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The soluble model of interaction of a finite series of zero - duration pulses with an atom is considered. The
model is based on the nowadays laser techniques providing duration of pulses of a few femtoseconds and even
less, and intensities higher than 10%4-10% Wt/cm?.
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1. INTRODUCTION

Investigation of electromagnetic pulse interaction with quantum systems has led to discoveries of new phenomena
and effects in the last two decades. One of them is the phenomenon of the above-threshold ionization of atoms!
(2 remarkable review of the theory of two-electron atom in the strong light field was given in the paper?) . The
other one is the adiabatic stabilization of atoms against photoionization in the intense laser pulse (cf. Ref?
and references therein). Recently, the adiabatic stabilization of excitons in an intense THz laser pulse has
been predicted in the case of GaAs system? . These particular findings illustrate just some of new interesting
applications of modern laser technology® .

Nowadays laser facilities allow generation of pulses with durations of a few and even fractions of 2 femtosecond
and intensities up to the order of 10*4-10%° Wt/em? (Ref.%). Recent proposals promise to achieve in the near
future the durations of 107*7 s (Ref.”) and even 107! — 10722 s (Ref.?). This makes possible to consider the
models of zero-duration electromagnetic pulses interacting with a quantum system®*? . Such a model belongs
to so called soluble models what is of considerable importance for predictions of results which can be expected in
the case of real short pulses. In particular, the effect of localization of the Rydberg atom in a train of ultrashort

unidirectional weak electric-field pulses has been observed recently'® 2 .

In the most of theoretical treatments the semiclassical and even classical methods are widely used, one -
dimensional models are considered. However, the general problem of interaction of a many - electron quantum
system with zero-duration electromagnetic pulses requires a proper quantum mechanical framework. In this
paper we construct the model of interaction of a train of zero-duration pulses with an atom. The model allows,
to some extent, the exact solution, what is important for future applications. Particular emphasis is put on the
case of the single pulse and its effect on a hydrogen atom is investigated. Atomic units are used throughout the

paper.
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2. THEORY

2.1. General formulas

The time - dependent Schrédinger equation including the interaction of electromagnetic radiation with the atom
can be written, in the dipole approximation, in the form:

SO S —

.0, . \
z§@>:HW>+me>. (1
In equation (1)} H is the Hamiltonian of the atom. In the length gauge to be used further V(t) = —Zf 2
i
where summation is performed over all electrons of the atom and & = —-’C-ig%ﬁ With a definite choice of the ;

short pulse shape of the vector potential .»i(t) we can write approximately

N-1
V(t)=V ) Aub(t—nr). (2)

n=0
In (2) the potential spatial part V = &5 7;, € is the polarization operator that is perpendicular to the wave

2
vector and T is the period between the pulses. The approximation (2) corresponds to the model of “kicked”
excitations® in the case of half-cycle pulses (HCPs). It is equivalent to that used in the theoretical treatment of
1D “kicked” Rydberg atoms'® 12 . However in contrast to'®1? | we exploit below a fully quantum mechanical
3D approach.
Now we pass on to the interaction representation. For this purpose we transform

W >=e g > | (3)

For {¢ > the following equation is obtained

. a : i 3 [ ¥, |

im0 >= eV (e g >=V(t)lg > (4)
with the initial and boundary conditions: {¢ > o= |0 > is the ground state of the atom before the field
begins its action, {¢ >¢_oc= {f > is a final state when the action of the pulse series terminates. It is evident
that _ ‘

e s > g B g

where |s > is the eigenfunction of the operator H, describing a certain state of the atom.

The solution of (4) by means of its traditional transformation into the integral equation’* is not effective !
here, because we have to determine the values (¢(k7) >, which can not be calculated from the equation. In the ~
points ¢ = k7 the overlap between the step gap of the function {¢(¢) > and the strong singularity of the § -
function takes place™. To overcome this difficulty we introduce the evolution operator of the form

[6(2) >= &5 )ig(t0) > (3)
Inserting (5) into (4), we obtain
4 1 H / 1 r 2% 7 ‘
S+§@ﬂ+§@wﬁh+“:ﬂw0 (6)
Let us consider first the interval —oco < t < 7. Inside this interval the obvious solution of eq. (6) looks like ‘
S(t,—o0) = —iAgV(t) (")
“L.A. Melnikov paid our attention to this circumstance '
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and, consequently,

[6(t) >= e~H40VED|p > (8)

Consider now the interval {1 < t < 27 with 0 < ¢; < 7. In this interval we look for the solution in the form

S(t,t1) = —iA; exp iH7)Vexp (—iHT)8(t — T) + P(t1)- 9)

For the operator P(t;) we have the complex nonlinear differential equation from (6), but there is no sense to
solve it if we remember well known properties of the evolution operator

8S(u’) - eS(t,t”)eS(t",t')’ eS(t.z) =1.

It follows from the condition S§(t1,7;) = 0 that P(#;) = 0 and, besides that

eS(t,—oc)EO = eS(t,t;)eS(tL—cc)%O >= e—-iA1 exp (iHT)V exp(—iHT)e(t-T)e——iAQngo >
= e'iH're—iAlVG(t—f)e—-iHTe—-iAnVio > . (1())

Continuing this procedure of the solution of eq. (6) in different intervals we obtain at t — +oc

N-1
9(00) >= 5o m)ig > T [ Hem AV e H 0 > (11)

n=0

The solution (11) keeps the additivity property of the initial equation (4), i.e., if one puts there 7 =0 (all the §
- functions combine in a single one), then the coefficient before the unified 8 - function is A = 3_ A;. The same
property we observe in (11)). Note, that the solution (11) is exact and correct for all finite values A;.

Here we have to say a few words about the result obtained in the paper of Klews and Schweizer'® . That
result coincides with ours if one uses the Pade approximation for the exponent

‘A
e—iAV 1-igV
1+i4V’
and it, naturally, is valid only for small intensities A (see Fig. 2).
The amplitude t o of transition from the initial state of the atom into a certain final state assumes the form:

N-1
tro =< i H ieinTHe—iA"ve_inTH};O > . (12)

n=>0

The probability density of such a transition is

wyo = [tgol*. (13)
It is easy to verify that > £ wyodpy = 1, with dpy being the density of final states. For convenience we shall
further derote F,, = —1 + e~*4+" and use the formula
N-1 N-1 N-1
J[G+e)=1+ Z G5, + Y G505 + o
s=0 $1=0 s1>89

In this case the amplitude ¢7o in (12) will be expressed by the sum
to = b0+ 155 + 1oy o F1yp) (14)

where the term fg%) describes the transition from the state 0 > into the state |f > via (s — 1) of intermediate
states.
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The characteristic period 7 between the pulses determines the characteristic energy € = (%) of the photon
being transferred by the field to the atom. If we measure this energy in electron-volts (eV) and the period in
femtoseconds (fs=107'% s), then € = 4.134/7. Assume that very short pulses have a long period of 7 (hundreds
of femtoseconds and even picoseconds). In this case it is possible to consider the problem of influence of such a
pulse train on transitions in the atom, taking all 4, to be equal to A. From equation (14) it follows that

1~ e'iNT('Ej«Bg) .

1 _ | -
tfﬂ = '_"'"'—""—'—'—'1 — eiT(Ej‘En) < f_FgO > (10)

0 _ < FiEw><viFI0> [1 - eVT(Bs=E) ] _ piNT(Es—En) 6
fo = Z 1 — eit(Eu—Eo) 1 —ei"(Es=E.) 1 gir(Bs-Eo) (16)
and so on.
Let us first consider the direct transition term t}‘o) The function
1 - ei!\f'r(Ej‘En)
X = o E-E (17)

has sharp peaks with sufficiently large N at E,, = Ej + me, and at these finite energies [x(7)| = N (Fig.1).
At all other values of Ey the function |x(7)| varies in the vicinity of unity. Thus, it is the states into which
the atom has been transformed by absorbing an integer number of photons that are prominent in the whole
spectrum of the atom.

If the state |f > lies within a bound part of spectrum, then in order to efficiently populate a particular
bound state, it is necessary to exactly hit this state, i.e. to know an exactly determined energy of the photon.

6 - o

1% N=6 :

1 ‘N=5
] —:~\ /'/‘

- % :'/f _

=3 ;N3

13 : =1
0 0.6 1

2yt (Ev-Eop)

Fig 1. Ix(7)| as a function of the number of pulses N = 1,2, ..., 6.
5 IXAT ) p

It is easier to observe such "brightness peaks” in the ionization spectrum (in the literature the peaks in the atomic
energy spectrum arising above the ionization threshold are referred to as ATI - above threshold ionization® 2).

The structure of the 7-dependent function in the term tf,%) is rather complicated. However, it is also possible

to show that if the final state satisfies again the condition E,, = Ey+me, and the transition into the intermediate
state [V > is onto the level E; = Eg + s¢, then at sufficiently high N we can write:

N(N -1 e
#2) ~ —(—T_l Y <miFis ><slFj0> (18)

S
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Thus the amplitude in the "brightness peaks” assumes the form:

tmo 650+ N <miF|0 > +2E1 5~ < miFls; >< s1[F0> +
S1

(19)
NN-DINZD) S~ < m|Fls; >< 511 Plsy >< 5 F0> +...

$1.82

Since in the problem under consideration £ can amount to tenths and even hundredths of the electron-volt,
the peaks are very frequent, beyond the measurement accuracy, and one should deal with certain averaged
values. Thus, it is possible to write in an approximate way:

L (20)

S

where I is the unit operator. In this case, for large N equation (19) leads to the following approximate expression:

tmo < m(F + D)V0 >=< me™ VA0 > . (21)
Note, for a series of the pair pulses with equal intensity A but oppositive sign, Axs = A, Aggp1 = —A,
s=0,...,[N/2), the transition amplitude (12) tends to zero, tmo & 0, that assumes a stabilization effect at

small 7.

2.2. The model of single and two pulses

This section describes the action of a zero-duration single pulse on the hydrogen atom. The transition amplitude
18

tro =< fle™ V0 > (22)
To estimate the value of the coupling constant A it is useful to employ the ratio A = 0.22 x 10-8V/IT, where
] is the laser radiation intensity measured typically in Wt/em? (radiation of such power is said to be intense),
and T (in femtoseconds) stands for duration of the actual pulse that is approximated by the & function. For
example, if I ~ 10* Wt /em? then A =~ 2.2T. If characteristic durations are a few femtoseconds, then A is
measured within ten a.u.

It is seen from (22), that for hydrogen the transition operator is exactly equal to that used for the description
of the first Born matrix elements for (e,2¢) reactions if one puts the transferred momentum from the fast incoming
electron to the atom being equal Q = AF (see, for instance,*®). Probability densities here are practically
analytical functions'® . The transition probability from the ground state to some excited state inl) is described
by the formula: )

|

| o
Wt = War10 = 4(2 + 1) gfrf‘) i (r)jl(Ar)e‘Tdrg , (23)
0 ’

i

R:l=2 l 3/2 (n—l_l)‘ ?‘_T 1L2H—1 gi P‘r/n
' n an+0) \n/) 0/

The following formula takes place!”

with

n—-1 3
2 7(—1 AZ 2 2 AZ AZ 2 2 __ 24 1 (n—3)

?L‘n=zwnz= 56 n’ (~1+3A%n?+n?) A*(A°n°+n 2+ 1) (24)
=0

3 (A2n2 +n? +2n+1)("+3) ’

which for small A < 1 correspends to that of Pade approximation
n?(n? - 9)]
J

A 2
[” CESE

N 25677 (n — 1)(=9)
Un = —3 (n+1)@n+9)

+0(4%)
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Fig. 2 represents the probabilities of several transitions into low - lying states of the hydrogen atom calcu-
lated by formula (23), depending on the coupling constant 4. Two peculiarities are to be noted. It is known
that in the case of transitions caused by ordinary dipole interaction it is the transitions with Al = +1 that
“survive™. In our case the transitions into any final state are represented. But the transitions that do not satisfy
the rule of selection for the orbital quantum number are suppressed in comparison with the transitions that
satisfy this rule. This can easily be seen when comparing w21 and woqg, ws; with wag and wsp and so on.
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Fig.2. Dependence of the excitation probability w,,; on the laser pulse intensity
A: (e) eq. (22); (p) Pade approximation of the evolution operator.

The differential transition probability to a continum state with the momentum |P) (photoionization) after
integration over the azimuthal angle ¢, takes the form

e 128470 A2+ 24p3 + (1 + p?)r?] exp (—arctg ) iz 25)
T (-exp (X)) [+ 24pr+ (T (A2 - 12 +4p7 100 :

where ~1 < z = cos fep < 1 and the principal value of arctg(...) lies in [0,7). Integrating (25) over z, we

obtain!’ R ) . )
256A%p (34% + p* + 1) exp (- sarctggr=2ry) (26)

dw,, = £ .
2 3(1 —-rexpﬂ{\-—v-z;’i)} (A241+24p +p?)3(A2 + 1 - 24p + p?)3 P

Figs. 3 and 4 present the probability densities w5 and w, calculated by eqs. (25) and (26), correspondingly.
One can see significant differences from the case of ordinary dipole interaction: there is almost no scattering
in the direction of the polarization vector, but only in the opposite direction, with the probability reaching the

maximum at A ~ 1.4.
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A

Fig 3. Plot of the ionization probability density w,
versus the pulse intensity A and the momentum p.

Fig 4. Ionization probability density wy as a function
of the pulse intensity A and the angle 8 = 8z p=1
or By =13,6 ev.

At last, integrating Eq. (26) over p, and summing up Eq. (24) by n, we obtain the full ionization probability .
and the full exitation one wy = Y, wy, versus of the pulse intensity A, that sum equals unit, i.e. we+wg =1
(see, Fig. 3).

Fig. 5. Dependence of the full excitation w, and ionization w, probabilities on the pulse intensity A.
Their sum wy +we = 1.

We can also ascribe 1o the subject of this subsection the interesting case Ag = —A; = A which models one
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period of a real pulse. Eq. (12) gives for the transition 0> 10>

o

- o
too(7) = 7137 Z < OeTHMViy > BT o vjeTHAV 1) S eiaT /wpe"'é’dp + Z Wy TET ,  (27)
v L—) n=1
where wp and w;, are defined in (24) and (26).

The probability woo(7) = jtga(T)? for hydrogen are shown on Figs. 6-7. The ground state probability g,
decreases from 1 at 4 = 0 to values of the order of 10~% at 4 = 2 for all choosen meanings of 7 > 0. Worthly
of note that woo(r — 0) ~ 1 for any finite value of A. This means that we always can establish such a small
value of 7 that the probability is close to one. This fact Justifies the above assumption on the stabilization effect
for the series of pair pulses with equal intensity, but opposite sign, what follows from eqs. (12) and (21). The
probability wop like the function of T oscillates and the oscillation magnitude increases from 0 at A = 0 to 0.3
at A = 0.6 and after that decreases up to 0 with increasing of A. On Figs. 6-7 the period 7 is in atomic units.
We remind that 1 a.u. of time is equal 0.024 fs.
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Figs. 6-7. The ground state probability wqq for hydrogen versus the pulse intensity 4 and the time 7 between
two pulses.

2.3. Pulse series

In this section we shall outline the effect of pulse series with long period on the hydrogen atom. Formula (21)
shows that the influence has a coherent character, and a pulse series enhance the effect of a single pulse. Even
if the constant A is actually small the product NA can be ruther big. Thus, due to a coherent character of the
action the problem of interaction of series of relatively weak, short and sparse laser pulses with the hydrogen
atom is reduced to a well known problem of interaction of the fast projectile electron with an atom in the first
Born approximation. The constant 4 appears tc become N times greater.

However, this condition is valid not for all the final states but only for those that satisfy the condition
Em = Eg+me. It is evident that if the photon energy ¢ is fixed by the potentialities of the emitter then in the
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general case it is rather difficult to satisfy the coherence conditions for transitions into the Rydberg states. It
is easier to do so for transitions into the continuum states.

In Fig. 8 the full probability w.(N) for series of N identical pulses is presented. In calculations we used
the approximate formulas (20)-(21). It is easy to see that there is no stabilization of Rydberg states within
this model. This is not surprising, because our model of the pulse train assumes the large period between
pulses compared with the relaxation time. In Fig. 9 the ground state probability wgo for hydrogen versus the
pulse intensity A is displayed by the gray band for different values 2 < 7 < 140 between two oppositive pulses
calculated by formula (27) and by two boundary lines N = 1,2 calculated by approximated formula (21) at
N =1 and N = 2 for identical pulses.

Fig. 9. The ground state probability oo for hydro-
gen versus the pulse intensity A: the gray band calcu-
lated by formula (27) for different values 2 < 7 < 140

N Y o between two oppositive pulses (Ag = —A4A1 = A,
A at a different number of the identical pulses N. N = 2), boundary lines N = 1,2 caloulated by ap-

Fig. 8. The full ionization probability w(N) for hy-
drogen from ground state versus the pulse intensity

proximated formula (21) with Ag = A = A

3. BRIEF CONCLUSION

The presented exactly soluble model of the zero-duration pulses exhibits a number of peculiarities that distin-
guish the interaction of the nltrashort and powerful electromagnetic pulse with the atom from the interaction of,
say, synchrotron radiatior that is usually described in the framework of dipole approximation and one-photon
exchange. Tt would be interesting to verify in experiment the results obtained for the case of a real short pulse.

The simple coincidence of the form of transition operator with that for (e,2e) reactions is valid only for the
hydrogen atom. Already for the helium one encounters the considerable difference. In this respect, it would
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be interesting to investigate the multiple ionization reactions induced by laser pulse for the purposes of the
spectroscopy of electron - electron correlations in quantum systems.
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