
Ultrafast control of electronic motion in quantum-well structures
A. Matos-Abiague and J. Berakdara)

Max-Planck Institut fu¨r Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany

~Received 26 September 2003; accepted 4 February 2004!

An ultrashort half-cycle pulse~HCP! is a fast (,1 ps) unipolar pulse, followed by a much longer
(;100 ps) and weaker unipolar pulse of opposite polarity. We show that such pulses can be utilized
to localize, within femtoseconds, and control, for picoseconds, the electronic motion in a
Al xGa12xAs based symmetric double quantum well. The results are obtained by (i ) deriving
analytically for a model system the type of HCPs that lead to a fast and sustainable localization of
a desirable final electron state and (i i ) by solving numerically exactly the time-dependent
Schrödinger equation for the quantum-well structure in the presence of the HCPs. ©2004
American Institute of Physics.@DOI: 10.1063/1.1691191#

Recently there has been an impressive progress in the
generation and design of subpicosecond unipolar electro-
magnetic pulses.1 The time-dependent electric field in these
pulses resembles one half of an optical field cycle in an elec-
tromagnetic wave and therefore they are often referred to as
‘‘half-cycle’’ pulses ~HCPs! @cf. Fig. 1~b!#. For a freely
propagating electromagnetic wave Maxwell’s equations de-
mand that the time integral over the electric field vanishes.
Therefore, a HCP is in fact a strongly asymmetric mono-
cycle pulse consisting of a very short, strong half cycle~only
this part is usually referred to as an HCP!, followed by a
much slower half cycle of an opposite polarity and a much
smaller amplitude~called hereafter the tail of the HCP!.
Typical pulse amplitude asymmetry is 13:11 @Fig. 1~b!#. If
the round-trip time of a confined electron is much longer that
the duration of the HCP, the electron-HCP interaction can be
viewed classically as an impulsive ‘‘kick’’ received by the
electron.2 The amount of the kick~momentum change! is
given byDp52*F(t)dt, whereF(t) is the time-dependent
field of the HCP. Quantum mechanically, subjecting the elec-
tron to a HCP, results in a linear transformation of the mo-
mentum space wave function in the direction of the kick,
C̃(p)→C̃(p1Dp). In the configuration space, applying a
HCP phase shifts the electron wave function asC(r )
→C(r )e2 i Dp"r. The weak tail of the HCP acts as an offset dc
field that hardly affects the electron dynamics. From this
scenario of the electron-HCP interaction one may expect that
the position and the momentum of a given electronic distri-
bution can be, to a certain degree, controlled and manipu-
lated by applying a sequence of kicks@cf. Fig. 1~b!# with
appropriate relative strengths, delays, and directions. The
feasibility of generating such HCPs has been demonstrated.3

It is the aim of this work to determine the right proper-
ties of a train of HCPs that allows a coherent control, on the
subpicosecondscale, of the electronic motion in an
Al xGa12xAs based double quantum well. Such a possibility
is desirable technologically, e.g., for the design of ultrafast
switches or for the construction and control of quantum logic
states~e.g., one can associate 1 and 0 with the states in which

the electron is localized in the left and in the right well,
respectively!.

The possibility of controlling quantum coherence in
double-well potentials4–6 and in two-level~TL! systems4,6,7

has been theoretically explored in considerable detail. Previ-
ous studies are limited, however, to the case of a continuous
wave ~cw! driving laser field. Here we report the investiga-
tion on the control of electron quantum dynamics with the
aid of a train of ultrashort half-cycle pulses. The nature of the
interaction of cw lasers and HCPs with electrons is qualita-
tively different. In the case of a monochromatic cw laser
only the characteristic frequency of the laser is relevant, and
no direct transfer of momentum to the electron takes place.
In contrast, a HCP has a wide spectrum extending to zero
frequency and it can transfer energy and momentum to a
bound or free electron.

In view of these differences and the recent achievements
in the technology of HCPs8,9 it is timely to address the co-
herent manipulation of electronic motion via HCPs. As
shown below, an appropriately designed train of HCPs al-
lows the control of electronic motion on the subpicosecond
scale, whereas such a process lasts several picoseconds when
cw lasers are used.7 A further important favorable feature of
using HCP is that the control process is robust to consider-
able changes of the field parameters, whereas in the case of
cw lasers the control process is a resonance phenomena that
is very sensitive to changes in the driving laser field proper-
ties. In this context we mention, that nowadays optical-pulse
shapers enable fine control over the spectral amplitude and
phase of broadband laser pulses,10 nevertheless the class of
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FIG. 1. ~a! Electron confining potential: the central barrier hight is
;240 meV. The wells and barrier widths are;50 and;60 Å, respec-
tively. Dashed lines indicate the first lowest energy levels.~b! The electric
field amplitude vs time for a typical sequence of HCPs.
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wave packets achievable by optical frequency fields is still
quite limited.11 We also remark that the high asymmetry of
the HCP is essential for the nonzero transfer of momentum
on a time scale much shorter than the characteristic time of
the field-free system and therefore cw lasers or nearly sym-
metric laser pulses are not expected to produce the effects
discussed bellow.

We consider a conduction electron confined in a typical
Al xGa12xAs based double quantum well depicted in Fig.
1~a!. Within the parabolic band and the effective mass ap-
proximations~the effective massm* 50.067m0 is assumed
constant throughout the heterostructure!, the Hamiltonian de-
scribing the system is

H~ t !5H01Vconf1V~x,t !, ~1!

whereH0 is the bare Hamiltonian,Vconf refers to the con-
finement potential@Fig. 1~a!#, andV(x,t) stands for the cou-
pling of the electron to the pulses. As shown below, a typical
localization time is;132 fs which is well below the typical
time scale~several picoseconds! for the elastic scattering and
electron-phonon interaction in high quality Ga~Al !As–GaAs
heterostructures with typical electron concentration.12 There-
fore, these effects are subsidiary for the localization process.
The electron coupling to the sequence of~Gaussian-like
shaped! HCPs is modeled by the potentialV(x,t) which has
the form

V~x,t !5x (
k50

N21 S Fk expF2
~ t2t02kT!2

2s2 G D , ~2!

wheres characterizes the width of the pulses,t0 corresponds
to the time at which the first applied pulse is centered,T is
the time between consecutive pulses,N is the number of
applied pulses, andFk is related to the amplitude of thekth
pulse. We checked numerically that including the negative
tails of the pulses~as described above! has no visible effect
on the results presented below. The time-dependent Schro¨-
dinger equation with the Hamiltonian~1! and the driving
potential ~2! has to be solved numerically. To this end we
implemented a fast Fourier transform based numerical
method13 for the time propagation of the initial wave func-
tion. Having determined the time-dependent wave function
C(x,t), we calculate the time-dependent probability@PL(t)
5*2`

0 C* (x,t)C(x,t)dx# and the time averaged probability
@^PL&t51/t *0

t PL(t)dt# of finding the electron in the left
well. All the calculations were performed withs510 fs, the
first pulse was centered att0540 fs, and the period was
taken asT5100 fs.

The question of interest here is, what are the values
Fk ,s,T and N in Eq. ~2! that lead to maximal, sustainable
localization PL(t). In view of the number of these param-
eters it is impracticable~and of a limited validity! to answer
this question via brute numerical simulations. Analytical
considerations are due for guiding the numerics. To this end
we remark that the two lowest-energy levels are well sepa-
rated from the other energy states@cf. Fig. 1~a!#. Hence, in a
first step we reduce the system to a two-level~TL! problem.
The resulting time-dependent Schro¨dinger equation includ-
ing Eq. ~2! is still not amenable to analytical solutions. Fur-
ther simplification is brought about by the fact that for ul-
trashort HCPs the duration of each pulse is much smaller

than the typical characteristic timeTc of the un-driven sys-
tem @in our case,Tc'665 fs which is much larger than the
duration of the pulses (;80 fs)]. Hence, one can approxi-
mate Eq. ~2! by its limit at s→0,2 i.e., V(t)
'(k50

N21@Dpkd(t2t02kT)#, whered(x) is the Dirac func-
tion andDpk5FksA2p. With this approximation analytical
expressions can be deduced that describe exactly the TL
driven system~further details are given elsewhere!.

Before applying the pulses, the particle is completely
delocalized across the heterostructure. For localizing the
wave function in the left well the analytical TL model deliv-
ers the following parameters for the appropriate pulse

mDp

\
5~2n11!

p

4
1~21!n11

p

8
; nPZ, ~3!

whereDp5Dpk (;k) and the time delay between consecu-
tive pulses isT,Tc/4. The termm is the transition dipole
between the two lowest field-free levels. The analytical TL
model also predicts complete delocalization~in presence of
the pulses! when

mDp

\
5n

p

2
; nPZ. ~4!

The exact~numerical! and approximate~TL analytical! time
dependence of the probability of finding the electron in the
left well is shown in Figs. 2~a! and 2~b! for a pulse sequence
obeying Eqs.~3! and ~4!, respectively. In Fig. 2~c! the aver-
age probabilitŷ PL&

2ps
as a function of the pulse amplitude is

displayed. An important conclusion from Fig. 2~c! is that, the
localized electron can be steered to one of the wells by
choosing an appropriate value for the pulse amplitude. For
example, pulse amplitudes corresponding ton50 in Eq. ~3!
or n51 in Eq. ~4! lead to an electron localization in the left
or right well, respectively. A similar effect is achieved by
changing the direction of the pulses.

FIG. 2. ~a! Time dependence ofPL for a pulse amplitude corresponding to
n50 in the localization condition Eq.~3!. ~b! Same as in~a! but for a pulse
amplitude corresponding ton51 @delocalization condition~4!#. ~c! PL av-
eraged over 2 ps vs pulse strength.
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The localization is further enhanced by applying at first
an auxiliary HCP of a strengthFaux and, after an appropriate
time delay, a quasiperiodic train of HCPs. In effect, the first
pulse pushes the electron into the left well and the subse-
quent train of HCPs keeps the particle localized in that well
by kicking it back at the time when it starts tunneling to the
second well. For this scenario the analytical TL model deliv-
ers the conditions:Faux must be such thatmDpaux/\
5 p/4; after a time delayt5 Tc/41g (g,Tc/4) one must
apply a train of HCPs with a periodT'2g and obeying the
conditionmDp/\ 5(2n11) p/2; nPZ. According to these
predictions we performed the exact numerical calculations
including the complete spectrum of the system. The results
shown in Fig. 3 evidence that strong localization of the ini-
tially delocalized electron can be achieved in times of the
order of 100 fs. This finding is in sharp contrast to the case
when cw lasers are used as driving fields,5 where it has not
been possible to achieve such a strong localization and, in
addition, the time needed to achieve electron localization

was found to be on the order of few picoseconds.5 Further-
more, as is clear from Fig. 3~a! the localization is robust to
considerable changes in the field strength which makes the
present control scheme a good candidate for applications,
such as the design of electro-optical devices and ultrafast
switches.
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FIG. 3. ~a! PL vs time and peak amplitudeFaux of the auxiliary pulse.
Following Faux we apply, after a time delayt5220 fs, a quasiperiodic train
of HCPs with peak amplitudesFk585 kV/cm. ~b! A cut in ~a! at Faux

542.5 kV/cm.
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