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Comment on ‘‘Three-dimensional kicked hydrogen atom’’

A. Matos-Abiague* and K. A. Kouzakov†
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~Received 13 January 2003; published 28 July 2003!

In a recent paper, Klews and Schweizer@Phys. Rev. A64, 053403~2001!# presented a computational method
for the three-dimensional propagation of wave packets in the hydrogen atom driven by a train of short
unidirectional electric-field pulses. They argued that their computational scheme is valid for an arbitrary value
of the pulse strength. We show, however, that such a scheme leads to both mathematical and physical incon-
sistences when strong pulses are considered, and, consequently, its validity is limited to the case of weak fields.
The generalization to the case of an arbitrary pulse strength is also commented.
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In the recent work@1#, an alternative method based o
space discretization techniques has been proposed fo
treatment of the three-dimensional kicked hydrogen ato
The Hamiltonian of the kicked hydrogen atom can be writ
in atomic units as@see Eq.~1! in Ref. @1##
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, ~1!

whereS is the number of kicks applied,T its period,F is the
external field, andH0 is the Hamiltonian of the field-free
hydrogen atom. As between the pulses, the evolution of
wave packet is field-free, Klews and Schweizer@1# imple-
mented a finite-element technique combined with a Cay
expansion of the field-free time propagatore2 iH 0dt for the
wave-packet propagation between two consecutive kic
For details on this scheme of field-free propagation of wa
packets the reader can also consult Ref.@2#. The action of the
kicks is incorporated by connecting the wave function imm
diately before the pulse with the wave function directly af
the pulse. The time integration of the kicked system de
mined by Eq.~1! is then performed by repeating this proc
dure for each pulse, as represented in Fig. 1 of Ref.@1#. The
relation that connects the wave function right before
pulse with the wave function immediately after the pulse
obtained by a direct integration of the formal solution
Hamiltonian~1!

c~r ,t !5e2 i tH 0c~r ,0!1E
0

t

e2 i (t2s)H0~2 iF•z!c~r ,s!

3d~s2T!ds. ~2!

Thus, Klews and Schweizer@1# integrated Eq.~2! and after
an inappropriateuse of the so-called sifting property of th
Dirac d function
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f ~s!d~s2T!ds5H 0 if t,T

1
2 f ~T! if t5T ~T.0!

f ~T! if t.T,

~3!

they obtained the following relation:

c~T1!5S 11
i

2
F•zD 21S 12

i

2
F•zDc~T2!, ~4!

with c(T2) andc(T1) representing the wave functions im
mediately before and right after the pulse applied att5T,
respectively. The authors then argued that Eq.~4! @i.e., Eq.
~11! in Ref. @1## ‘‘describes exactly the influence of ad pulse
onto the wave function independently from the strengthF of
this pulse.’’ A more careful analysis, however, reveals th
when the pulse strengthF is not small, Eq.~4! @i.e., Eq.~11!
in Ref. @1## is inconsistent from both physical and mat
ematical point of views. Indeed, in the limit of very larg
pulse strengthF→` one has, roughly speaking, that Eq.~4!
leads tou^c(T1)uc(T2)&u2→1, which basically means tha
for strong enough fields the system behaves as if no p
was applied. Such a behavior is paradoxical from the ph
cal point of view.

From the mathematical point of view, the procedure
obtaining Eq.~4! by using identity~3! is, in general, inap-
propriate. The use of this identity requires the continuity
the sub-integral functionf (s) at the points5T ~see, e.g.,
Refs. @3–5#!, something that is in clear contradiction wit
Eq. ~4!, where a discontinuity of the wave function att5T is
observed. We stress that, actually, the nature of the prob
itself requires the wave function to have discontinuities at
moment of application of each pulse. However, for we
enough pulses, the discontinuity of the wave function b
comes small@c(T1)'c(T2)# and the application of Eq.~3!
is justified. Nevertheless, it is worth remarking that, contra
to the statements of the authors in Ref.@1#, Eq. ~4! does not
describe exactly the influence of ad pulse onto the wave
function. It is just an approximation that is only justified fo
weak pulses. We note that the authors of Ref.@6# also made
an inappropriate use of the sifting property of the Diracd
function in their analysis of a kicked nonlinear two-lev
system. Consequently, the validity of the results in Ref.@6# is
also limited to the weak-field regime.
©2003 The American Physical Society01-1
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The correct relation that connects the wave function ri
before the pulse@c(T2)# with the wave function immedi-
ately after the pulse@c(T1)# can be straightforwardly found
by observing that the operatorU(T1 ,T2) describing
the evolution from c(T2) to c(T1)@c(T1)
5U(T1 ,T2)c(T2)# is given by

U~T1 ,T2!5expF2 iH 0~T12T2!2 iF•zE
T2

T1

d~ t2T!dtG .
~5!

In the limit (T12T2)→0, Eq. ~5! reduces to

U~T1 ,T2!5e2 iF•z, ~6!

and, consequently,

c~T1!5e2 iF•zc~T2!. ~7!

The equation above is free of physical inconsistences an
the correct one that exactly describes, instead of Eq.~4!, the
influence of ad pulse onto the wave function, independen
of the value of its strengthF. In fact Eq. ~7! is consistent
with the expression usually considered for the evolution
erator in modeling kicked atoms~see, e.g., Refs.@7,8#!. One
can also derive the matching condition, Eq.~7!, by direct
integration of the Schro¨dinger equation corresponding to th
Hamiltonian in Eq.~1!. As the wave function is not a con
tinuous function of time at the moment of application of ea
pulse, it is convenient to introduce the area of thed function
as a new variable. Considering that the Diracd function can
be represented as

d~ t2T!5H lim
e→0

1

e
for T2,t<T1

0 elsewhere,

~8!

whereT25T2e/2 andT15T1e/2, the area of thed func-
tion as a function of time in the intervalT2,t<T1 can be
written as follows:

a~ t !5E
T2e/2

t

d~ t82T!dt85
~ t2T1e/2!

e
. ~9!

Thus, right before and after the pulse we havea(T2)50 and
a(T1)51, respectively. In terms of the new variablea(t)
and after performing the limite→0, the Schro¨dinger equa-
tion reduces to
01740
t

is

-

i
]c

]a
5F•zc, ~10!

whose general solution is given by

c~a!5e2 iaF•zc~a50!. ~11!

The correct matching condition@Eq. ~7!# can then be easily
obtained from Eq.~11! by taking into account thatc(a
50)5c(T2) andc(a51)5c(T1). We stress that this las
procedure for integrating kicked systems is rather gen
and is valid even in the case of kicked nonlinear Schro¨dinger
equations, where the expression for the evolution operato
Eq. ~5! does not hold.

Concerning relation~4!, the situation now is still more
clear. One can notice that the evolution operator given in
~4! is nothing but the result of a Cayley expansion of Eq.~6!
that is correct only up to orderF2. Consequently, Eq.~4!
@i.e., Eq. ~11! in Ref. @1## is only valid, as was previously
commented, for pulses with small strength. This fact a
explains why forF5231023 a.u. ~i.e., a weak field!, the
results obtained by Klews and Schweizer in Ref.@1# are in
agreement with those reported by Dharet al. @8# who per-
formed a stroboscopical description of the dynamics of
kicked hydrogen atom by using an expression for the evo
tion operator similar to Eq.~6!. The situation can drastically
change, however, if intensekicksare considered. In the par
ticular case of a Rydberg atom, under the action of half-cy
pulses~HCPs!, the actual train of pulses can be simulat
within the sudden approximation through a series of kic
where strengthsF5Dp are given by the momentum trans
ferred to the system by the HCPs@see Eqs.~2! and~3! in Ref.
@1##. Modern laser technologies allow the generation
HCPs with field peaks of hundreds of kV/cm and duratio
in the picosecond and subpicosecond regimes~see, for in-
stance, Ref.@9#!. For such pulses, the transfer of momentu
can be considerably large. For a Gaussian-like HCP,
transfer of momentum can be estimated byF'1.06F0tp
@10#, F0 and tp being the peak field and the full width a
half-maximum of the pulse, respectively. Thus, for a pu
with F05150 kV/cm andtp51 ps the corresponding mo
mentum transfer is given byF'1.28 a.u.~i.e., several orders
of magnitude greater than the values ofF used in Ref.@1#!.
For such HCPs Eq.~4! is no longer valid and, in general, on
has to substitute the connecting relation~4! ~valid only for
very weak fields! by the exact one~7! ~valid for arbitrary
strengths of the pulses! in order to properly describe the dy
namics of wave packets in the hydrogen atom kicked
intense pulses.
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