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The influence of domain walls on transport properties of ferromagnetic materials
is analyzed theoretically and the results are compared with recent experiments.
In the case of diffusive transport through a thick domain wall, the semiclassical
approximation is applied and a local spin transformation is performed, which re-
places the system with a domain wall by the corresponding system without domain
wall but with an additional gauge field. Due to a redistribution of single-particle
electron states at the wall, one obtains either negative or positive contributions
to resistivity. On the other hand, suppression of the weak localization correc-
tions to conductivity by the gauge field created by the wall leads to an increase
in the low-temperature conductivity in the presence of a domain wall. In the case
of narrow domain walls the semiclassical approximation is not valid. Instead of
this one can use an approach based on scattering matrix. In this particular case,
the domain wall induces a large positive contribution to the resistivity. The cor-
responding magnetoresistance in nanostructures with sharp domain walls can be
large, in accordance with recent experiments.

1. Introduction

It is well know for long time that magnetic domain walls (DWs) in a ferro-
magnetic metal influence its electronic transport properties by producing
an additional contribution to electrical resistivity. Since DWs give rise to
electron scattering,? one could expect that this contribution is positive.
This expectation was also supported by early experiments. It was only
very recently when a single DW contribution to electrical resistivity could
be extracted in a controllable way from the overall resistance.>*58 Sur-
prisingly, it turned out that the resistance of a system with DWs in some
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cases was smaller than in the absence of DWs,3* whereas in other cases
it was larger.”®® This intriguing observation led to considerable theoreti-
cal interest in electronic transport through DWs.10:11,12,13,14 The jnterest
is additionally stimulated by possible applications of the associated mag-
netoresistance in magnetoelectronics devices. This is because creation and

- destruction of DWs can be controlled by a weak magnetic field. The corre-

sponding magnetoresistance can be then either positive or negative.

Recent experiments on magnetic point contacts showed that constrained
DWs formed at the very contact between ferromagnetic wires produce
an unexpectedly large contribution to electrical resistivity, and conse-
quently lead to large negative magnetoresistance.!® The characteristic fea-
ture of DWs in point contact geometry is their very small width (a few
angstroms),’®17 which is much smaller than the DWs width in bulk mate-
rials, thin films, or in wires.

In the following we will describe theoretically basic features of the elec-

tronic transport through DWs, and will present explanation of the above

described experimental observations. Two limits will be analyzed in detail
— the limit of thick DW, when electronic transport through the wall is dif-
fusive, and the limit of narrow DW, when the transport is ballistic. In the
former case the theoretical treatment is based on a semiclassical approach,
which is valid for kpi()D > 1, where kpy and k| are the Fermi wavevec-
tors corresponding to the two spin channels, and D is a characteristic length
of the magnetization variation (DW width).!® In such a case DW can lead
to redistribution of single-electron quasiparticles, and this can lead either
to positive or to negative contribution to resistivity. Another mechanism
which leads to negative contribution is based on the suppression of weak
localization (WL) corrections to conductivity by DWs.10 At sufficiently low
temperatures quantum interference effects in a magnetically uniform sys-
tem (without DWs) lead to an increase in the resistivity due to enhanced
back scattering.!®?° Creation of DWs destroys the interference effects and

-therefore diminishes resistivity of the system.

When, however, the DW width D is of atomic size, like in some
nanoconstrictions,% the condition of semiclassical behavior is not fulfilled.
In that case, one has to use a different approach, like for instance the one
based on the scattering matrix and Landauer formalism.
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2. Diffusive transport through a thick domain wall
2.1. Model

Assume a simplified model of a ferromagnetic metal, in which conduction
electrons with a parabolic energy spectrum interact with a nonuniform
magnetization that smoothly varies across a certain DW. Assume also that
the electrons are scattered by defects with the corresponding scattering
potential being independent of the spin orientation (in a general case this
potential can be spin dependent). When the domain wall is sufficiently
thick, D >> [, where [ is the electron mean free path, electronic transport
across the wall is diffusive.

The single-particle Hamiltonian describing conduction electrons locally
exchange-coupled to the magnetization M(r) takes the form

e B K e (1)
2m Or? !
where J is the exchange parameter, o = (03, 0y, o) are the Pauli matrices,
and the unit system with i = 1 is used.
The domain wall is characterized by a magnetization profile M(r). For

the sake of simplicity we assume |[M(r)| = Mo = const. Thus, we can write

JM(r) = Mn(x), (2)

where n(r) is a unit vector field specific for a particular type of DWs (to
be defined later), and M = JMj is measured in energy units.

In order to control the charge density of the electron gas, we include the

Coulomb electron-electron interaction in the mean-field approximation via
the term

Hint = e¢(2), @)

where e is the electron charge (e < 0) and the field ¢(z) is the mean-field
electrostatic potential in the presence of the wall, which obeys the equation

2
LU _ime (919) =) @

with (.....) denoting the ground state average, no being the electron gas

density in the absence of DW, and ¢ and ! denoting the spinor field
operators. The potential ¢(z) has to be calculated self-consistently, which
assures that the total charge accumulated at the wall vanishes, though the
charge neutrality may be violated locally. The total Hamiltonian H of the
system can be then written as

H = Hp + Hine, ()
where Ho and Hin: are given by Eq.(1) and Eq.(3), respectively.
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2.2. Gauge transformation
The key point of the approach is a local unitary transformation
i ()il R TR R (6)

where I is the 2 x 2 unit matrix. T'(r) transforms the problem of electrons
In a system with nonuniform magnetization to an equivalent problem of
electrons in a system with uniform magnetization, but with an additional

gauge field.1®18 In other words, T'(r) transforms the second term in Eq. (1)
as

: o-n(r) - o,, (7)
or equivalently
Ti(r)o -n()T(r) = o,. (8)
Explicit form of T(r) is given by?!
R _y(r) og — ng(r) o
T(r)= —=|14y/1 e L v
(r) 7 ( +ny(r) +1 T ) (9)

Generally, the above transformation can be applied not only to simple DWs,
but also to other types of topological excitations in ferromagnetic systems,
for instance to helicoidal waves, skyrmions, and others.

Upon applying the transformation (6) to the kinetic part of the Hamil-

- tonian (1) one obtains

0? ) :
where the non-Abelian gauge field A (r) is given by
o
A(r) =T'() - 7). (12)

According to Eq. (9), the gauge field A(r) is a matrix in the spin space.

Assume now a more specific DW in a bulk system, which is transla-
tionally invariant in the z-y plane: M(r) — M(z) and n(r) — n(z). For
a simple DW with M(z) lying in the plane normal to the wall one can
parameterize the vector n(z) as

n(z) = (sinp(z), 0, cosp(z)), (12)
where the phase (z) determines the type of DWs. The transformation (9)

" is then reduced to

T(z) = % (i 1+ cosp(z) — ioy %) ) (13)
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Figure 1. Variation of the magnetization in the domain wall.

and the gauge field acquires the simple form
a6 = (0.0 Lo, #()), (14)

where ¢'(2) = d¢(2)/0z2.
Taking into account the above formulas one can write the full trans-
formed Hamiltonian in the form
1ok mB3(z) . fF(2)

0
o : i |
H 5 2m a 2 MO’Z + E¢(Z) s 2 r w'y 2 iy m'yﬁ{z) az Y ( 5)

where
Ble) = 22 (16)

When kgpi¢)D >> 1, the perturbation due to DW is weak and the semi-
classical approximation is well justified. The last three terms on the right
hand side of Eq. (15) can be then treated as a small perturbation.

If one assumes the domain wall in the form of a kink shown schematically
in Fig. 1, then

) ~ 7 tanh (2/I) (17)
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with L = D/2, and the parameter 3(z) is given by
™

&S 4mL coshz(z/L)' i

2.3. Local conductivity

The general formula for the local conductivity (without localization cor-
rections and for electric field applied along the axis z) has the following
form

e? dk R A
Ta2 = oo 'B‘_/ (2 )3(’C —mfoy) G (k. —mpoy) Gi, (19)

where the gauge potential A(z) given by Eq. (14) is taken into account,
and the retarded (R) and advanced (A) Green functions are both evaluated
at the Fermi level,

oRA _ —€x — Mo, — k.p(z)oy + pr(2) ;
[—ext(2) + 1r(2) £ 9/271 (2)] [—exc) (2) + pr(2) £ i/27,(2)]

Here, ex = (¢ + k2)/2m with % = k2 + k2, p,(2) = p— m 82(2)/2 — ed(2)
with u denoting the chemical potential, and :

et (2) = e F [M? + k2 82(2)] /2, (21)

where the upper (lower) sign refers to 7 (|). The quasi-particle energies
€ky(1)(2) are the eigenstates of the whole Hamiltonian (poles of the Green
functions). They correspond to pure spin states only outside the wall,
whereas inside the wall they have no pure spin-up (spin-down) form because
of spin mixing by the wall. Finally, 7(z) and 7,(2) in Eq.(20) are the
relaxation times, which for impurity scattering potential V; independent of
the electron spin have the form

(20)

1 mV

O arcsinh Ml
13 _ ™

ﬁ() M

M . kry(2) B(2)
:Fﬁ(z) arcsinh -T] :

where kp1(;)(2) are the appropriate Fermi wavevectors,

kﬁ-r(i)(z) = 2mpu,(2z) + 2m26%(2) =

1/2

[km(z) £ Rrile)

(22)

& 2m [2mp.(2)B8%(z) + m2B*(2) + M?) (23)

The difference in scattering times is due to a difference in the density of
states at the Fermi level for | and | states.
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Figure 2. Domain wall contribution to local conductivity, calculated for L = 50 A,

Fermi energies Ep; = 3 eV and Ep) = 2.5 €V, and for impurity scattering potential
leading to the bulk conductivity (without domain wall) ¢ = 0.67 - 105 Ohm~! em~1.

1 2

o

The local conductivity o,, is a smoothly varying function of z, g, =

Uzz(z)?

> 7o(2) (% +m?B%(2) kro (2) -

—m2Mp(z) arctan %ﬂa) - (24)

Given the conductivity ¢,.(z), the average resistivity of a sample of
length d with a domain wall can be found as
R dz
Bivva o22(2)
The DW contribution to the local conductivity, Ac,,, is shown in Fig.2
as a function of z. It is evident that this contribution is positive, i.e., the
conductivity is enhanced within the wall. The enhancement shown in Fig.2
is not large, but it could be larger when one would assume appropriate spin
asymmetry of the impurity scattering potential. It should be noted, how-
ever, that by taking opposite spin asymmetry for the impurity scattering

(25)
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potential, the enhancement can be diminished or even can change sign, i.e.,
the conductivity within the wall can be lower than outside the wall. Thus,
this model can account for both signs of the magnetoresistance associated
with DWs. This sign depends on the spin asymmetry of impurity scattering
potential.

2.4. Weak localization effects

It is well known that external magnetic field suppresses the WL correc-
tions to conductivity. More specifically, the vector potential associated
with the magnetic field produces an additional phase shift which destroys
the quantum interference effects responsible for these corrections. From
the discussion of the two preceding subsections follows, that the DW effect
on electrons in a ferrdma.gnetic metal can be described in terms of the spin
dependent gauge potential A(r). One may then expect, that this gauge po-
tential has a similar influence on the quantum corrections to conductivity as
the vector potential associated with an external magnetic field. This prob-
lem was analyzed by Tatara and Fukuyama,'?14 and also by Lyanda-Geller
et al.??

The quantum corrections to conductivity due to WL are important at
low temperatures, while at higher temperatures they are suppressed by in-
elastic scattering processes. They are usually accounted for theoretically
in terms of cooperons,®2 i.e., propagators which describe propagation in
space and time of the superconductive density fluctuations. In nonmagnetic
systems there are singlet and triplet cooperons, which contribute with op-
posite signs. There is, however, an essential difference between WL effects
in nonmagnetic and ferromagnetic systems, even if there are no DWs in
the latter case. This difference is due to internal magnetic field and asso-
ciated vector potential, which diminishes or even suppresses in some cases
the WL corrections in ferromagnets. If, however, the corrections are not
suppressed, then the magnetization usually suppresses the singlet cooperon.
As a consequence, there is no weak antilocalization effect in ferromagnetic
systems with strong spin-orbit scattering, contrary to nonmagnetic ones.
Accordingly, the magnetoresistance related to WL in ferromagnets is al-
ways negative.?3

The cooperon. C(r,r’) can be found from relevant ladder-type
diagrams.1920:22.23 The corresponding localization correction to the local

* conductivity is then related to the cooperon via the expression

2
S0 = —~2D%C(r, r), (26)
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where D is the diffusion constant The key question is then to find the
cooperon from the appropriate integral or differential equations.

The effect of DW on quantum corrections is related to a specific mech-
anism of the suppression of cooperons by the gauge field associated with
the domain walls. Accordingly, the resistance of a system without DWs is
larger than in their presence because DWs destroy the negative corrections
to conductivity. Associated magnetoresistance is therefore negative. Weak
localization correction to conductivity in ferromagnets in the presence of
DWs was analyzed by Tatara and Fukuyama'®'4 as well as by Lyanda-
Geller et al,?? but in the case of quasi-one-dimensional wires. When the
lateral dimension d) obeys the condition d; > 1 > k;l, then electron mo-
tion is three dimensional, However, when additionally ls > d.1 , where [y is
the phase coherence length, the system behaves like quasi-one-dimensional
from the point of view of WL effects. Under this condition Lyanda-Geller
et al?? found the localization correction

2
€
60V = — i (g + L) (27)

where I;2 = D~Y(r;' + 7;'). Here 74 is phase coherence time in the
absence of DW, and 1/7, = D/4M?72Ld. Thus, the wall contributes to
phase decoherence and one can note that 6o in the presence of the wall
is smaller than in its absence. Accordingly, conductivity of a system with
DW is larger than that of a system without the wall. The parameters 7y,
lg, and kr, which enter Eq.(27), were assumed to be independent of the
spin orientation. In a general case, however, they are spin dependent.

The above considerations apply to DWs which are uniform in their
planes. When, however, this condition is not fulfilled, then there is an
additional factor leading to suppression of the WL corrections, which is
related to the Berry phase.?? This contribution is described quantitatively
by the additional dephasing length [as related to the fact that the magneti-
zation (which is coupled to electron spin) encircles a nonzero solid angle
for electrons completing a self-crossing trajectory. It is worth to note that
Q1 = 0 for DWs which are uniform in their planes.

3. Transport through an atomic-size domain wall
3.1. Scattering states

Let us consider again the Hamiltonian (1) describing electrons in a spatially
inhomogeneous magnetization M(r). For a very narrow constrained DW
one may consider only a few channels for electronic transport. A limiting
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situation is when there is only a single transport channel. In such a one-
dimensional case the Hamiltonian (1) can be rewritten as

i
H=—%E?—JMZ(Z)O}—JM$(Z)JI. (28)
We will make use of the scattering states taken in the form

eikrz +rR e_'isz
f —LCLZ o < -L
TRT e

Xr1k(2) = (29)
tns Lz
(o). e

where ky(;) = v/2m(E £ M), and E is the electron energy. This state
describes the spin-up electron wave incident from —oo and partly reflected
and transmitted into the spin-up and spin-down channels. The coefficients
trt and t{:tT are the transmission amplitudes without and with spin reversal,
respectively, whereas rry and T{%T are the relevant reflection amplitudes.
The analogous form have the scattering states related to the spin down wave
incident from left to right (labeled with R | k), as well as the scattering

states related to electron waves incident on DW from the right.
Integrating the Schrédinger equation Hi = Et) with the Hamiltonian

(28) from —¢& to +4 in the vicinity of z = 0 (where the domain wall is
located), and assuming L < § < kT_(i)’ one obtains

il
2m \ dz |
where n is the electron state index (n = R(L) T (1) k) and X is a factor
defined as

_ %=
dz

) _ X xa(0) =0, (30)
-5

Ne / dz IMa(2) ~ ML (31)

Equation (30) has the form of a spin-dependent condition for transmission
through a é-like potential barrier located at z = 0.

Taking into account the scattering states (29) and the condition (30),
in combination with the continuity condition for the wave functions, one
finds the following expressions for the transmission amplitudes:

2up(yy(vr +vy)

BRI = ELUD = Gy o)2 + AN2 (32)
did vy (33)

L e
RT(l) Ll(T) (’UT +'Ul)2 +4A2’
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where vy(y) = ky(yy/m.
According to Eq.(33), the magnitude of the spin-flip transmission coef-
ficient can be estimated as

Av 2 Me 2
WAL & e T L 2
| | (U2+)\2) (EF€0+M2) b (34)

where ep = k%—-/?m, and g9 = 1/mL?. For krpL < 1 one finds e > eF.
Taking ep ~ M, once obtains
2 M 2
1t7|” ~ (—- ka) < 1. (35)
EF
Thus, a sharp domain wall can be considered as an effective barrier for the
spin-flip transmission.
It should be noted that the conservation of flow has the following form
5 2 L 2 —
vy (1 = |7R1] ) U |?‘{n| = v [trt]" + vy Ptfa' ) (36)

and analogous equations hold also for the other scattering states.

3.2. Resistance of the domain wall
To calculate the conductivity we start from the current operator
i(2) = ey'(2) D3()- (37)

Expanding 1(z) in the scattering states (30), and performing quantum-
mechanical averaging, one obtains the following formula for the current

=—-—ze2 / & G (e) X1 (2) D xn(2), (38)
where n is the index of sca.ttermg states. The matrix elements of the velocity
operator o = —(i/m) 0, can be calculated in the basis of the scattering

states, and one obtains

vri) = (R TR DI RT()k) = v [trrwy|” +orq) |t£m)!2, (39)
and similar expressions for the other states.

The retarded Green function G,(g) in Eq. (38) is diagonal in the basis
of scattering states. Assuming that the transmission of electrons through
the barrier is small, one can take the chemical potential constant u = ug
for z < 0, and p = py, for z > 0. This corresponds to the voltage drop

= (ur — pr)/e across the barrier. The Green function Gryi(€) acquires
then the following simple form

Grik(e) = -

€ —ert(k) +pp+1i8’

(40)
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where g (k) = k?/2m — M. The other components of the Green function
have a similar form.
After integrating over £, one finds

j(z)=e / % {vr X1k (2) XR1%(2) 0 1R — ER1(K)]

+vy Xhyk(2) Xr16(2) 0 (R — €Ry (K)]

—vt XL 1(2) xe1k(2) 0 [z — et ()]
oy X} (2) X2 k() 0 e — en1 ()]} (41)
In view of the conservation of charge, the current does not depend on z,
and therefore can be calculated for z = 0. Moreover, the total current from
the states egy())(k), €11()(k) < pr vanishes and only the states obeying the
condition uy, < €gy(y)(k) < pr contribute to the current. The conductance

G can be then found as a linear response to small perturbation (in the limit
of U — 0), and one finds

et [
o ( L el + |t£1| b —T ltry|® + Itﬂil ) (42)

where all the velocities and transmission coefﬁments are taken at the Fermi
level.

Finally, using Eqs (32) and (33), one can write the conductance in the
form

4¢2 Vv (vr + 7-’1)2 + 22 ('U% + vf)

w

[(vr +v;)? + 4,\2] ; e

In the limit of vy = vy and A — 0 one obtains the conductance of a single
spin-degenerate channel, Go = e2/.

The dependence of G/Gy on the wall parameter L is shown in Fig. 3 for
different values of the parameter M. One can note that the conductance in
the presence of a domain wall is generally much smaller than in the absence
of the wall. Accordingly, the associated magnetoresistance can be very large
(more than 100%, which corresponds to G/Go < 0.5)), in agreement with
experimental observations. It is also worth to note that resistance of an
abrupt domain wall is not so large as the resistance of a thicker domain
wall (provided the conditions assumed for the model are fulfilled).

4. Summary

We have presented theoretical description of the domain wall contribution
to electrical resistivity of metallic ferromagnets. Two limiting cases were
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Figure 3. Relative conductance in the presence of a domain wall calculated as a function
of L for Ep = 0.2 eV and for different values of the parameter M as indicated. For these
parameters kg is about 7 A.

analyzed in details - the case of a thick domain wall with diffusive elec-
tron transport across the wall, and the limit of atomic-size and constrained
domain wall, which effectively could be described by a one-dimensional
model. These two possibilities are not the only ones. In very pure systems
electronic transport across thick domain wall can be ballistic, despite the
fact that the domain wall itself may be considered quasi-classically.?* Apart
from this, transport in real nanoconstrictions involves more channels and
should be described by a more general theory. Anyway, such an approach
may be useful particularly in the cases of point contacts based on new
semiconductors heavily doped with magnetic impurities, like ferromagnetic
GaMnAs or related compounds.
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