PHYSICAL REVIEW A 68, 017401 (2003
Comment on “Three-dimensional kicked hydrogen atom”
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In a recent paper, Klews and Schweiehys. Rev. /64, 053403(2001) ] presented a computational method
for the three-dimensional propagation of wave packets in the hydrogen atom driven by a train of short
unidirectional electric-field pulses. They argued that their computational scheme is valid for an arbitrary value
of the pulse strength. We show, however, that such a scheme leads to both mathematical and physical incon-
sistences when strong pulses are considered, and, consequently, its validity is limited to the case of weak fields.
The generalization to the case of an arbitrary pulse strength is also commented.
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In the recent wor 1], an alternative method based on 0 if t<T
space discretization techniques has been proposed for the t ) .
treatment of the three-dimensional kicked hydrogen atom. Jof(3)5(S—T)dS= (M) if =T (T>0) (3
The Hamiltonian of the kicked hydrogen atom can be written f(T) if t>T,
in atomic units agsee Eq.(1) in Ref.[1]]
they obtained the following relation:

S-1

p? 1
H=Hg+r-F>, 8(t—KT), Ho=%——,
k=0 2

. 1 .
(1) 1//(T+)=(l+|§F-Z) (1—%F-Z)¢//(T), 4

with (T _) and(T.) representing the wave functions im-

whereSis the number of kicks applied; its period,F is the ~ mediately before and right after the pulse applied af,
external field, ancH, is the Hamiltonian of the field-free respectively. The authors then argued that €g.[i.e., Eq.
hydrogen atom. As between the pulses, the evolution of thél) in Ref.[1]] “describes exactly the influence ofapulse
wave packet is field-free, Klews and Schweif&t imple- ~ onto the wave function independently from the strerfgibf
mented a finite-element technique combined with a Cayleyhis pulse.” A more careful analysis, however, reveals that
expansion of the field-free time propaga®rHo® for the ~ When the pulse strengfais not small, Eq(4) [i.e., Eq.(11)
wave-packet propagation between two consecutive kickdn Ref. [1]] is inconsistent from both physical and math-
For details on this scheme of field-free propagation of waveématical point of views. Indeed, in the limit of very large
packets the reader can also consult R2f. The action of the ~Pulse strength-— o one has, roughly speaking, that E4)
kicks is incorporated by connecting the wave function immeJeads tol(¢(T)[¢(T))|>—1, which basically means that
diately before the pulse with the wave function directly afterfor strong enough fields the system behaves as if no pulse
the pulse. The time integration of the kicked system deterwas applied. Such a behavior is paradoxical from the physi-
mined by Eq.(1) is then performed by repeating this proce- cal point of view.

dure for each pu]se, as represented in F|g 1 of B_éfThe From the mathematical pOint of VieW, the prOCEdUre for
relation that connects the wave function right before thePbtaining Eq.(4) by using identity(3) is, in general, inap-
pulse with the wave function immediately after the pulse isPropriate. The use of this identity requires the continuity of

obtained by a direct integration of the formal solution of the sub-integral functiorf(s) at the points=T (see, e.g.,
Hamiltonian (1) Refs.[3-5]), something that is in clear contradiction with

Eq. (4), where a discontinuity of the wave functiontat T is
observed. We stress that, actually, the nature of the problem

i b =9 itself requires the wave function to have discontinuities at the
p(rir)=e 0¢(r,0)+f0e o(—iF-2)y(r,s) moment of application of each pulse. However, for weak
enough pulses, the discontinuity of the wave function be-

X 8(s—T)ds. (2) comes small (T )~ (T_)] and the application of E¢3)

is justified. Nevertheless, it is worth remarking that, contrary
to the statements of the authors in Rdf], Eq. (4) does not
Thus, Klews and Schweizé¢l] integrated Eq(2) and after  describe exactly the influence of & pulse onto the wave
an inappropriateuse of the so-called sifting property of the function. It is just an approximation that is only justified for
Dirac 6 function weak pulses. We note that the authors of Réf.also made
an inappropriate use of the sifting property of the Di&c
function in their analysis of a kicked nonlinear two-level
*Email address: amatos@mpi-halle.de system. Consequently, the validity of the results in R&fis
"Email address: kouzakov@mpi-halle.de also limited to the weak-field regime.
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The correct relation that connects the wave function right Y
before the pulsé (T_)] with the wave function immedi- =5 = Fz¢, (10
ately after the pulsgy/(T, )] can be straightforwardly found
by observing that the operatoU(T,,T_) describing \ynose general solution is given by
the  evolution from (T_) to (T )[H(T,)
=U(T,.,T_)&(T_)] is given by :
: Wa)=e 2 Zy(a=0). (11)

U(T, ,T)=exp[ —iHO(T+—T,)—iF-sz+ 5(t—T)dt}.
T_

©)
In the limit (T, —T_)—0, Eq.(5) reduces to
U(T,,T)=e 77 (6)
and, consequently,
WT)=e F2y(To). 7

The equation above is free of physical inconsistences and

the correct one that exactly describes, instead of(&q.the

influence of as pulse onto the wave function, independently
of the value of its strengtlr. In fact Eq.(7) is consistent
with the expression usually considered for the evolution op

erator in modeling kicked atonfsee, e.g., Ref$7,8]). One
can also derive the matching condition, Ed@), by direct

integration of the Schidinger equation corresponding to the
Hamiltonian in Eqg.(1). As the wave function is not a con-
tinuous function of time at the moment of application of each

pulse, it is convenient to introduce the area of &hinction
as a new variable. Considering that the Digafunction can
be represented as

1
lim— for T_<t<T,
S(t—T)={ e-0€ (8)
0 elsewhere,

whereT_=T—¢€/2 andT =T+ €/2, the area of thé func-
tion as a function of time in the intervdl_<t<T_ can be
written as follows:

t t—T+e€l2
a(t)=JT7 /25(t’—T)dt’=%. 9

Thus, right before and after the pulse we hay& )=0 and
a(T,.)=1, respectively. In terms of the new variakdét)
and after performing the limig—0, the Schrdinger equa-
tion reduces to

The correct matching conditioriEg. (7)] can then be easily
obtained from Eq.(11) by taking into account that/(a
=0)=(T_) andy(a=1)=(T,). We stress that this last
procedure for integrating kicked systems is rather general
and is valid even in the case of kicked nonlinear Sdhrger
equations, where the expression for the evolution operator in
Eq. (5) does not hold.

Concerning relation(4), the situation now is still more
clear. One can notice that the evolution operator given in Eq.
(4) is nothing but the result of a Cayley expansion of Ej.
that is correct only up to ordef?. Consequently, Eq(4)

i.e., Eq.(11) in Ref. [1]] is only valid, as was previously
ommented, for pulses with small strength. This fact also
explains why forF=2x10"2 a.u. (i.e., a weak fielyj the
results obtained by Klews and Schweizer in Réf| are in
agreement with those reported by Dretral. [8] who per-

formed a stroboscopical description of the dynamics of the

kicked hydrogen atom by using an expression for the evolu-
tion operator similar to Eq6). The situation can drastically
change, however, if intendécksare considered. In the par-
ticular case of a Rydberg atom, under the action of half-cycle
pulses(HCPg, the actual train of pulses can be simulated
within the sudden approximation through a series of kicks
where strength& =Ap are given by the momentum trans-
ferred to the system by the HCP=ee Eqgs(2) and(3) in Ref.
[1]]. Modern laser technologies allow the generation of
HCPs with field peaks of hundreds of kV/cm and durations
in the picosecond and subpicosecond regirtse®, for in-
stance, Ref{9]). For such pulses, the transfer of momentum
can be considerably large. For a Gaussian-like HCP, the
transfer of momentum can be estimated By-1.06-t,
[10], Fo andt, being the peak field and the full width at
half-maximum of the pulse, respectively. Thus, for a pulse
with Fo=150 kV/cm andt,=1 ps the corresponding mo-
mentum transfer is given by~ 1.28 a.u(i.e., several orders

of magnitude greater than the valuesFofised in Ref[1]).

For such HCPs Ed4) is no longer valid and, in general, one
has to substitute the connecting relati@h (valid only for
very weak fields by the exact ond7) (valid for arbitrary
strengths of the pulsg order to properly describe the dy-
namics of wave packets in the hydrogen atom kicked by
intense pulses.
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