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Bias voltage dependence of the magnetoresistance in ballistic vacuum tunneling:
Theory and application to planar Co„0001… junctions

J. Henk* and P. Bruno
Max-Planck-Institut fu¨r Mikrostrukturphysik Weinberg 2, D-06120 Halle (Saale), Germany

~Received 23 May 2003; revised manuscript received 25 August 2003; published 25 November 2003!

Motivated by first-principles results for jellium and by surface-barrier shapes that are typically used in
electron spectroscopies, the bias voltage in ballistic vacuum tunneling is treated in a heuristic manner. The
presented approach leads in particular to a parametrization of the tunnel-barrier shape, while retaining a
first-principles description of the electrodes. The proposed tunnel barriers are applied to Co~0001! planar tunnel
junctions. Besides discussing main aspects of the present scheme, we focus in particular on the absence of the
zero-bias anomaly in vacuum tunneling.
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I. INTRODUCTION

At present, extensive efforts are undertaken to employ
electronic spin in ‘‘magnetoelectronic’’ devices. This ai
challenges especially applied physics, but one is also c
cerned with model systems of spin-dependent transpor
order to understand the basic phenomena.1 Prototypical de-
vices for studies of ballistic tunneling are planar tunnel jun
tions~PTJ’s!, which consist of two magnetic electrodes sep
rated by an insulating spacer. Of particular interest are
dependencies of the tunnel magnetoresistance~TMR! on the
electronic structure of the leads and the spacer, on the w
of the spacer, and on the bias voltage.

The conductance of a PTJ depends on the density of s
~DOS! of the electrodes and of the tunneling probability
the scattering channels.2 The TMR can then be related to th
spin polarization of the ferromagnetic electrodes.3 Biasing,
which can be viewed as a shift of the chemical potentia
one electrode relative to that of the other, enlarges the ra
of energies in which electrons can tunnel through the spa
and introduces an energy dependence of the electrode
polarization.

State-of-the-art calculations for spin-dependent tunne
are based on the very successful density-functional the
~DFT!.4 A bias voltage, however, leads to a nonequilibriu
state, which makes it difficult to apply DFT.4 An appropriate
theoretical description of such a system would require n
equilibrium Green functions~see, e.g., Ref. 5!. Therefore a
question arises of how one can maintain theab initio frame-
work of electronic-structure calculations, in particular for t
leads, but treat the bias voltage in a feasible manner.

Focusing on spin-dependent ballistic tunneling throu
PTJ’s with finite bias, we investigate in the present work a
simple case tunneling through a vacuum barrier. The e
tronic properties of the electrodes can still be compu
within spin-polarized DFT. The crucial point is the electr
static potential in the spacer region. Guided by fir
principles calculations for jellium6 and by theoretical model
for surface barriers, we construct tunnel barriers that sh
the correct asymptotical behavior for large spacer thickn
In particular, one of them compares well with barrier shap
obtainedab initio for jellium. The absence of the zero-bia
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anomaly~ZBA! in vacuum tunneling of Co~0001! which was
recently found by Ding and co-workers7,8 lends itself support
for an application of the proposed tunnel barrier~for an ex-
perimental investigation of Co PTJ’s with an oxide barri
see Ref. 9!. We note in passing that the effect of interfa
states on vacuum tunneling in fcc-Co~001! was recently in-
vestigated theoretically.10,11

The paper is organized as follows. In Sec. II, two heuris
ways of constructing a tunnel barrier~Secs. II B 2 and II B 3!
are motivated. Sec. II C deals with computational aspect
calculations for ballistic tunneling. Results for vacuum tu
neling between Co~0001! electrodes are discussed in Sec. I

II. THEORETICAL

A. Surface-barrier shapes of metals

The shape of the surface barrier of a metal was inve
gated in a vast amount of publications. The possibility
calculate accurately reflected intensities in low-ener
electron diffraction~LEED!, which is a particular surface
sensitive spectroscopy, led to several barrier models. E
cially at very low energies~VLEED!, the shape of the
surface barrier has a considerable effect on the LEEDI (V)
spectra.12 The free parameters that enter its functional d
scription are fixed by fitting theoretical to experimental da
e.g., to VLEED intensities or to energies of surface a
image-potential states.13 The latter can be accessed by i
verse or by two-photon photoelectron spectroscopy.14 Note
that electronic-structure calculations using the local-den
approximation~LDA ! do not reproduce the correct imag
potential in the vacuum.

Regarding electron diffraction, the classical electrosta
potential at a metal surface, with asymptoticsV(z)
'1/(4z), was investigated by Mac Coll.15,16 To avoid the
divergence at the metal surface, Cutler and Gibbons17 pro-
posed a model potential which interpolated between
~constant! inner potentialU of the metal and the image
charge potential in the vacuum region. Among the vario
proposed models, two became the most popular: the
called JJJ barrier, named after the inventors Jones, Jenn
and Jepsen18 ~see Sec. II B 3 below!, and the Rundgren-
Malmström ~RM! barrier19,20~for a discussion of JJJ and RM
©2003 The American Physical Society30-1
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barriers, see Ref. 14!. However, electron scattering is a d
namical process and these static shapes hold in principle
for the energy of interest. An energy-dependent general
tion of the JJJ barrier suggested by Tamura and Feder pr
to be successful in describing the image states at the Pd~110!
surface.21 Further, the atomic structure at the surface lead
a corrugated ~three-dimensional! surface potential.22–26

However, for most applications the laterally~one-
dimensional! and energetically invariant shapes appear to
sufficient.

B. Construction of the tunnel barrier

In this section, we propose two methods of construct
the tunnel barrier. The first method uses the electrostatic
tential of a charge between two electrodes~Sec. II B 2!, the
second approach is a simple superposition of surface po
tials ~Sec. II B 3!.

1. Electrostatic potential between two metal surfaces

Consider a planar tunnel junction with the leadL occu-
pying the half space ]2`,zL], whereas the leadR fills
@zR ,`@ , with zL,zR ~Fig. 1!. The electrostatic potentialVes
of a chargeq51 ~black circle in Fig. 1! between the two
semi-infinite metals can easily be obtained by the method
image charges.16 Because each metal surface acts as a mir
one has to sum up two infinite series of image-charge po
tials ~white and gray circles in Fig. 1!. This procedure results
in

Ves~z!5
1

4~zR2zL! F2g1CS z2zL
zR2zL

D1CS zR2z

zR2zL
D G ,

zP]zL ,zR@ . ~1!

Here, g'0.577216 is Euler’s constant andC denotes the
digamma function.27 The latter is the logarithmic derivativ
of the gamma functionG(z), C(z)5dlnG(z)/dz, with
C(1)52g, C(z)} lnz for z→`, andC(z)}2g21/z for
z→01. Obviously, Ves diverges forz→zL and z→zR . It
shows further the well-known asymptotics for the prese
of a single metallic lead. For example, expandingVes in a
power series aroundz5zR yields

FIG. 1. Method of image charges for two metallic leads~gray
areas!. The chargeq511 ~black circle! is located between the lef
lead L ~with surface atzL) and the right leadR ~with surface at
zR). Two series of image charges are obtained by reflection at
surfaces, starting with reflection either atzL ~white circles! or atzR
~gray circles!. Each image charge is indicated by the order of
flection (1,2,3, . . . ) and thesign of the charge (6). Only the first
three orders are depicted.
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Ves~z!52
1

4~zR2z!
, zP] 2`,zR@ . ~2!

Considering only the first-order approximation forVes, i.e.,
the direct images of the chargeq ~labeled 1 in Fig. 1!,

Ves
(1)~z!52

1

4 F 1

z2zL
1

1

zR2zG , zP]zL ,zR@ , ~3!

one sees thatVes represents a higher barrier thanVes
(1) be-

cause the images of even order produce an additional re
sion ~‘‘ 1 ’’ in Fig. 1!.

2. Image-charge potential as tunnel barrier

The electrostatic potential between two semi-infinite j
lium metals including a bias voltage was calculated se
consistently within DFT by Lang.6 He found that even with
finite bias the potential in the electrodes is constant a
Bohr radii (a0) apart from the respective surfaces. Furth
the divergence of the classical image-charge potentialVes at
zL andzR is bridged over by a smooth interpolating functio
which shows the form of a typical LEED-motivated surfa
barrier~cf. Sec. II A!. And last, application of a bias voltag
apparently produces a linear potential drop in the spacer
gion @cf. Fig. 2~b! in Ref. 6#. Guided by these findings we
construct in the following a tunnel barrier by means of t
classical electrostatic potential@Eq. ~1!# and by LEED-type
surface potentials.

To avoid the divergences of the electrostatic potentialVes,
a smooth continuous interpolating function between
image-charge potential and the inner potentials of the lea
UL andUR , is used~the vacuum energy is taken as ener
zero!. For this paper we choose a Lorentzian shape25 but any
other reasonable shape can be used, too~see Sec. II A!. The
interface potentialVif then reads

Vif (z)55
2UL zP] 2`,zL

c ]

aL[11bL(z2zL
c )2] 211gL zP[zL

c ,zL
v ]

V(z) zP[zL
v ,zR

v ]

aR[11bR(z2zR
c )2] 211gR zP[zR

v ,zR
c ]

2UR zP[zR
c ,`[

6 .

~4!

The coordinateszL
c , zL

im , andzL
v specify the positions of

the onset of the interpolating Lorentzian, of the divergence
the potentialV, and of the transition toV with respect toL
~Fig. 2!. They have to be obtained by comparing theoreti
results with other data, e.g., surface-state energies, VLE
spectra, etc., for the surface system~i.e., in the limit zR
→`). The parametersaL , bL , and gL are fixed by the
conditions of smooth continuity inzL

c and zL
v . Analogous

considerations apply for the leadR. The potentialV in the
interior of the spacer can be chosen to incorporate the e
trostatic potential between two metal electrodes,Ves, and the
bias voltage as well, as being discussed in the following.

Bringing two metals so close that electrons can tun
from one metal to the other aligns the Fermi levels of the t

e

-
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leads. This energy shift is given by the contact poten
FL2FR , i.e., the difference of the work functionsFL of L
andFR of R. Note that the alignment of the Fermi levels
accompanied by a shift of the inner potentials, that is, e
UR of the semi-infinite system is replaced byUR2FL
1FR . SinceV(z) was not specified explicitly in Eq.~4!, it
can account for the contact potential and the bias voltag

V~z!5Ves~z!1Vb~z!. ~5!

Here,Ves is the electrostatic potential from Eq.~1! andVb is
the bias, for which a linear drop over the interface region
assumed:

Vb~z!55
0 zP] 2`,zL

c ]

Eb

z2zL
c

zR
c 2zL

c
zP[zL

c ,zR
c ]

Eb zP[zR
c ,`[

. ~6!

This ansatz is motivated by the fact that the electric field
well screened within the electrodes but unscreened wi
the vacuum spacer.

Figure 3 presents a series of tunnel barriers in depend
of the lead separationzR

c 2zL
c . The heights of the barrier

increase with separation~for an experimental estimation o
the barrier heightvs distance, see Ref. 7!. As already men-
tioned, taking the first-order approximationVes

(1) instead of
Ves leads to a reduced height~cf. the dashed line for 15a0
lead separation!. The shape dependence on the bias is
dressed in Fig. 4. For rather large bias, the linear poten
drop in the interface region can be clearly retrieved. We n
in passing that the present construction produces pote
shapes that compare qualitatively well with those obtain
ab initio for jellium by Lang.6 Further, a similar approach
was recently used to explain the Stark shifts of surface st
in scanning tunneling spectroscopy.28

FIG. 2. Image-charge potential as tunnel barrier. The bar
shape is defined by the parameters as indicated@cf. Eq. ~4!#. The
Lorentzian shapes extend over the ranges@zL

c ,zL
v # and@zR

v ,zR
c # and

connect smoothly to the electrostatic potential in@zL
v ,zR

v #. The lat-
ter comprises the image-charge potentialVes @Eq. ~1!# as well as the
bias potentialVb @Eq. ~6!#. The inner potentialsUL513.61 eV and
UR512.61 eV for the left and the right lead, respectively, det
mine the bias voltageEb to 11 eV.
17443
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One advantage of the present approach is that the he
of the tunnel barrier is automatically adjusted in depende
on the lead separation and on the bias voltage. Further,
barrier shape shows the correct image potential asympto
for large lead separation@cf. Eq. ~3!#. In turn, the approach
should not be applied for too small separations because
barrier shape would significantly differ from the interfac
potential which would be obtained from a self-consistent c
culation for a narrow tunnel junction. This, however, cou
possibly be compensated by adjusting the parame
zL

c , . . . , zR
c not for the semi-infinite system but for th

narrow junction.

3. Superposition of surface barriers

For large lead separations and small bias voltages,
probability of electrons to tunnel from one lead to the oth

r

-

FIG. 3. Dependence of the interface potentialVif @Eq. ~4!# on the
lead separation. The barriers with electrostatic potentialVes @Eq.
~1!# are shown for separations of 10, 15, 20, and 25a0 ~Bohr radii!
at zero bias~solid; Eb50 eV!. In addition, a barrier with first-order
approximation potentialVes

(1) @Eq. ~3!# is shown for 15 a0 separation
~dashed!. The inner potentials of the leads are equal (UL5UR
513.61 eV!.

FIG. 4. Dependence of the interface potentialVif @Eq. ~4!# on the
bias. For a lead separation of 15a0 ~Bohr radii!, the right leadR is
biased from26 eV to16 eV ~as indicated on the right; alternatin
solid and dashed lines;UL5UR513.61 eV).
0-3
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is very small. Hence, in a self-consistent calculation fo
tunnel junction, the tunnel barrier appears to be almost
clusively determined by the electron density of the respec
lead and not significantly influenced by that of the other le
This consideration might lead one to construct a tunnel b
rier by superposition of the respective surface barriers,

Vif~z!5VL~z!1VR~z!, ~7!

whereVL andVR are the surface potentials of the respect
leads. Taking JJJ barriers,18 one arrives at

VL~z!5H 1

4(zL2z)
12exp[lL(zL2z)] zP[zL ,`[

2
UL

aLexp[bL(zL2z)] 11
zP] 2`,zL]

~8!

for the surface barrier ofL. The values ofaL and bL are
determined by requiring smooth continuity atz5zL . Be-
causeUL is known from the self-consistent calculation f
the surface system,zL andlL remain as the only paramete
to be adjusted. For the surface potential ofR one obtains an
analogous form.

The simple superposition of surface barriers appears t
problematic for heterojunctions or biased junctions. In b
cases, the relative energy shift of one electrode, sayR, re-
sults in a finite potential which extends into the entire oth
electrodeL. This is due to the fact that the surface potent
of R extends infinitely far intoL. One way to overcome this
problem is to take the bias only as an energy shift in
interior of R, that is, to replace the inner potentialUR by
UR2Eb . Figure 5 shows such a superposition of JJJ surf
barriers. The inner potential ofR is shifted byEb53 eV ~cf.
the arrow!. Apparently, the barrier shape does not chan

FIG. 5. Formation of an interface barrier by superposition
surface barriers. Without bias, two surface barriers of JJJ typeL
dashed-dotted andR dashed! are superposed to yield the interfac
barrier ~solid!. The inner potentials are equal (UL5UR
513.61 eV). The application of a bias shifts the inner potentia
R ~dotted;Eb53 eV, cf. the arrow! and results in the other tunne
barrier ~also solid!. The positions of the image-potential dive
gences arezL527.5 a0 and zR57.5 a0 ~Bohr radii!, respectively,
lL5lR51.25/a0 @Eq. ~8!#. The vacuum level is taken as energ
zero.
17443
a
x-
e
.
r-

be
h

r
l

e

e

e

significantly with bias in@zL ,zR#, in contrast to the former
construction~Fig. 4!. In particular, the linear potential drop i
not observed.

4. Résumé

The two construction recipes result in tunnel barriers w
different features. While the more elaborate one@Eq. ~4!#
produces barrier shapes which are qualitatively close to th
obtained from first-principles for jellium,6 the barriers of the
superposition approach@Eq. ~7!# lack most of these impor-
tant features. In particular, the linear potential drop in t
spacer region is missing. Both approaches can easily be
tended to energy-dependent and corrugated~three-
dimensional! tunnel barriers.

Wang and co-workers obtained the shape of the tun
barrier by matching two surface systems that were calcula
for equal but opposite shifts of the work functions.11 The
resulting bias-dependent barriers agree well with that sho
in Fig. 4.

C. Computational aspects of ballistic tunneling

For the ballistic-tunneling calculations we applied t
layer-KKR ~Korringa-Kohn-Rostoker! approach of
MacLaren and co-workers29 which is based on the Landaue
Büttiker result for the tunnel conductance.30 At a given en-
ergyE and in-plane crystal momentumkW i , one computes the
Bloch statesnL andmR of the electrodesL andR and clas-
sifies them with respect to their propagation direction: to
right (1) or to the left (2). The scattering matrixS of the
spacerS is first computed in a plane-wave basis using LEE
algorithms~like layer doubling and layer stacking; see, f
example, Ref. 31! and subsequently expressed in terms of
scattering channels, i.e., in the Bloch-state basis. The tr
missionT(Et ,kW i) at the tunnel energyEt is then a sum over
all pairs of Bloch states that are incident inL and outgoing in
R,

T~Et ,kW i!5 (
nL ,mR

uSnLmR
11 ~Et ,kW i!u2. ~9!

The above sums comprise both majority-and minority-s
Bloch states and thusT(Et ,kW i) contains the spin summatio
implicitly. The tunnel conductanceG(Et) is obtained by
summing over the two-dimensional Brillouin zone~2BZ!,

G~Et!5G0 (
kW iP2BZ

T~Et ,kW i!. ~10!

Here,G05e2/h is the quantum of conductance which equa
1/(2p) in atomic units.16Adaptive mesh refinement provide
an efficient method to obtain accurate and well-converg
2BZ sums, in particular, if small parts of the 2BZ contribu
significantly to the conductance.32

With a bias voltage applied, electrons can tunnel fro
occupied states of one lead into unoccupied states of
other lead. The total conductance is then obtained by in
grating over the energy interval given by the Fermi energ
EF of the electrodes. The averaged conductance thus re

f

f

0-4
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Gav5
1

uEFL2EFRu Emin(EFL ,EFR)

max(EFL ,EFR)

G~Et! dEt . ~11!

The tunnel magnetoresistance~TMR! r is defined as the
asymmetry of the~averaged! conductances for parallel~P!
and antiparallel~AP! alignment of the electrode magnetiz
tions,

r5
Gav~P!2Gav~AP!

Gav~P!1Gav~AP!
. ~12!

To treat in practice the bias voltage we proceed as
lows. First, self-consistent electronic-structure calculatio
for the semi-infinite leadsL and R generated muffin-tin
~MT! potentials of the bulk, of the surface, and in t
vacuum region. The MT zeroes were taken as inner po
tials UL andUR , respectively~the MT zero is the constan
potential in the interstitial region!. For each of the leads, th
MT potentials in the vacuum region were replaced by
smooth surface barrier, the parameters of which were
tained as follows.

The spectral densities~SD’s! of the surface layers ob
tained from anab initio calculation served as reference
which the SD’s obtained for the corresponding system
with a smooth surface barrier were compared. The par
eters of the smooth barrier were modified until the SD’s w
in agreement. The focus laid in particular on the ene
range used in the subsequent tunneling calculations an
surface states. For Co~0001!, an important feature is the en
ergy of the majority surface state atkW i50 @cf. Fig. 2~b! in
Ref. 8; see also Refs. 33–35#. It turned out that the latter is
very sensitive to the shape of the smooth surface barrier~ac-
cording to the so-called ‘‘round-trip criterion’’ of the phas
accumulation model for surface states or quantum-w
states,36 it depends on the reflectivity of the surface barrie!.

Having fixed the barrier parameters, the tunnel junct
was built from the bulk and surface potentials of the tw
electrodes and the interface barrier@Eqs. ~4!–~6!#. Besides
the smooth interface barrier, the spacerS comprises all lay-
ers with MT potentials that differ from the respective bu
potentials. In example, for a Co~0001! tunnel junction the
first four layers on either side of the smooth tunnel barr
were used. The bias was taken into account by shifting
inner potential of one of the leads~muffin-tin zero! and de-
termining the barrier shape@Eq. ~1!#. The smooth barrierVif
was treated as a single layer in the multiple-scattering ca
lations. Its scattering matrixSwas obtained within the propa
gator formalism.37

The surface barrier of the semi-infinite leads is rep
sented by MT potentials in theab initio calculations. There-
fore it contains a corrugation, i. e., an in-plane asymmetry
the barrier potential. The smooth barriers used in the pre
work did, however, not account for a corrugation. Since
main effect on the SD’s is due to the barrier shape along
surface normal, the influence of the corrugation is regar
as of minor importance, in particular at closed-packed m
surfaces.

As usual for the KKR method, a small imaginary parth
has to be added to the energyE,38 leading in general to
17443
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complex wave numbersk' .39,40 Therefore the electrode
eigenfunctions are no longer true Bloch states but beco
evanescent states@ Im(k')5” 0#. Eigenstates stemming from
Bloch states@ Im(k')50 for h50]show typically the small-
est Im(k') and can therefore be separated from evanes
states@ Im(k')5” 0 for h50].29In the spacerS, the nonzero
h leads to damping in addition to the intrinsic one, arti
cially enhancing the decay of the conductance with spa
thickness. Further, the scattering matrixS is no longer uni-
tary and hence the total current is not conserved. There
one has to chooseh carefully in order to produce reliable
results. We found that a value ofh51024 eV produces no
considerable artefacts.

The Landauer-Bu¨ttiker approach used here avoids th
computation of the Green function of the complete syste
which is in particular problematic for a nonequilibrium sy
tem. Considering the asymptotic transmission chann
~Bloch states!, states that are localized at the barrier do n
contribute to the transmission.

Recently, Davis and MacLaren reported on model cal
lations for spin-dependent tunneling at finite bias.41 In their
work, however, the electronic structure of the Fe electro
was approximated by plane waves, whereas the barrier
assumed as steplike with a linear drop. Although concep
similar, our approach goes beyond that work. First, the e
trodes are treated on a first-principles level. Second, the
rier shows the correct asymptotics~for the free surfaces! and,
once the shape parameters are fixed, depends automat
on both lead separation and bias.

III. RESULTS FOR Co „0001…

Recently, Ding and co-workers investigated the bia
voltage dependence of the TMR with a spin-polarized sc
ning tunneling microscope~STM!.8 In contrast to tunneling
through oxide barriers, they observed no zero-bias anom
~ZBA!, i.e., a ~rather! sharp maximum of the TMR at zer
bias ~see, for example, Ref. 42!. With a vacuum barrier re-
placing an oxide barrier, the TMR appeared to be alm
constant. This finding suggests that the ZBA is mainly due
imperfections in oxide barriers, rather than to scattering
magnons and spin excitations~in the leads!. Further, the so-
called DOS effect, i.e., the energy dependence of the s
resolved density of states of the leads, proved to be sma
the case of Co~0001!.

The experimental findings of Dinget al. were corrobo-
rated by ballistic tunneling calculations for planar Co~0001!
junctions as sketched in Sec. II C. The tunnel barrier w
taken as a superposition of surface barriers~Sec. II B 3!. In
the present work, we focus on corresponding calculations
for the more elaborate image-charge potential~Sec. II B 2!.

The calculations of Ref. 8 and of the present work diff
mainly in the used interface barriers: the superposition of
barriers~Ref. 8! and the more sophisticated image-potent
approach~Sec. II B 2!. The potentials of the Co electrode
were identical. Although the parameters of the tunneling c
culations differed slightly@e.g., the number ofkW i used in the
2BZ integration, Eq.~10!#, the results of both calculation
are comparable and of the same accuracy. Since both ca
0-5
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lations rely on the same electrode potentials, the band stru
ture and the spectral density shown in Ref. 8 can be co
sulted for the interpretation of the results presented in th
following.

The transmissionT(Et ,kW i), Eq. ~9!, depends on the rela-
tive orientation of the lead magnetizations~P and AP!, as is
shown for 0 eV bias~tunneling at EF) in Fig. 6. For
the chosen lead separation of 7.52 Å , only those Bloch
states with akW i in the central part of the 2BZ contribute
significantly to the transmission. The normal componen
of the wave vector within the tunnel barrier,k'(z)

5A2@EF2Vif (z)#2kW i
2, is imaginary and gives rise to

strongly evanescent states in the tunnel barrier for Bloc
states with largekW i , and thus to a small transmission. For
Bloch states withkW i nearG ~i.e.,kW i50), the decay within the
barrier is less and the transmission can be larger. In total, th
results in a ‘‘focusing’’ ofT(Et ,kW i) at the 2BZ center.

Both the P and the AP case show minor transmission clo
to G. These minima are surrounded by ringlike structures o
increased transmission. The maximum P transmission
larger than for AP alignment~by a factor of about 10), but
the AP transmission displays a broader ring compared to t
P transmission.

When integrated over the 2BZ, one finds thatG(P)
.G(AP) ~Fig. 7 for zero bias!. With increasing bias, the
conductances for tunneling atEt5EFL decrease. Since bal-
listic tunneling is a phase coherent process, shifting of th
electronic states of one electrode relative to those of the oth
by the bias might reduce the phase coherence, or the sp

FIG. 6. ~Color! TransmissionT(EF ,kW i) of vacuum tunneling in
Co~0001! for P @~a!, top# and AP@~b!, bottom# alignment of the lead
magnetizations. For 0-eV bias, the lead separation was chosen
7.52 Å . The maximum transmission is about 0.01~P alignment.
Both panels share the same scale!. Note that only the central part of
the two-dimensional Brillouin zone is displayed.
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dependent DOS in the relevant region of the 2BZ decrea
with energy. We checked the spectral density carefully
found no significant feature that would corroborate u
equivocally the latter explanation.

The transmissionsT(Et ,ki) show ringlike structures~Fig.
6!, the radii of which increase with tunnel energy. The ri
area, i.e., the area in the 2BZ which contributes most to
conductance, increases quadratically with radius. Beca
the ring width andT(Et ,ki) within the ring remain almost
constant with increasing tunnel energyEt , the conductances
increase approximately quadratically, too, as is particula
evident forG(AP) @cf. the data for 0.2–1.0-eV bias in Fig
7~b!#.

However, the preceding explanation cannot explain a
ther interesting feature: the increase ofG(P) for biases of
0.6, 0.8, and 1.0 eV that occurs at tunnel energiesEt2EFL
around 0.0, 0.2, and 0.4 eV, respectively@Fig. 7~a!#. Inspec-
tion of the transmissions and of the spectral density atEFR
20.6 eV produced no significant feature that would expla
this behavior~this is corroborated by findings of LeCla
et al.9!. The feature occurs also for AP alignment@Fig. 7~b!#
but not as pronounced as in the P case.

The increase with bias compensates the decrease foEt
5EFL , as is shown for the averaged conductancesGav in
Fig. 8~a!. WhereasGav(P) decreases slightly~with a small
minimum at zero bias!, Gav(AP) increases withuEbu. There-
fore the resulting TMRr @Eq. ~12!# drops with bias, too.
However, the decrease which is about 15% at 0.6 eV

as

FIG. 7. Ballistic conductanceG ~in units ofG0, the quantum of
conductance! vs tunnel energyEt in Co~0001! for P @~a!, bottom#
and AP@~b!, top# alignment. The biasEb ranges from 0.0 to 1.0 eV
and is indicated at the top of each data set.EFL is the Fermi energy
of leadL.
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BIAS VOLTAGE DEPENDENCE OF THE . . . PHYSICAL REVIEW B 68, 174430 ~2003!
much less than that observed for oxide barriers. In the la
case, the TMR drops by 50 to 80% at 0.6 eV.42 Being due to
the details of the electronic structure in the Co leads,
could term the drop in Fig. 8~b! as ‘‘DOS effect,’’ rather than
as zero-bias anomaly.

Since inelastic processes~scattering at magnons, spin e
citations! are not included in our theory, one can conclu
that the ZBA found in tunnel junctions with oxide barrie
can be attributed to defect scattering in the oxide barr
This finding is consistent with the fact that the ZBA d
creases with the improvement of the preparation techniq
for ferromagnet-oxide interfaces~see Ref. 8 and reference
therein!.

In a previous investigation,8 we used the superpositio
approach~Sec. II B 3! for the tunnel barrier. There, both th
averaged conductances and the TMR were almost con
for biases up to 0.5 eV. Comparing with the present res
that were obtained within the image-potential approach~Sec.
II B 2!, one has to keep in mind that details of the calcu
tions differ ~e.g., thekW i mesh!. However, these have onl
minor influence. The most striking difference is the shape
the tunnel barrier which is varied in two aspects. First,
JJJ barrier used in Ref. 8 is rather smooth with respect to
interpolating Lorentzian chosen here. Generally speak
the latter produces a larger reflection. Second, the shap
the central part of the barrier differs. In particular for lar
lead separations, the barrier height becomes important~cf.
Figs. 3 and 5!. Further, the linear bias potential which
missing in the superposition approach is expected to ha

*Corresponding author. Electronic address: henk@mpi-halle.d
1Spin Dependent Transport in Magnetic Nanostructures, edited by

S. Maekawa and T. Shinjo~Taylor & Francis, London, 2002!.
2J. C. Slonczewski, Phys. Rev. B39, 6995~1989!.
3M. Jullière, Phys. Lett.54A, 225 ~1975!.
4Density Functional Theory, Vol. 337 of NATO Advanced Stud

FIG. 8. Magneto-resistance of vacuum tunneling in Co~0001!.
~a! Averaged conductanceGav ~in units ofG0, the quantum of con-
ductance! vs biasEb for P ~closed symbols! and AP~open symbols!
alignment@cf. Eq. ~11!#. ~b! Tunnel magnetoresistancer vs Eb @Eq.
~12!#.
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non-negligible effect. Therefore details of the barrier are
pected to have significant influence on the tunnel magnet
sistance.

IV. CONCLUDING REMARKS

We have proposed an heuristic approach for treating
bias voltage in vacuum tunneling. It keeps the first-princip
description of the electrodes but replaces the cumbers
electrostatic potential of the tunnel barrier by a smooth int
polating form. The parameters of the latter can be obtai
from ab initio calculations for the semi-infinite systems. W
would like to note that the implementation of the approach
layer-KKR computer codes is straightforward, but shou
also be feasible in other methods~three-dimensional or
screened KKR!.

Recent experimental investigations by Ding a
coworkers8 addressed the origin of the zero-bias anom
~ZBA! which typically occurs in tunneling through oxid
barriers. Using a spin-polarized scanning tunneling mic
scope~STM!, the tunneling proceeded through the vacuu
barrier between a Co~0001! surface and an amorphous ST
tip. The observed absence of the ZBA provided evidence
the ZBA being mainly due to defect scattering in oxide b
riers, rather than to magnon creation or spin excitations at
interfaces. The latter occur also in the STM experime
whereas defects cannot appear in the vacuum barrier.
calculations~this work and Ref. 8! for vacuum tunneling
through planar junctions showed also no ZBA, therefore c
roborating the experimental results and their interpretatio

Tunnel calculations provide a rather indirect test of t
proposed barrier shapes. A more direct one would be to c
pare theoretical energy positions and linewidths of so-ca
field-emission resonances43 with experimental ones. Thes
electronic states can be viewed as surface states tha
trapped between the bulk~in the presence of a bulk-ban
gap! and the tunnel barrier between sample and an STM
The field-emission resonances show up as sharp maxim
the differential conductance and depend—like the shape
the tunnel barrier—on both bias voltage and tip-sample se
ration.

As a possible extension of the present work, one co
think of a treatment of tunnel junctions with ‘‘filled’’ spacer
~instead of vacuum!, in particular with oxide barriers. Fur
ther, work is in progress to describe the tunneling with b
voltage fully on anab initio level.
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