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Reflection of electrons from a domain wall in magnetic nanojunctions
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Electronic transport through thin and laterally constrained domain walls in ferromagnetic nanojunctions is
analyzed theoretically. The description is formulated in the basis of scattering states. The resistance of the
domain wall is calculated in the regime of strong electron reflection from the wall. It is shown that the
corresponding magnetoresistance can be large, which is in a qualitative agreement with recent experimental
observations. We also calculate the spin current flowing through the wall and the spin polarization of electron
gas due to reflections from the domain wall.
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I. INTRODUCTION

There is a growing interest in the resistance and mag
toresistance associated with domain walls~DW’s! in metallic
ferromagnets.1 Owing to recent progress in nanotechnolog
it became possible now to extract a single DW contribut
to electrical resistance.1–4 Surprisingly, it turned out that the
resistance of a system with DW’s in some cases was sm
than in the absence of DW’s,2,3 whereas in other cases it wa
larger.5–7 This intriguing observation led to considerable th
oretical interest in electronic transport through DWs.8–12The
interest is additionally stimulated by possible applications
the associated magnetoresistance in magnetoelectro
devices.

In a series of experiments the magnetoresistance as
ated with DW’s was found to be very large.5–7,13 Moreover,
recent experiments on Ni microjunctions showed that c
strained DW’s at the contact between ferromagnetic w
produce an unexpectedly large contribution to electrical
sistivity, and consequently lead to a huge negat
magnetoresistance.14 It was shown theoretically15 that
DW’s in magnetic microjunctions can be very sharp, with t
characteristic widthL being of atomic scale. This is muc
less than typical DW width in bulk materials or thi
films.

Theoretical descriptions of the transport properties
DW’s are mainly restricted to very smooth DW,9,10,16–19

which is more appropriate for bulk ferromagnets. Electr
scattering from DW’s is then rather small and the spin of
electron propagating across the wall follows the magnet
tion direction almost adiabatically. The additional resistan
calculated in the semiclassical approximation can be ei
positive or negative~depending on material parameters! and
rather small. The validity condition for the semiclassical a
proximation iskF↑(↓)L@1, wherekF↑ andkF↓ are the Fermi
wave vectors for the majority and minority electrons, resp
tively.

For sharp DW’s, however, scattering of electrons from
wall is significant and the semiclassical approximation is
longer applicable. Some numerical calculations of the m
netoresistance in magnetic nanojunctions have been
0163-1829/2003/68~10!/104434~6!/$20.00 68 1044
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sented in Ref. 20 in the context of the conductance qua
zation in microjunctions due to lateral confinement. T
problem of large magnetoresistance in magnetic juncti
was also analyzed recently by Tagirovet al.,21 where DW
was approximated by a potential barrier independent of
electron-spin orientation. The ballistic regime of electr
transport through the domain wall has been also conside
using some numerical simulations22 and ab initio
calculations.23–25

In this paper we consider the case of a thin DW, when
condition kF↑(↓)L&1 is fulfilled ~the semiclassical approxi
mation is not applicable!. In the limit of kF↑(↓)L!1, we
formulate the problem as a transmission of electrons thro
a potential barrier. Such a formulation can be treated ana
cally. In addition, we restrict our considerations to the case
DW’s with very small lateral dimensions, when only
single-quantum channel takes part in electronic transport.
show that the magnetoresistance associated with DWs ca
rather large—up to 70%, depending on the polarization
electrons.

In Sec. II we describe the model and introduce t
basis of scattering states. Conductance of a domain
is calculated in Sec. III. Spin current flowing throug
DW and spin polarization of the electron gas due
reflections from the wall are calculated in Secs. IV a
V, respectively. Summary and final remarks are in Sect
VI.

II. MODEL AND SCATTERING STATES

Let us consider conduction electrons described by a p
bolic band, which propagate in a spatially nonuniform ma
netizationM (r ). The system is then described by the follow
ing Hamiltonian:

H52
\2

2m

]2

]r2
2J•M ~r !, ~1!

where J is the exchange integral ands5(sx , sy , sz)
are the Pauli matrices. For a domain wall with its cen
localized at z50, we assume M (z)5@M0sinw(z), 0,
©2003 The American Physical Society34-1
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M0cosw(z)#, wherew(z) varies from zero top for z chang-
ing from z52` to z51`. Let the characteristic length
scale of this change beL ~referred to in the following as the
DW width!.

When DW is laterally constrained, the number of qua
tum transport channels can be reduced to a small numbe
the extreme case only a single conduction channel is ac
In such a case, one can restrict considerations to the co
sponding one-dimensional model, and rewrite Hamilton
~1! as

H52
\2

2m

d2

dz2
2JMz~z!sz2JMx~z! sx . ~2!

Although this model describes only a one-channel quan
wire, it is sufficient to account qualitatively for some of th
recent observations. Apart from this, it can be rather ea
generalized to the case of a wire with a few conduction ch
nels.

In the following description we use the basis of scatter
states. The asymptotic form of such states~taken sufficiently
far from DW! can be written as

xR↑~z!55 S eik↑z1r R↑ e2 ik↑z

r R↑
f e2 ik↓z D , z!2L

S tR↑ eik↓z

tR↑
f eik↑zD , z@L,

~3!

wherek↑(↓)5A2m(E6M )/\, with M5JM0 and E denot-
ing the electron energy. The scattering state~3! describes the
electron wave in the spin-majority channel incident fromz
52`, which is partially reflected into the spin-majority an
spin-minority channels, and also partially transmitted in
these two channels. The coefficientstR↑ and tR↑

f are the
transmission amplitudes without and with spin reversal,
spectively, whereasr R↑ and r R↑

f are the relevant reflection
amplitudes. It is worth to note that transmission from t
spin-majority channel atz,0 to the spin-majority channel a
z.0 requires spin reversal. The scattering states corresp
ing to the electron wave incident fromz52` in the spin-
minority channel have a similar form. Also similar form hav
the scattering states describing electron waves incident f
the right to left.

In a general case the transmission and reflection co
cients are calculated numerically, as described in the follo
ing section. WhenkF↑(↓)L!1, then the coefficients can b
calculated analytically. Upon integrating the Schro¨dinger
equationHc5Ec @with the Hamiltonian given by Eq.~2!#
from z52 d to z51 d, and assumingL!d!k↑(↓)

21 , one
obtains

2
\

2m S dx

dzU
z51d

2
dx

dzU
z52d

D 2l sxx~z50!50, ~4!

for each of the scattering states~for clarity of notation the
index of the scattering states is omitted here!, where
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J

\E2`

`

dzMx~z!. ~5!

Equation~4! has the form of a spin-dependent condition f
electron transmission through ad-like potential barrier lo-
cated atz50. To obtain this equation we also used the co
dition k↑(↓)L!1, which is opposite to the condition used
the semiclassical approximation. The magnitude of the
rameter l in Eq. ~5! can be estimated asl.JM0L/\
5ML/\.

Using the full set of scattering states and condition~4!,
together with the wave-function continuity condition, on
finds the transmission amplitudes

tR↑(↓)5tL↓(↑)5
2v↑(↓)~v↑1v↓!

~v↑1v↓!214l2
,

tR↑(↓)
f 5tL↓(↑)

f 5
4il v↑(↓)

~v↑1v↓!214l2
, ~6!

wherev↑(↓)5\k↑(↓) /m denotes the electron velocity in th
spin-majority~spin-minority! channel.

According to Eq.~6!, the magnitude of spin-flip transmis
sion coefficient can be estimated as~for simplicity we omit
here the eigenstate indices!

ut f u2;S lv

v21l2D 2

;S M«0

«F «01M2D 2

~kFL !2, ~7!

where «F5\2kF
2/2m and «05\2/mL2. For kFL!1 one

finds «0@«F . Thus, taking«F;M , one obtains

ut f u2;S M

«F
kFL D 2

!1. ~8!

Accordingly, a sharp domain wall can be considered as
effective barrier for the spin-flip transmission. On the oth
hand, the probability of spin conserving transmission
much larger,ut/t f u2;«F«0 /M2@1. This means that electro
spin does not follow adiabatically the magnetization dire
tion when it propagates through the wall, but its orientati
is rather fixed.

It is worth to note that the conservation of flo
in the spin-dependent case considered here has the follo
form:

v↑~12ur R↑u2!2v↓ur R↑
f u25v↓utR↑u21v↑utR↑

f u2, ~9!

and also analogous equations for the other scatte
states.

III. RESISTANCE OF THE DOMAIN WALL

To calculate conductance of the system under consi
ation, let us start with the current operator

ĵ ~z!5e c†~z!v̂ c~z!, ~10!

wherev̂ is the velocity operator, whereasc†(z) andc(z) are
the electron field operators taken in the spinor form. Acco
4-2
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ingly, the form of Eq. ~10! implies summation over
spin components. Using the expansion ofc(z) over the scat-
tering states~3! and carrying out the quantum-mechanic
averaging, one obtains the following formula for th
current

j ~z!52 ie(
n
E dk

2pE d«

2p
ei«h Gn~k,«!xn

†~z! v̂ xn~z!,

~11!

where n is the index of scattering states (n5R↑, R↓, L↑,
and L↓) and h501. The matrix elements of the velocit
operatorv̂52( i\/m) ]/]z in the basis of scattering state
have the form

vR↑[^R↑u v̂ uR↑&5v↓utR↑u21v↑utR↑
f u2,

vR↓[^R↓u v̂ uR↓&5v↓utR↓
f u21v↑utR↓u2,

vL↑[^L↑u v̂ uL↑&52v↑utL↑u22v↓utL↑
f u2,

vL↓[^L↓u v̂ uL↓&52v↑utL↓
f u22v↓utL↓u2. ~12!

Finally, the retarded Green functionGn(k,«) in Eq. ~11! is
diagonal in the basis of scattering states.

When the transmission of electrons through the barrie
small, one can assume that the chemical potential drop
the wall and is constant elsewhere,m5mR for z,0 andm
5mL for z.0. This corresponds to the voltage dropU
5(mR2mL)/e across the domain wall, whereas the res
tance of the wire parts outside the wall can be neglected.
Green functionGR↑(k,«) acquires then the following simpl
form:

GR↑~k,«!5
1

«2«R↑~k!1mR1 ih
, ~13!

where«R↑(k)5\2k2/2m2M . The other components of th
Green function have a similar form.

After integrating over« in Eq. ~11! we obtain

j ~z!5eE dk

2p
$xR↑

† ~z! v̂ xR↑~z! u@mR2«R↑~k!#

1xR↓
† ~z! v̂ xR↓~z!u@mR2«R↓~k!#

1xL↑
† ~z! v̂ xL↑~z!u@mL2«L↑~k!#

1xL↓
† ~z! v̂ xL↓~z!u@mL2«L↓~k!#%. ~14!

Since the current does not depend onz due to the charge
conservation law, it can be calculated at arbitrary point,
at z50. Apart from this, the contribution from the state
with «R↑(↓)(k), «L↑(↓)(k)<min(mL ,mR) vanishes and only
the states in the energy range from min(mL ,mR) to
max(mL ,mR) contribute to the current.

Using Eqs.~3! and ~12!–~14!, one obtains the conduc
tanceG as a linear response to small perturbation (U→0),
10443
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2p\ S v↓
v↑

utR↑u21utR↑
f u21

v↑
v↓

utR↓u21utR↓
f u2D , ~15!

where all the velocities and transmission coefficients
taken at the Fermi level.

When kF↑(↓)L!1, then taking into account Eq.~6!, one
can write the conductance in the form

G5
4e2

p\

v↑v↓~v↑1v↓!212l2~v↑
21v↓

2!

@~v↑1v↓!214l2#2
. ~16!

In the limit of v↑5v↓ andl→0, we obtain the conductanc
of a one-channel spin-degenerate wire,G05e2/p\. In the
regime of ballistic transport,G0 is also the conductance o
the investigated system without DW.

Variation of the conductanceG with the wall width L
~Fig. 1! was calculated from Eq.~15!, with the transmission
coefficients determined numerically. Thus, the results sho
in Fig. 1 are valid for arbitrary value ofkFL. The numerical
modeling has been done by direct calculation of the spi
wave function using Eq.~2!, starting atz@L in a form of
two transmitted spin-up and spin-down waves with arbitra
numerical coefficients. Then we restored the function in
region z!2L and, by projecting numerically the obtaine
spin components on the right- and left-moving waves@in
accordance with Eq.~3!#, we found the amplitudes of inci
dent and reflected waves.

In the limit of kFL!1, the results shown in Fig. 1 shoul
coincide with those obtained from formula~16!. Comparison
of the results obtained from direct numerical calculatio
and those obtained from Eq.~16! is shown in Fig. 2. Indeed
the results coincide forkFL!1, whereas at larger value
of kFL the deviations are large and grow with increasi
kFL.

FIG. 1. Relative conductance of the domain wall as a funct
of its width L in a magnetic quantum wire, calculated for indicat
values of the parameterp[M /«F .
4-3
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The conductance in the presence of a domain wall is s
stantially smaller than in the absence of the wall. Acco
ingly, the associated magnetoresistance can be large. Fo
ample, forp50.9 in Fig. 1 the magnetoresistance is equa
about 70%~which corresponds toG/G050.6).

It should be noted that in a real magnetoresistance exp
ment on magnetic semiconductor nanowires, for which
inequalitykFL@1 can be easily fulfilled, one can have mo
than one domain walls. Accordingly, the magnetoresista
effect can be significantly enhanced.

It is also worth to note that the resistance of an abr
domain wall can be smaller than the resistance of a dom
wall with finite ~nonzero! thickness. This follows directly
from the weak minimum in some of the curves in Fig. 1~see
also Fig. 2!. The existence of this minimum is related to th
sign of the second derivative of the functionG(l) in Eq.
~16!, calculated atl50 ~the first derivative vanishes there!.
In our simple model, the corresponding sign is negative
(v↓ /v↑),(v↓ /v↑)cr522A3.0.268 ~or, equivalently, p
,pc.0.866) and positive for (v↓ /v↑),(v↓ /v↑)cr ~i.e., p
.pc). When l increases froml50, the conductance de
creases in the former case and increases in the latter one
the other hand, we know that for thick domain walls t
conductance increases with increasing wall thickness. T
the minimum should occur for the curves corresponding
p,pc . In the case of strong polarization,p.pc , the main
contribution to the conductance is associated with the s
flip transmission through the domain wall, and the cond
tance increases monotonously with the width of the dom
wall, in accordance with Eq.~8!.

IV. SPIN CURRENT

When the electric current is spin polarized and when th
is some asymmetry between the two spin channels, the

FIG. 2. Comparison of the results obtained from direct num
cal calculations~solid line! and from Eq.~16! valid atkFL!1 ~dot-
ted line! for p50.7.
10443
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of charge is accompanied by a flow of spin~angular momen-
tum!. Thez component of the spin current can be calcula
from the following definition of the corresponding spin
current operator

Ĵz~z!5c†~z! sz v̂ c~z!, ~17!

which leads to the following average value

Jz~z!52 i(
n
E dk

2pE d«

2p
ei«d Gn~k,«!xn

†~z!szv̂ xn~z!.

~18!

After carrying out the calculations similar to those describ
in the preceding section, one arrives in the linear-respo
regime~limit of small bias voltageU) at the following for-
mulas for the spin currentJz :

Jz~z,2L !5
eU

2p\ S v↓
v↑

utR↑u21utR↑
f u22

v↑
v↓

utR↓u22utR↓
f u2D ,

~19!

Jz~z.L !5
eU

2p\ S v↓
v↑

utR↑u22utR↑
f u22

v↑
v↓

utR↓u21utR↓
f u2D .

~20!

Using Eqs.~6! we find

Jz~z.L !52
8eU

p\

l2~v↑
22v↓

2!

@~v↑1v↓!214l2#2
~21!

and Jz(z,2L)52Jz(z.L). The magnetic torque due t
spin transfer to the magnetic system within the domain w
is determined by the nonconserved spin current

T~U !5
16eU

p\

l2~v↑
22v↓

2!

@~v↑1v↓!214l2#2
. ~22!

It should be noted that spin-flip scattering due to D
does not allow to separate spin channels like it was
the case for homogeneous ferromagnets. If we define n
the spin conductanceGs as Gs5Jz /U, then one can write
for z.0

Gs52
8e

p\

l2~v↑
22v↓

2!

@~v↑1v↓!214l2#2
. ~23!

Thus,Gs is negative forz.0 and positive forz,0.
In a nonmagnetic case we havev↑5v↓ and thereforeGs

50. In the case considered here,Gs50 when there is no
DW. Let us introduce the spin conductance for one~spin-up!
channel only,Gs05e/2p\. The relative spin conductance i
the presence of DW,Gs /Gs0, calculated using Eq.~19! and
with numerically found transmission coefficients, is show
in Fig. 3 as a function of the DW widthL and for the indi-
cated values of the parameterp. It corresponds to the spin
current outside the region of the domain wall. The spin c
rent inside the wall is not conserved because of the spin
transitions.

i-
4-4
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In accordance with Eqs.~19!, ~20!, and ~6!, the nonzero
spin current in a one-channel wire with domain wall
due to a difference in spin-flip transmissions for spin-up a
spin-down channels: the corresponding transmiss
coefficient turns out to be larger for faster~majority!
electrons.

V. SPIN POLARIZATION DUE TO DOMAIN WALL

Spin-dependent reflections from the wall lead
additional spin polarization of the system near the w
The distribution of spin density created by the wall c

FIG. 4. Distribution of the spin density of electron gas nea
domain wall for different values ofp.

FIG. 3. Relative spin conductance of the wire with a dom
wall calculated as a function of its widthL for indicated values of
the parameterp.
10443
d
n

l.

be calculated using the basis of scattering states. Thz
component of the spin density in the equilibrium situati
(U50) is

Sz~z!52 i(
n
E dk

2pE d«

2p
ei«h Gn~k,«!xn

†~z!szxn~z!.

~24!

The above formula contains a constant part correspondin
the spin density in the absence of DW, as well as
z-dependent partdSz(z) created by the wall,

dSz~z!5
1

pE0

kF↑
dkrR↑cos~2k↑z!

2
1

pE0

kF↓
dkrR↓cos~2k↓z! ~z,2L !,

5
1

pE0

kF↑
dk rL↑ cos~2k↑z!

2
1

pE0

kF↓
dk rL↓ cos~2k↓z! ~z.L !. ~25!

The dependence of the spin densitySz on the distance
from the wall is shown in Fig. 4. The spin-dependent refle
tions from the wall create spatial oscillations of the electro
spin density. These oscillations are similar to the Friedel
cillations of charge in a nonmagnetic metal. However, o
should point out here that in addition to the above calcula
spin polarization, there is also a nonequilibrium spin pol
ization due to flowing current.7

VI. SUMMARY AND CONCLUDING REMARKS

We have presented in this paper a theoretical descrip
of the resistance of a magnetic microjunction with a co
strained domain wall at the contact. In the limit ofkF↑(↓)L
!1, the electron transport across the wall was treated ef
tively as electron tunneling through a spin-dependent po
tial barrier. For such narrow and constrained dom
walls the electron spin does not follow adiabatically the ma
netization direction, but its orientation is rather fixed. Ho
ever, the domain wall produces some mixing of the s
channels.

The calculations carried out in the paper were restricted
a limiting case of a single-quantum transport chann
Accordingly, the system was described by a one-dimensio
model. However, such a simple model turned out to desc
qualitatively rather well the basic physics related
electronic transport through constrained domain wa
although the magnetoresistance obtained is still smaller t
in some experiments. In realistic situations one sho
use a more general model. When the domain wall does
cause transition between different channels, then the des
tion presented here can be applied directly to the multich
nel case by simply adding contributions from differe
channels.

A domain wall leads to spin-dependent scattering of c
duction electrons. Therefore, it also leads to a net spin po
4-5



m
ity
a
a

c
t

th
ifi

nce

rk
en-
3/

V. K. DUGAEV, J. BERAKDAR, AND J. BARNAŚ PHYSICAL REVIEW B 68, 104434 ~2003!
ization at the wall, which oscillates with the distance fro
the wall, similarly to Friedel oscillations of charge dens
near a nonmagnetic defect in a nonmagnetic metal. We h
calculated the equilibrium component of this spin polariz
tion.

It should be also pointed out that our description negle
electron-electron interaction. Such an interaction is known
be important in one-dimensional systems, particularly in
limit of zero bias. The interaction may lead to some mod
cations of the results in a very small vicinity ofU50, but
n-

hy

J

.

la

e

h

v.
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we believe that the main features of the magnetoresista
will not be drastically changed.
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