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LETTER TO THE EDITOR

What can we learn from double-electron emission by one
circularly polarized photon?

Jamal Berakdar†
Max-Planck-Institut f̈ur Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany

Received 8 October 1998, in final form 27 November 1998

Abstract. Using a simple exact analysis of the one-photon optical transition amplitudes for the
emission of correlated electron pairs from randomly oriented targets it is shown that information
on the phase differences of these amplitudes can be obtained by the variation of the helicity of the
absorbed photon. Experiments performed with different polarization of the photon can be related
to each other by analytical formulae that should be used as a consistency check. The usefulness of
this approach is demonstrated by analysing recent experimental and theoretical data.

Single-photoelectron spectroscopy in the ultraviolet regime has emerged as a powerful
technique for the investigation of electronic and structural properties of materials [1]. An
important feature of the photoelectron-emission process is the dependence of the photoelectron
spectra on the polarization state of the photon, photoelectron and/or residual ion. For a
circularly polarized photon, the dependence on the photon’s helicity has been dubbedcircular
dichroism(CD) and has been the subject of a number of studies on the direct photoelectron
emission as well as on the resonant ionization with photoexcitation of an autoionizing state
(see [2–4] and references therein).

For single-photoelectron emission from a randomly oriented target and under the
assumption that the ion’s final-state magnetic sublevels are not resolved, the angular distribution
of thespin non-resolvedphotoelectrons is given by [5] (a first-order perturbative treatment and
the dipole approximation are used for the radiation field, atomic units (au) are used throughout)

dσ

d�p
= σ0

4π

[
1− 1

2βP2(k̂ · p̂)
]
. (1)

Hereσ0 is the total cross section,�p is the solid ejection angle of the photoelectron emitted
with momentump, β is the asymmetry parameter,k̂ is the direction of incident light andP2

is the second Legendre polynomial. Equation (1) holds for right and left circularly polarized
light as well as for unpolarized light, i.e. the helicity of the light has no dynamical effect and
the CD is absent in this case. In fact, for linearly polarized light, the photoelectron angular
distributions are obtained from equation (1) upon replacingβ by−2β andk̂ by the direction of
the electric field strength. Additional information can be obtained by analysing the spin states
of the photoelectron [6], yet the polarization of the photon does not yield any further insight.

This situation changes radically whentwophotoelectrons are emitted simultaneously upon
single-photon absorption. The angular and energy distributions of the photoelectrons reveal
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a strong dependence on the helicity of the photon [7–13]. In this case, employing a formal
analysis, the symmetry properties of the CD have been established [7, 8] and the signature
of electronic correlation has been exposed [14]. A non-vanishing CD in the two-electron
emission requires that the photoelectrons’ vector momenta,ka andkb, and the wavevector of
the photon,k, are linearly independent. In addition, the two electrons have to escape with
unequal energies. It should be noted, however, that these conditions are necessary but not
sufficient for a non-vanishing CD, i.e. the CD might still diminish for dynamical reasons at
certain points whose positions are very much dependent on the calculational scheme used [14].

In this work we are concerned with the questions: (a) which measurable physical quantities
can be extracted from the CD? and (b) how can we relate experiments with linearly polarized
photons with those performed using circularly polarized light? To shed light on these questions
we write the photo-double-emission (PDE) cross section, that is differential in the solid angles
�a,�b and energiesEa,Eb of the emitted electrons, in the form

σ(�a,�b,Eb) = C
∑
Mf

1

2Ji + 1

∑
Mi

|T |2 (2)

whereT is the optical transition amplitude,C = 4π2αckakbω, ka/b =
√

2Ea/b, αc is the fine-
structure constant andω is the frequency of the light. Equation (2) averages over the initial
magnetic sublevelsMi , and sums over the magnetic sublevelsMf of the target final states.
In this paper, numerical examples will be presented for a He target in its ground state so that
the summation in equation (2) overMf disappears. As is well known, the circular polarized
state of the photons can be constructed from two independent linearly polarized states. Using
a coordinate system where thez-axis is aligned along the wavevector of the circular photon,
the optical transition amplitude with left- (right-) hand circularly polarized light, labelled as
Tσ + (Tσ− ), can thus be written as

Tσ± = c(Tx ± iTy). (3)

Here,Tx (Ty) is the transition amplitude for the DPE with linearly polarized light where the
electric field vector is aligned along thex (y) direction andc = 1/

√
2. The photoelectrons

are emitted with momentaka andkb determined in the coordinate systemx, y, z. For the
following it is instructive to write equation (3) in the form

Tσ± = c[|Tx | exp(iφx) + |Ty | exp(iφy ± iπ/2)] (4)

whereφx (φy) is the phase ofTx (Ty). Thus, the quantities|Tσ±|2 that determine the cross
section (2) attain the form

|Tσ±|2 = 1
2

[|Tx |2 + |Ty |2 ± 2|Tx ||Ty | sin(φy − φx)
]
. (5)

Now, if we define the CD as CD := (σ + − σ−)/(σ + + σ−) whereσ + (σ−) is the PDE cross
section upon the absorption of a photon with positive (negative) helicity then we obtain from
equation (5)

CD= 2|Tx ||Ty |
|Tx |2 + |Ty |2 sin(φy − φx). (6)

Equivalently, one can show that

CD= − 2

|Tx |2 + |Ty |2 Im(TyT
∗
x ). (7)

To quantify the non-interference terms in equation (5) one should inspect the quantity

6 := |Tσ + |2 + |Tσ−|2 = |Tx |2 + |Ty |2. (8)
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This expression for6 is helicity independent, which is in line with the symmetry properties
of Tσ± [7, 8]. From an experimental point of view, equation (8) is useful in so far as it can be
used to check the consistency of the data when measuring|Tσ±|2 and|Tx/y |2, as is done below.

From equation (6) it is obvious that:

(a) The CD vanishes forφy −φx = nπ andn is an integer, this is for example the case where
Ty andTx are both pure imaginary or pure real.

(b) The CD vanishes whenTx and/orTy vanishes.
(c) The CD diminishes as|Tl|/|Tj |; j = x, y; l = y, x for |Tj | � |Tl|.

From the above equations we conclude further that by changing the polarization states of
the photons information on thephase differencesof the optical transition amplitudes can be
obtained. As mentioned above this is in contrast to single-photoelectron emission wheresucha
phase difference of the transition amplitude is inaccessible experimentally (note we are dealing
here with isotropic targets with the spin states of the photoelectron and the final ion magnetic
sublevels not being resolved, in contrast phase shift differences between partial waves can be
determined from the angular distribution and a spin polarization analysis of the photoelectron).

To demonstrate the usefulness of the above simple analysis let us consider a prototype case
where|Tx,y,σ±|, 6 and the CD have been measured. All calculations have been performed
using the technique outlined in [7, 8]. The final state has been modelled by a product of
two plane waves modified by three two-body Coulomb distorting factors, the so-called 3C
approximation [15–17].

As seen in figures 1(a) and (b), theshapeof the experimental findings for|Tx |2 and|Ty |2
is reasonably reproduced by the theory, however, considerable deviations between theory and
experiment are observed as far as the magnitude of the cross sections is concerned. This is
most likely to be due to a shortcoming of the present calculational scheme. Atϕa = 0, π,2π
the amplitudeTy possesses a zero point, since in this case the two photoelectrons escape
perpendicular to the linear polarization vector [17]. Generally, ashapeagreement between
theory and experiment, as far as|Tx |2 and|Ty |2 are concerned, does not mean the same kind
of agreement for the sum6 of |Tx |2 and |Ty |2 (figure 1(c)), for the shape of6 depends on
the relative ratio between|Tx |2 and |Ty |2. As remarked above, according to equation (8)
6 should be helicity independent. This means that the experimental6 as deduced from
the measurements shown in figure 1(a) and those in figure 1(e) (σ±) should be the same.
Unfortunately, as seen in figure 1(c), such a comparison of the measurements seems to be
inconsistent with equation (8). The reason for this has yet to be clarified.

Comparing figures 1(a) and (b) [|Tx/y |2] and figure 1(c) (6) it is evident that the minimum
in6 atϕa = π is due to the zero point inTy at the same position, whereas the two peaks originate
from the corresponding peaks in|Ty |2 (more precisely the peaks in6 atϕa ≈ 125◦, 235◦ are
due to the dip in6 atϕa = π !).

As is evident from equation (5), the difference between6, as depicted in figure 1(c),
andσ± is controlled by the interference term betweenTx andTy , and therefore by the phase
differenceφyx := φy − φx . As seen in figure 1(d), φyx remains almost unchanged when
using different initial-state descriptions, in contrast to6 (cf figure 1(c)). From figure 1(d)
we also notice that when both electrons emerge approximately in the same direction (i.e. in
the region 260◦ < ϕa < 100◦), the phase differenceφyx is relatively small and smooth. As
a result, the cross sectionsσ± (see figure 1(e)) are basically dictated by6 (which is helicity
independent) and consequently do not differ much from each other. On the other hand, when the
photoelectrons escape almost opposite to each other (ϕa ≈ 180◦), we observe a considerable
phase differenceφyx (cf figure 1(d)). As is obvious from the sign ofφyx this results, as far
asσ + is concerned, in a constructive (destructive) interference ofTx andTy for ϕa < 180◦
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Figure 1. (a) The cross sections for double ionization of He(1Se) with a linear polarized photon
are shown. Two cases are depicted in which the photon’s polarization vector is fixed along thex

(full curve, labelledσx ) or they-direction (dotted curve, labelledσy ). The excess energy is 20 eV.
Both ejected electrons are detected in thex–y plane. One fast electron (electronb with 17.5 eV)
is detected along thex-direction, whereas the angular distribution of the slower one (electrona)
is scanned withϕa being its (positive) azimuth angle (with respect to thex-axis). Experimental
data are provided by Bräuninget al [18]. In the calculations, the finite energy resolution of
±1 eV has not been taken into account. The initial state has been modelled by a three-parameters
Hylleraas wavefunction [14, 19], whereas the final state is taken as a 3C wavefunction (see text).
The velocity form has been employed. (b) Same geometry and notation as (a), but the initial
state has been modelled by a wavefunction that partially satisfies the two-body cusp conditions as
proposed in [20]. To allow for shape comparison the full curves in (a) and (b) have been multiplied
by a factor of 2 and the dotted curve by a factor of 4. The experimental data are on an absolute
scale. (c) The sum6 (6 = σx + σy = σ− + σ+) for the detection geometry as in (a). The
full curve has been obtained using the same theoretical model as in (a), whereas the dotted curve
derives from the theory of (b). The theoretical results have been multiplied by a factor of 4. The
thick broken curve is the (absolute) experimental6 as deduced from (a), whereas the open squares
are the (absolute) experimental value for6 as deduced from the measuredσ± (cf (e)). According
to (8) the experimental curves should be equivalent. (d) The differencesφyx = φy − φx of the
phasesφy andφx of the amplitudesTy andTx , as used to calculateσy andσx , respectively. The
full (broken) curve corresponds to the case of (a) (part (b)). (e) The same arrangement of the
electron detectors, however, the photon is circularly polarized with its wavevector pointing along
the z-direction. Cross sections for positive (full curve, labelledσ+) and negative (dotted curve,
labelledσ−) helicity photons are depicted. The calculations are as in (a) except for the broken
curve whereσ+ has been evaluated using for the initial-state description the wavefunction proposed
in [20] (same as in (b)). Absolute experimental data (full squares forσ+ and open squares forσ−)
are provided by Mergelet al [12]. (f ) CD as defined by equation (6) for the case of (e). The
full curve is the CD deduced from the full and the dotted curves in (e), whereas the broken curve
corresponds to the CD as predicted by the calculation labelled by the broken curve in (e). The
experimental values correspond to those depicted in (e).
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Figure 1. Continued.

(ϕa > 180◦) leading the shape ofσ +, as observed in figure 1(e). The same consideration
applies toσ−. Therefore, one can conclude that the structure of the angular distribution ofσ±

(two peaks and one minimum) has its origin in the shape of6, superimposed on that of the
interference pattern ofTx andTy . The origin of the structures in6 has been explored above.
The discrepancies between theory and experiment, as far as the shape is concerned, remain to
be clarified, in particular, in view of the observations made in figure 1(c) and the approximate
theoretical model.

The explanation of the shape ofφyx , as shown in figure 1(d), is a delicate problem since
φyx is a dynamical quantity and is independent of|Tx/y |. What I can remark here is only
that the symmetry properties ofφyx are directly linked to those of the CD via equation (6),
i.e. the reflection symmetry ofφyx with respect toϕa = 0◦ and 180◦ (and hence the
discontinuity at these points) is readily explained by the symmetry property of the CD, namely,
CD(φy − φx) = −CD(φx − φy) (sinceTy = 0 atϕ = 0, π these points have to be excluded
from equation (6)).

As deduced from equation (6), the structure of the CD is the result of an interplay of two
effects: the ratio between the geometrical and the arithmetical average of|Tx |2 and|Ty |2, on
the one hand, and the value ofφyx , on the other hand. The former is largest when|Tx | and
|Ty | are equal. Therefore, we observe two maxima in the CD approximately at the positions
where|Tx | crosses|Ty | in figures 1(a) and (b). The relative heights of these two maxima and
the sign of the CD is decided byφyx , as readily seen from figures 1(d) and (f ).

The cross sectionsσ± depend on theabsolutevalues of|Tx/y | andφyx , whereas the CD
does not contain as much precise information on|Tx/y |. Therefore,σ± are more sensitive to
the details of the dynamical description than the CD. This is demonstrated in figures 1(e) and
(f ) where modelling the initial state by a different wavefunction leads to larger deviations in
σ + than in the CD.

In the above analysis we used|Tx/y | andφyx (figures 1(a), (b) and (d)) to explain the
behaviour ofσ± and the CD. Conversely, and as is evident from equation (5), one can use the
measured|Tx/y | and, optionally,σ + to extract the phase differenceφyx . In addition, one might
consider|Tx/y |2 and the CD as reliable quantities and constructσ± according to equation (5).

It is worthwhile to note that equation (8) can be used to check the internal consistency of
|Tx | and |Ty |. To see this let us consider the situation where both electrons are detected
in the x–y plane. In this case one can show thatTσ±(ϕa − ϕb) = Tσ±(ϕ

′
a − ϕ′b), for
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Figure 2. (a) The same scattering geometry as in figure 1(a) with the same notation and the same
theoretical model. The excess energy is, however, 3080 eV. The fast electron (≈3000 eV) is
detected along thex-direction, whereas the angular distribution of the slower one(1 eV) is scanned
as a function ofϕa . The amplitude|Ty | has been multiplied by a factor of 200 to allow for shape
comparison. (b) The circular dichroism CD for the detection geometry as in (a) but with the photon
circularly polarized and its wavevector aligned along thez-direction (cf figure 1(e)).

all azimuthal anglesϕ′a, ϕ
′
b, ϕa, ϕb ∈ [0, 2π ] that satisfyϕa − ϕb = ϕ′a − ϕ′b, i.e. Tσ±

depend on the inter-electronic relative angle only. Therefore, according to equation (8),
6(ϕa−ϕb) = 6(ϕ′a−ϕ′b) = |Tx(ϕa−ϕb)|2+|Ty(ϕa−ϕb)|2 = |Tx(ϕ′a−ϕ′b)|2+|Ty(ϕ′a−ϕ′b)|2.
The latter relation is important in so far asTx/y(ϕa −ϕb) 6= Tx/y(ϕ′a −ϕ′b) for ϕa/b 6= ϕ′a/b and
can thus be used to check the consistency of the measured|Tx | and|Ty |.

An example of interest that can be explained by exploiting the above equations is that when
one very fast electron, say electronb (fast with respect to the second ejected one) escapes
along thex (or y) direction. One can argue here that the fast electron absorbs the photon
and the second one is ejected with the characteristics of the initial state, which is spatially
isotropic. Under these circumstances (one electron is an s electron) the formally exact analysis
[7, 8] predicts a vanishing CD. The above (exact) analysis also anticipates a diminishing CD,
however, for another reason: regardless of the ejection angle of the slow electron (electron
a) the amplitude|Tx | is more than two orders of magnitude larger than|Ty | (cf figure 2(a)).
This is understandable since the fast electron is fixed along thex-direction. As outlined above,
equation (6) then requires that the CD has to decline as|Ty |/|Tx |, and therefore the behaviour
seen in figure 2(b). We note that the angular distribution of|Tx | (as a function ofϕa) is quite
smooth (see figure 2(a)). In contrast,|Ty |2 as a function ofϕa is not isotropic, in fact,|Ty |2
must have zero points atϕa = 0, π,2π (this means that a strict isotropic angular distribution
of the slow electron impliesTy ≡ 0). Since|Tx |2 � |Ty |2, however,σ± and6 are smooth
functions ofϕa (in the extreme case of|Ty |/|Tx | → 0 we arrive atTσ± = Tx/

√
2 and the DPE

process is directly related to a single-photoelectron emission process that shows no CD).
In summary, using a simple analysis, we have shown that for PDE from isotropic targets

(and the random final ion), information on the phase difference of the optical transition
amplitudes can be obtained by varying the helicity of the ionizing radiation. No spin-
polarization analysis of the photoelectrons is needed. The structure of the cross section for
PDE with polarized light can be explained by two (complex) transition amplitudes for PDE via
the absorption of linearly polarized light where the linear polarization vectors are perpendicular
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to each other. A generalization of the present study to the elliptical polarization state of the
photon is straightforward.

I would like to thank H Br̈auning, M Achler, V Mergel, and R D̈orner for communicating their
data.
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