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Abstract

Single-domain, high-remanence particles are the prerequisite for their application in magnetic high-density recording

systems. Analytical calculations for the transition between single and multidomain configurations remain unprecise

because the calculation of the stray field requires strong simplifications. By means of the three-dimensional finite

element method, zero-field magnetization structures of magnetically hard and soft thin film elements and cubic particles

have been determined. Numerical results are compared with analytical calculations showing that the latter results

depend sensitively on the energy determined for vortex structures.

r 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The formation of single-domain particles below
a critical diameter R of a particle results from a
strong decrease of the stray field energy following
an R3-law as compared to an R2-law due to
wall energies of a multidomain state [1–4].
These analytical calculations are usually per-
formed for rotational ellipsoids with axes a and
b: By the formation of a two-domain configuration
the stray field energy is assumed to be reduced
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by a factor a; i.e.,

fs ¼
1
2

Njjm0M
2
s Va ð1Þ

(Njj: demagnetization factor parallel to the rota-
tional axis b; m0: vacuum permeability, Ms:
spontaneous magnetization, V ¼ ð4=3Þpa2b: vo-
lume of an ellipsoid with axes a and b). From a
comparison of the energies of the single- and the
two-domain state, a critical diameter of the
rotational ellipsoid is derived as

Dcrit ¼
3g

Njjð1� aÞm0M2
s

; ð2Þ

where g denotes the wall energy either of Bloch or
N!eel type. With a ¼ 1

2
; the critical diameter for the

Bloch-type wall is given by ðgB ¼ 4ðAK1Þ
0:5Þ

DK
crit ¼

24
ffiffiffiffiffiffiffiffiffi
AK1

p
Njjm0M2

s

¼
12QlK

Njj
; ð3Þ
d.
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Fig. 1. Size dependence of the total energy of different

magnetization states in the ferromagnetic cube in units of

Kd ¼ 0:5m0M2
s for Q ¼ 0:1:
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with the quality factor Q ¼ 2K1=ðm0M
2
s Þ; the

exchange constant A and the exchange length lK ¼
ðA=K1Þ

0:5 of the anisotropy constant K1: In the
case of a N!eel-type wall in soft magnetic materials
with gN ¼ 2ð2Am0M

2
s Þ

0:5 the critical diameter is
given by

Ds
crit ¼

12

Njj

ffiffiffiffiffiffiffiffiffiffiffiffi
2A

m0M2
s

s
¼

12

Njj
ls; ð4Þ

with the exchange length, ls ¼ ð2A=ðm0M
2
s ÞÞ

0:5; of
the stray field. In cases where the transition from a
single-domain state to a vortex state takes place,
the stray field energy has to be compared with the
vortex energy which for a uniaxial material
consists of exchange and crystalline energy,
given by

fv ¼ 2pAL lnðR=ls;K Þ þ 1
2 K1pR2L; ð5Þ

where L corresponds to the height of a cylindrical
particle of radius R: In the center of the vortex Ms

is oriented perpendicular to the plane of the
vortex. The extension of this central part is
determined by the smallest exchange length, i.e.,
either ls or lK : A similar expression as Eq. (5) has
been derived by Hoffmann and Steinbauer [5]
using a discrete model. The energy contribution of
the central vortex may be omitted if Rbls;K holds.
The critical diameter of a cylindrical particle then
follows from the energy balance between the stray
field of the homogeneously magnetized specimen
and the vortex state, giving
1
2

Njjm0M
2
s R2 ¼ 2A lnðR=ls;K Þ þ 1

2
K1R

2: ð6Þ

2. Size-dependent magnetic configurations

Small particles or thin platelets to be used for
magnetic recording systems, e.g., MRAMs, re-
quire a more or less homogeneous magnetization
configuration. Above some critical size, however,
in general a multidomain configuration exists.
Analytical calculations of critical thicknesses have
been performed by numerous authors [1–7]. In the
following, we give a comparison between analy-
tical and numerical results as obtained recently for
different particle shapes.
2.1. Cubic particles

Within the framework of the mMAG standard
problem No. 3 [8], the critical edge length of a
ferromagnetic cube and rectangular platelets has
been determined by means of the finite element
method [9,10]. In this investigation, it was shown
that the quasihomogeneous state at small edge
lengths corresponds to a symmetrical flower state.
With increasing edge length, a so-called twisted
flower state is formed which finally transforms
spontaneously into a vortex-type state, initiating
the transition to a multidomain state. Fig. 1 shows
the dependence of the energy of these three
configurations as a function of the edge length of
the cube. From this presentation a critical edge
length of Dcrit ¼ 8:56ls is derived. These calcula-
tions were performed for a quality factor Q ¼
2K1=ðm0M

2
s Þ ¼ 0:1: With m0Ms ¼ 1 T and A ¼

13 pJ=m; the material parameters of permalloy,
we obtain for the critical thicknesses for Bloch or
N!eel walls the values DK

crit ¼ 66 nm and Ds
crit ¼

205 nm; to be compared with the numerical value
of 49 nm: It is obvious from these results that only
those based on the Bloch wall-type configurations
approach the numerical value.
If we now describe the multidomain configura-

tion by the vortex state we have to solve Eq. (6)
with Njj ¼ 1

3
and Q ¼ 0:1; which leads to the
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Fig. 2. Vortex state of a cubic particle, projection of the

magnetization onto the cross-sections x ¼ L=2 and z ¼ 0 along

the vortex axis.
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equation

0:141 ¼ ln e=e2; ð7Þ

where e ¼ R=ls: With the solution e ¼ 2:7 of
Eq. (7) and the relation R ¼ Dcrit=

ffiffiffi
p

p
for the

effective radius of a square we obtain Dcrit ¼
4:8lsE27:5 nm to be compared with the numerical
result of Dcrit ¼ 8:56ls: According to these results,
Eq. (3) overestimates Dcrit and Eq. (6) underesti-
mates Dcrit: The discrepancy in the case of Eq. (3)
is due to an overestimation of the wall energy and
in the case of Eq. (6) to the neglect of the stray
field energy in the vortex structure which has to be
assumed to be fully stray field free. Actually, we
deal with a quasivortex which still is charged with
a stray field as demonstrated in Fig. 2 where, in
particular, the surface charges are shown for
different cross-sections. Accordingly, we have to
add a stray field energy to the quasivortex
structure of Eq. (6) which may be described by a
ratio b of the stray field energy of the platelet with
respect to that of the homogeneously magnetized
cube leading to

1
6
ð1� bÞ � 0:025 ¼ ln e=e2: ð8Þ

Inserting for e the numerical result, 4.8, of
computational micromagnetism [9], which is com-
patible with Dcrit ¼

ffiffiffi
p

p
R ¼ 8:56ls; b ¼ 0:44 is

obtained. This result means that the quasivortex
still possesses a stray field energy which amounts
44% of the high-remanent state. This result is in
fair agreement with the energy contributions
obtained by computational micromagnetism [9].

2.2. Square thin platelets

Ferromagnetic nanosquares have been investi-
gated by several authors, mainly with respect to
magnetization processes and the switching beha-
vior [11,12]. Critical thicknesses of circular dots
were studied by Cowburn [13] and Hoffmann and
Steinbauer [5]. The critical thicknesses of rectan-
gular and square platelets in the mm-range have
been determined by Hertel [10] and Goll et al. [14].
Fig. 3a–d shows spin configurations of the C- and
S-high-remanent states for thicknesses D ¼ 2 and
20 nm and an edge length of 1 mm: The reduction
of the magnetic inhomogeneity with decreasing
thickness is quite significant. Fig. 4 shows low-
remanent states for permalloy and cobalt for D ¼
2 nm: It is of interest to note that due to the
assumed uniaxiality, the vortex-type configuration
produces some surface charges on the edges
perpendicular to the easy direction even for
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Fig. 3. High-remanent states of C- and S-state configurations obtained by three-dimensional FEM calculations for a square permalloy

platelet ða ¼ 1 mmÞ: (top left) C-state/2 nm; (top right) C-state/20 nm; (bottom left) S-state/2 nm and (bottom right) S-state/20 nm:
Spin configurations are of the platelet’s middle-plane deviating only slightly from the surface configurations.
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permalloy with its small anisotropy of 5�
102 J=m3: In the case of Co with its larger
anisotropy constant of K1 ¼ 4� 105 J=m3 the
vortex-type Landau configuration is replaced by
a two-domain laminar domain pattern. Fig. 5
presents for permalloy the total magnetic Gibbs
free energies of four different spin configura-
tions—C-state, S-state, flower state and vortex
state—as a function of the platelet’s thickness and
an edge length of a ¼ 1 mm: The C-state below
1:8 nm is found to be the energetically most
favored configuration. This critical thickness is
considerably smaller than lK or ls: An analytical
calculation of Dcrit has been performed by
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Fig. 4. Low-remanent states of Landau configuration (multi-

domain state) achieved by three-dimensional FEM calculations

for a square thin platelet (a ¼ 1 mm; D ¼ 2 nm) of perm-

alloy (left) and cobalt (right). Spin configurations are of the

platelet’s middle-plane deviating only slightly from the surface

configurations.

Dcrit

S-state

C-state

Flower-state

Vortex-state

D
Fig. 5. Total energies F obtained by the FEM method

for different types of spin configurations in a square permalloy

thin platelet of edge length 1 mm as a function of the layer

thickness D:
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Goll et al. [14] by comparing the energies of the
homogeneously magnetized square with the four
domain vortex state. Assuming 90�-N!eel walls for
the vortex-type state the energy balance may be
written as [14]

1
2 Njjm0M

2
s a2D ¼ 2

ffiffiffi
2

p
g90N aD; ð9Þ

Njj ¼
1

2p
�
2D

a
ln

D

a
þ 1:45

D

a

� �
; ð10Þ

g90 ¼ 0:32g180N ; ð11Þ

where g180N for thin films is taken from Ref. [4].
Dcrit ¼ 0:3 nm has been obtained, i.e., in drastic
difference with the numerical result of 1:8 nm:
Using for the vortex-type state the vortex energy
of Eq. (5) and taking care of Eq. (10) the energy
balance writes

1

2
Njjm0M

2
s a2D ¼ 2pAD ln

affiffiffi
p

p
ls
þ
1

2
K1a

2D: ð12Þ

Rearranging Eq. (12), we finally obtain an
implicite equation for Dcrit

�
2Dcrit

a
ln

Dcrit

a
þ 1:45

Dcrit

a

¼
4p2l2s

a2
ln

affiffiffi
p

p
ls
þ pQ: ð13Þ
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Table 1

Material parameters, hardness Q and exchange lengths lS and

lK of different magnetic materials

Material Ni80Fe20 Co

JS (T) 1.0 1.8

K1 ðJ=m3Þ 5:0� 102 4:0� 105

A ðpJ=mÞ 13 13

Q 0.0013 0.310

lS (nm) 5.7 3.2

lK (nm) 161.2 5.7
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Solving Eq. (13) with the material parameters of
permalloy as given in Table 1 gives Dcrit ¼ 0:6 nm:
This value is still a factor of 3 smaller than the
numerical result and shows clearly that the neglect
of the stray field energy in the case of the vortex-
type structure leads to a lower bound for the
critical thickness. In fact, Fig. 4 clearly shows the
existence of surface charges which means that in
Eqs. (12) and (13) as for the cube we should add
on the right-hand side the contribution of the
remaining stray field. Adding a stray field term
1
2

Njjm0M
2
s a2Dcritb the numerical value Dcrit ¼

1:8 nm is obtained for b ¼ 0:68: Accordingly, the
stray field energy in the case of the vortex-type
structure is reduced only by 32% and therefore
may not be neglected in agreement with results of
the numerical calculations [14]. In soft magnetic
materials, the spin structure is predominantly
determined by reducing the stray field and in hard
magnetic materials mainly the crystal anisotropy is
kept small. Therefore, in Co instead of a vortex
structure a two-domain structure is formed
(Fig. 4b). The balance of energy in this case writes

1
4

Njjm0M
2
s a2D ¼ g180N aD; ð14Þ

where for thin films according to Goll et al. [14]
g180N is given by

g180N ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
� 1

q ffiffiffiffiffiffiffiffiffi
AK1

p
þ

p
16

m0M
2
s D: ð15Þ

Inserting Eqs. (15) and (10) for Njj into
Eq. (14) leads to the following implicite equation
for Dcrit:

�
2Dcrit

a
ln

Dcrit

a

p2

2
� 1:45

� �

¼ 8p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
� 1

q
Q

lK

a
: ð16Þ

With the material parameters of Table 1 for Co the
solution of Eq. (16) leads for a ¼ 1 mm to Dcrit ¼
21 nm in excellent agreement with the numerical
result of Goll et al. [14].
3. Conclusions

The present study of critical thicknesses of cubes
and squared platelets has clearly shown that
analytical calculations suffer of the difficulty to
determine the stray field energy correctly. There-
fore, analytical calculations are predominantly
suitable to determine upper and lower bounds of
critical parameters. Whereas, in the case of the
cube the analytical result for Dcrit using a Bloch-
type demagnetized structure leads to suitable
results the assumption of a pure vortex-type
structure shows larger deviations from the predic-
tions of the numerical calculations. These devia-
tions have to be attributed to the assumption of
stray field-free vortex structures. These discrepan-
cies become even more expressed in the case of soft
magnetic platelets where the vortex-type structures
develop still a considerable stray field energy
comparable to the exchange energy. The situation
is much better in the case of magnetically hard
platelets where a well-defined two-domain pattern
leads to values of Dcrit in agreement with the
numerical results.
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