (as dis-
cussed above). A finite bias voltage, R 	L � eV > 0,
again leads to a splitting for both the AP and the P con-
figurations [Figs. 1(b) and 1(e)]. In the AP configuration,
the amplitudes of the upper and the lower Kondo peaks
appear asymmetric [Fig. 1(b)].

In Fig. 2 we show the differential conductance as a
function of the transport voltage. For nonmagnetic leads,
there is a pronounced zero-bias maximum [Fig. 2(a)],
which splits in the presence of a magnetic field
[Fig. 2(b)]. For magnetic leads and parallel alignment,
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we find a splitting of the peak in the absence of a mag-
netic field [Fig. 2(c)], which can be tuned away by an
appropriate magnetic field [Fig. 2(d)]. In the AP configu-
ration, the opposite happens, no splitting at B � 0
[Fig. 2(e)] but finite splitting at B > 0 [Fig. 2(f)] with
an additional asymmetry in the peak amplitudes as a
function of the bias voltage. This asymmetry is related
to the asymmetry in the amplitude of DOS [Fig. 1(b)]. All
these findings are in good agreement with our scaling
analysis. In Fig. 2(g) we show the tunnel magnetoresis-
tance (TMR) which can be much larger than for conven-
tional TMR systems. Finally, we find that the positions of
the peaks in the AP configuration in the presence of a
magnetic field are slightly shifted as a function of the
polarization P [Fig. 2(h)]. This can be explained in the
similar way as in Ref. [7] by an additional level splitting
+�~�� � �1=4��P�=~�� eV at finite bias voltages due to spin
accumulation in the QD.

We finally comment on the observability of our pro-
posal and how one can attach ferromagnetic leads to a
QD. A conceivable realization might be to put carbon
nanotubes in contact with ferromagnetic leads [22]. The
Kondo effect has been observed already for nonmagnetic
127203-3



FIG. 2. Total differential conductance (solid lines) as well
as the contributions for spin-up (dashed lines) and spin-
down (dot-dashed lines) vs the applied bias voltage V at
zero magnetic field B � 0 (a),(c),(e) and at finite magnetic
field (b),(d),(f),(h) for normal (a),(b) and ferromagnetic leads
with parallel (c),(d) and antiparallel (e),(f),(h) alignment of
the lead magnetizations. (g) The tunnel magnetoresistance,
TMR � �GP 	GAP�=GAP, for the cases (c) and (e). (h) The
conductance GAP=�1	 P2� for several values of P as indicated.
Other parameters are as in Fig. 1
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electrodes [5,23]. Alternatively, one might use magnetic
tunnel junctions with magnetic impurities in the barrier,
or spin-polarized STM [24,25].

In conclusion, we presented a qualitative study of the
Kondo effect in QDs coupled to ferromagnetic leads. In
particular, we found a splitting of the Kondo resonance
for parallel alignment of the leads’ magnetizations, even
in the absence of a magnetic field. Our results are based on
a scaling approach and an EOM technique. Further in-
vestigations on a more quantitative level using more
advanced techniques are desirable.
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