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Reflection of electrons from a domain wall in magnetic nanojunctions
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Electronic transport through thin and laterally constrained domain walls in ferromagnetic nanojunctions is
analyzed theoretically. The description is formulated in the basis of scattering states. The resistance of the
domain wall is calculated in the regime of strong electron reflection from the wall. It is shown that the
corresponding magnetoresistance can be large, which is in a qualitative agreement with recent experimental
observations. We also calculate the spin current flowing through the wall and the spin polarization of electron
gas due to reflections from the domain wall.
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[. INTRODUCTION sented in Ref. 20 in the context of the conductance quanti-
zation in microjunctions due to lateral confinement. The
There is a growing interest in the resistance and magneproblem of large magnetoresistance in magnetic junctions
toresistance associated with domain wélV's) in metallic ~ was also analyzed recently by Tagireval,”* where DW
ferromagnets.Owing to recent progress in nanotechnology,Was approximated by a potential barrier independent of the
it became possible now to extract a single DW contribution€lectron-spin orientation. The ballistic regime of electron
to electrical resistanck* Surprisingly, it turned out that the transport through the domain wall has been also considered
resistance of a system with DW's in some cases was smallélSing some _numerical ~simulatidfis and ab initio
than in the absence of DWAS whereas in other cases it was calculations?®?°
larger®~’ This intriguing observation led to considerable the-  In this paper we consider the case of a thin DW, when the
oretical interest in electronic transport through D¥&The  conditionkg,)L=<1 is fulfilled (the semiclassical approxi-
interest is additionally stimulated by possible applications ofnation is not applicable In the limit of kg, )L<1, we
the associated magnetoresistance in magnetoelectronit@mulate the problem as a transmission of electrons through
devices. a potential barrier. Such a formulation can be treated analyti-
In a series of experimentg the magnetoresistance asso@a”y. In addition, we restrict our considerations to the case of
ated with DW’s was found to be very large’**Moreover, DW'’s with very small lateral dimensions, when only a
recent experiments on Ni microjunctions showed that consingle-quantum channel takes part in electronic transport. We
strained DW’s at the contact between ferromagnetic wireshow that the magnetoresistance associated with DWs can be
produce an unexpectedly large contribution to electrical rerather large—up to 70%, depending on the polarization of
sistivity, and consequently lead to a huge negativeelectrons.
magnetoresistanéé_ It was shown theoreticaﬂ-§ that In Sec. Il we describe the model and introduce the
DW'’s in magnetic microjunctions can be very sharp, with thebasis of scattering states. Conductance of a domain wall
characteristic width_ being of atomic scale. This is much is calculated in Sec. Ill. Spin current flowing through
less than typical DW width in bulk materials or thin DW and spin polarization of the electron gas due to
films. reflections from the wall are calculated in Secs. IV and
Theoretical descriptions of the transport properties ofV, respectively. Summary and final remarks are in Section
DW’s are mainly restricted to very smooth DW16-1° VI
which is more appropriate for bulk ferromagnets. Electron
scattering from DW'’s is then rather small and the spin of an II. MODEL AND SCATTERING STATES
electron propagating across the wall follows the magnetiza- . ) i
tion direction almost adiabatically. The additional resistance L€t us consider conduction electrons described by a para-
calculated in the semiclassical approximation can be eithdpolic band, which propagate in a spatially nonuniform mag-
positive or negativédepending on material parameteasid _nenzauo_nM(r). The system is then described by the follow-
rather small. The validity condition for the semiclassical ap-ing Hamiltonian:
proximation iskg;(;)L>1, wherekg, andkg| are the Fermi
wave vectors for the majority and minority electrons, respec-
tiVG'y. ! y y P H:_ﬁﬁ_J.M(r)' (1)
For sharp DW'’s, however, scattering of electrons from the
wall is significant and the semiclassical approximation is novhere J is the exchange integral and=(oy, oy, o))
longer applicable. Some numerical calculations of the magare the Pauli matrices. For a domain wall with its center
netoresistance in magnetic nanojunctions have been préacalized at z=0, we assumeM (z)=[Mgysing(2),0,
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Mgcose(2)], whereg(z) varies from zero tar for z chang-
ing from z=—x to z=+o. Let the characteristic length
scale of this change He (referred to in the following as the
DW width).
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J ©
)\zgﬁdeMx(Z)- (5)

Equation(4) has the form of a spin-dependent condition for

When DW is laterally constrained, the number of quan-electron transmission through &like potential barrier lo-

tum transport channels can be reduced to a small number.

gated az=0. To obtain this equation we also used the con-

the extreme case only a single conduction channel is activelition k; ()L <1, which is opposite to the condition used in
In such a case, one can restrict considerations to the corréhe semiclassical approximation. The magnitude of the pa-
sponding one-dimensional model, and rewrite Hamiltoniarrameter A in Eqg. (5) can be estimated ak=JMgL/#%

(1) as
hZ

- 2mgz2

d2

—JIM,(2)o,—IM(2) 0. (2

Although this model describes only a one-channel quantum

wire, it is sufficient to account qualitatively for some of the

=ML/A.

Using the full set of scattering states and conditidh
together with the wave-function continuity condition, one
finds the transmission amplitudes

2v()(v1tv))

tRm):th):(vT+vl)2+4?\2,

recent observations. Apart from this, it can be rather easily

generalized to the case of a wire with a few conduction chan-

nels.

In the following description we use the basis of scattering

states. The asymptotic form of such statken sufficiently
far from DW) can be written as

( eikTZ-l— rRT e—isz

rfRT e—iklz

wherek;y=v2m(E=M)/%, with M=JIM, and E denot-
ing the electron energy. The scattering s{@edescribes the

electron wave in the spin-majority channel incident fram
—oo, which is partially reflected into the spin-majority and

), z<—L

xri(2)= )

z>L,

4i)\UT(l)

f _ 4 f _
triy =t = ( (6)

UT+U1)2+4)\2,
wherev(y=7Kk;)/m denotes the electron velocity in the
spin-majority (spin-minority) channel.

According to Eq(6), the magnitude of spin-flip transmis-
sion coefficient can be estimated @sr simplicity we omit
here the eigenstate indiges

B

where sp=%2kZ/2m and go=h2%/mL?. For keL<1 one
finds eg>¢eg. Thus, takingeg~M, one obtains

A\v 2

v+

MSO

€F 80+M2

|t|2~ (keL)2,  (7)

2

M
|tf|2~(8—kFL <1.
F

®

spin-minority channels, and also partially transmitted into

these two channels. The coefficiertis;, and t{n are the

transmission amplitudes without and with spin reversal, re

spectively, whereasg; and f;n are the relevant reflection

amplitudes. It is worth to note that transmission from the

spin-majority channel a&<<0 to the spin-majority channel at

z>0 requires spin reversal. The scattering states correspon

ing to the electron wave incident from= — in the spin-
minority channel have a similar form. Also similar form have
the scattering states describing electron waves incident fro
the right to left.

ing section. Wherkg, )L <1, then the coefficients can be
calculated analytically. Upon integrating the Salinger
equationH = Ey [with the Hamiltonian given by Eq2)]
from z=— & to z=+ 5, and assumind.<&<k;(j,, one
obtains

h

2m

dx

z=+6 dz

dx
dz

) —Nox(z=0)=0, (4
z=—96

for each of the scattering statéf®r clarity of notation the
index of the scattering states is omitted herehere

Accordingly, a sharp domain wall can be considered as an

effective barrier for the spin-flip transmission. On the other

hand, the probability of spin conserving transmission is
much larger|t/t'|?~&ereo/M?>1. This means that electron
spin does not follow adiabatically the magnetization direc-
Hpn when it propagates through the wall, but its orientation
IS rather fixed.

It is worth to note that the conservation of flow
in the spin-dependent case considered here has the following

%rm:

In a general case the transmission and reflection coeffi-
cients are calculated numerically, as described in the follow-

9

and also analogous equations for the other scattering
states.

UT(l_|rRT|2)_Ul|rfRT|2:UL|tRT|2+UT|tIf?eT|21

IIl. RESISTANCE OF THE DOMAIN WALL

To calculate conductance of the system under consider-
ation, let us start with the current operator

j(2=ey'(2)v ¥(2), (10)

wherev is the velocity operator, wheregé (z) and(z) are
the electron field operators taken in the spinor form. Accord-
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ingly, the form of Eg. (10) implies summation over
spin components. Using the expansion/§f) over the scat-
tering stateg3) and carrying out the quantum-mechanical
averaging, one obtains the following formula for the
current

dk ( d , -
i@--ie3 [ 5=] 5= @Gy kelxl(2) b 1a(2),
1

wheren is the index of scattering states€R7,R]|, LT,
andL|) and »=0". The matrix elements of the velocity

operatoro = — (i#i/m) d/9z in the basis of scattering states
have the form

ori=(R1[v [RT)=v [tri|*+ vty [,

UR¢E<R“{}|Rl>zvl|t&l|2+01|tm|2, 0.0 0.5 oL 1.0 15

v =(L1| " ILT)= _UT|tLT|2_Ul|thT|2' FIG. 1. Relative conductance of the domain wall as a function
of its width L in a magnetic quantum wire, calculated for indicated

~ values of the parametgr=M/gg.
ULiE<Ll|U|Ll>:_vT|th1|2_Ul|tLL|2- (12 F
2

Finally, the retarded Green functidd,(k,¢) in Eq. (1) is _ & |u 2, 14f 12, Y1 2 1+f 12

diagonal in the basis of scattering states. C=omh v_T“RTI [ty Z'tm' It 7). 19
When the transmission of electrons through the barrier is

small, one can assume that the chemical potential drops athere all the velocities and transmission coefficients are

the wall and is constant elsewhepes= ug for z<0 andu  taken at the Fermi level.

=u, for z>0. This corresponds to the voltage dr&p Whenkg; ()L <1, then taking into account Eg6), one

=(ur—m)/e across the domain wall, whereas the resis-can write the conductance in the form

tance of the wire parts outside the wall can be neglected. The

fGreen functiorGg, (k,&) acquires then the following simple 4e? UTUL(UT+UL)2+27\2(U%+UT) s
orm: =—
T [(oFu)) AN
1
Gri(k,e)=— O+ patin’ (13 In the limit of v, =v | and\ —0, we obtain the conductance
e ERIUITHRT LY of a one-channel spin-degenerate wi@,=e? «i. In the

wheresRT(k)=ﬁ2k2/2m—M. The other components of the regime of ballistic transporiG, is also the conductance of
Green function have a similar form. the investigated system without DW.

Variation of the conductanc& with the wall width L
(Fig. 1) was calculated from Eq15), with the transmission
dk A coefficients determined numerically. Thus, the results shown
j(z)=ef Z—{XLT(Z) v Xri(2) Ol pur—eri(K)] in Fig. 1 are valid for arbitrary value df-L. The numerical
m modeling has been done by direct calculation of the spinor
wave function using Eq(2), starting atz>L in a form of
two transmitted spin-up and spin-down waves with arbitrary
numerical coefficients. Then we restored the function in the
region z<—L and, by projecting numerically the obtained
+XL(Z)5XL1(Z)9[ML—8L¢(k)]}- (14) spin components on the right- and left-moving wavVes
accordance with Eq.3)], we found the amplitudes of inci-
Since the current does not depend odue to the charge dent and reflected waves.
conservation law, it can be calculated at arbitrary point, say In the limit of keL <1, the results shown in Fig. 1 should
at z=0. Apart from this, the contribution from the states coincide with those obtained from formula6). Comparison
with &gy (1) (K), eL1()(K)<=min(u_,ug) vanishes and only of the results obtained from direct numerical calculations
the states in the energy range from mip(ug) to  and those obtained from E@L6) is shown in Fig. 2. Indeed

After integrating overe in Eq. (11) we obtain

"‘XJFrel(Z) v Xr(2) 0 ur—eg (K)]

+x11 (20 X (D O —e11(K)]

max(u_ ,ug) contribute to the current. the results coincide fokgL<1, whereas at larger values
Using Egs.(3) and (12)—(14), one obtains the conduc- of keL the deviations are large and grow with increasing
tanceG as a linear response to small perturbatith-0), Kel.
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of charge is accompanied by a flow of sgangular momen-
tum). The z component of the spin current can be calculated
from the following definition of the corresponding spin-
current operator
0.9 A A
3(2)=¢"(2) 0,0 Y(2), (17)
which leads to the following average value
=3
Q 0.85 i dk (de . ¢ + -
& na=—i3 [ o2 ] Soer G ke xd210d x(2).
(18)
0.8 After carrying out the calculations similar to those described
- in the preceding section, one arrives in the linear-response
regime (limit of small bias voltagel) at the following for-
mulas for the spin current, :
0'7500 0.2 0.4 0.6 0.8 eU (v, vy
: . : : . < — )= ol 2 ¢t 221 2_ |4t 2)
i 32500~ | e 41t 2= it - 3
FIG. 2. Comparison of the results obtained from direct numeri- (19
cal calculationgsolid line) and from Eq.(16) valid atkgL <1 (dot- eU (v v
; - ! 1
ted ling for p=0.7. J(z>L)= W(E“RHZ_ [ty 2= U—L|tm|2+ |tIa1|2) :
The conductance in the presence of a domain wall is sub- (20
stantially smaller than in the absence of the wall. Accord-ysing Eqgs.(6) we find
ingly, the associated magnetoresistance can be large. For ex-
ample, forp=0.9 in Fig. 1 the magnetoresistance is equal to 8eU A2(v2—0?)
about 70%(which corresponds t&/Gy=0.6). J,(z>L)=~— 7 Tz L o5 (21
It should be noted that in a real magnetoresistance experi- T [(vi+v) +H4ANT]

ment on magnetic semiconductor nanowires, for which the;dnd J
inequalitykeL>1 can be easily fulfilled, one can have more
than one domain walls. Accordingly, the magnetoresistanc
effect can be significantly enhanced.

It is also worth to note that the resistance of an abrupt 166U N2(v2—p2)
domain wall can be smaller than the resistance of a domain T(U)= T 71 ]
wall with finite (nonzerg thickness. This follows directly h [(vy+v))+4N2]?
from the weak minimum in some of the curves in Figsge
also Fig. 2. The existence of this minimum is related to the It should be noted that spin-flip scattering due to DW
sign of the second derivative of the functi@(\) in Eq. does not allow to separate spin channels like it was in
(16), calculated ah =0 (the first derivative vanishes there the case for homogeneous ferromagnets. If we define now
In our simple model, the corresponding sign is negative fothe spin conductanc&g as Gs=J,/U, then one can write
(v, lv))<(v Iv:)e;=2—+/3=0.268 (or, equivalently, p  forz>0
<p=0.866) and positive fory| /v{)<(v,/v{)c (€., p
>p.). When\ increases from\=0, the conductance de- 8e )\Z(v%—vf)
creases in the former case and increases in the latter one. On Gs=— wh [(v:+0 )2+4)\2]2' (23
the other hand, we know that for thick domain walls the e
conductance increases with increasing wall thickness. Thughus, G, is negative forz>0 and positive forz<0.
the minimum should occur for the curves corresponding to In a nonmagnetic case we have=v, and thereforeG
p<pc. In the case of strong polarizatiop>p., the main  =0. In the case considered he@,=0 when there is no
contribution to the conductance is associated with the spinDW. Let us introduce the spin conductance for ¢sgin-up
flip transmission through the domain wall, and the conducchannel onlyG¢,=e/27%. The relative spin conductance in
tance increases monotonously with the width of the domainhe presence of DWG. /Gy, calculated using Eq19) and
wall, in accordance with E¢8). with numerically found transmission coefficients, is shown
in Fig. 3 as a function of the DW width and for the indi-
cated values of the parameter It corresponds to the spin
current outside the region of the domain wall. The spin cur-

When the electric current is spin polarized and when thereent inside the wall is not conserved because of the spin-flip
is some asymmetry between the two spin channels, the flowansitions.

Az<—L)=-J,(z>L). The magnetic torque due to
spin transfer to the magnetic system within the domain wall
fs determined by the nonconserved spin current

(22)

IV. SPIN CURRENT
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s be calculated using the basis of scattering states. Zhe
o5t ] o1 component of the spin density in the equilibrium situation
------ 0.5 (U=0) is
e -e | 0.6
./ '\ - 0.7 dk dS
0.4 / N 0.8 _ bl BN t
i SR S(2)==i2 f o= f 5 €7 G(k.&) xH(2) o oxn(2).
o il \‘\. (24)
5 03 i \\ The above formula contains a constant part corresponding to
? P \ the spin density in the absence of DW, as well as the
i / N\, )

/ N \ z-dependent pardS,(z) created by the wall,

1 (key
8S,(z)= ;fo dkrgcog2k;2)

1 (ke
__f dkl’RLCOS(ZklZ) (Z<_L),
mTJo

0 B . 1 (ke
0.0 0.5 1.0 1.5 1
kpL =;f0 dk r ; cog2k;z)

FIG. 3. Relative spin conductance of the wire with a domain 1 (ke
wall calculated as a function of its width for indicated values of — —f dk r  cog2k;z) (z>L). (29
the parametep. m™Jo

The dependence of the spin dens8y on the distance

spin current in a one-channel wire with domain wall isf_rom the wall is shown in Fig. 4. The_spl_n-dependent reflec-
due to a difference in spin-flip transmissions for spin-up andions from the wall create spatial oscillations of the electron-
spin-down channels: the corresponding transmissiosPIN density. These oscillations are similar to the Friedel os-

coefficient turns out to be larger for fastémajority) cillations gf charge in a n_onmagrjetic metal. However, one
electrons. should point out here that in addition to the above calculated

spin polarization, there is also a nonequilibrium spin polar-
ization due to flowing currertt.

In accordance with Eqg19), (20), and (6), the nonzero

V. SPIN POLARIZATION DUE TO DOMAIN WALL

Spin-dependent reflections from the wall lead to VI. SUMMARY AND CONCLUDING REMARKS

additional spin polarization of the system near the wall. o _ .
The distribution of spin density created by the wall can e have presented in this paper a theoretical description
of the resistance of a magnetic microjunction with a con-

8 strained domain wall at the contact. In the limitlof; )L

7x10 <1, the electron transport across the wall was treated effec-
tively as electron tunneling through a spin-dependent poten-
6 tial barrier. For such narrow and constrained domain
- walls the electron spin does not follow adiabatically the mag-
g 5 netization direction, but its orientation is rather fixed. How-
R ever, the domain wall produces some mixing of the spin
ot channels.
I The calculations carried out in the paper were restricted to
g 3 a limiting case of a single-quantum transport channel.
g Accordingly, the system was described by a one-dimensional
S 2 model. However, such a simple model turned out to describe
;,% qualitatively rather well the basic physics related to

electronic transport through constrained domain walls,
although the magnetoresistance obtained is still smaller than
in some experiments. In realistic situations one should

0 use a more general model. When the domain wall does not
cause transition between different channels, then the descrip-
'1_0 3 06 04 02 0.0 tion presented here can be applied directly to the multichan-
’ z/L nel case by simply adding contributions from different
channels.
FIG. 4. Distribution of the spin density of electron gas near a A domain wall leads to spin-dependent scattering of con-
domain wall for different values gf. duction electrons. Therefore, it also leads to a net spin polar-
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ization at the wall, which oscillates with the distance fromwe believe that the main features of the magnetoresistance
the wall, similarly to Friedel oscillations of charge density will not be drastically changed.
near a nonmagnetic defect in a nonmagnetic metal. We have
calculated the equilibrium component of this spin polariza-
tion. _ n ACKNOWLEDGMENTS
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