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Femtosecond control of electronic motion in semiconductor double quantum wells
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A presently realizable picosecond half-cycle electromagnetic piH€&P) consists of a short<{1 ps)
unipolar part followed by a long~ 100 ps), much weaker unipolar part of opposite polarity. In this work we
investigate the quantum dynamics and emission properties of an electron driven by a train of HCP’s in a
AlL,Ga _,As based symmetric double quantum well. Our full numerical results, analyzed with the aid of a
simple analytical model, show that an appropriately designed train of HCP’s allows the coherent control of the
electron motion on a subpicosecond scale, i.e., the electron can be driven to achieve and maintain a predefined
final state for hundreds of picoseconds. We further show that it is possible to engineer the emission spectrum
by an appropriate choice of the HCP’s parameters. Consequences of the absence of the generalized parity of the
Floquet modes on the dynamics of the system are discussed. Phenomena such as coherent suppression of
tunneling in the absence of accidental degeneration of quasienergies, low-frequency generation, and half-
harmonic generation are observed. An estimate of the pulse parameters that allows the efficient control of the
electron motion and its emission spectrum are derived from a simplified analytical model.
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[. INTRODUCTION The influence of cw lasers and HCP’s on the electron
dynamics is then qualitatively different. As demonstrated by
The study of the electron quantum dynamics in quantuna number of studies, in case of a monochromatic cw laser
well structures under external time-dependent driving has resnly the characteristic frequency of the laser is
vealed a variety of novel phenomena. Here we mention, imelevant?1°~*3|n contrast, HCP’s deliver a wide range of
particular, the coherent suppression of tunnéiingnd the frequencies to the system. In addition, if the characteristic
low-frequency generatinin a symmetric double quantum time of the electron motion in the the absence of the driving
well under the influence of a continuous-waiesv) laser as  field (e.g., the round-trip time of a confined electy@mmuch
well as the possibility to coherently control the quantum dy-longer than the duration of the HCP, the electron-HCP inter-
namics by appropriate shaping of the driving field propertiesaction can be viewed classically as an impulsive “kick” re-
Based on these findings various ideas for applications haveeived by the electrofi!®®The strength of the kick, i.e., of
been put forward, such as the laser-induced trapping of athe momentum change, is determined &p= — [F(t)dt.
electron in a quantum weflthe control of electron transfer HereF(t) is the time-dependent field of the HCP. Quantum
reactions’ the stabilization of a given configuration of an mechanically, the influence of an HCP on the electron can be
atom or moleculé;® and the creation of entangled stafes. described as a linear transformation of the momentum space
The coherent control is also highly desirable for potentialvave function in the direction of the kick¥(p)— ¥ (p
applications in designing electro-optical devices and is es+ Ap). In configuration space we can view the action of the
sential for the realization of quantum computation. HCP on the electron as a phase shift of the electron wave
For periodic (cw) driving fields, the coherence properties function in the following way W (r)—W(r)e '4P'". In view
and the quantum dynamics in double-well potentiafi®and  of these fundamental differences between cw and HCP's
in two-level system’s'®~**have been explored theoretically driving it is useful and timely to consider the possibility of
in considerable details. On the other hand during recent yeagontrolling on thesubpicosecondcale the motion of an elec-
new development in shaping electromagnetic pulses renddfon confined in a AlGa, _,As based double quantum well, a
possible the generation and controlled manipulation of sophenomenon that could be useful in designing ultrafast
called half-cycle pulse§HCP’9 (Ref. 4 in the subpicosec- switches or for the construction and control of quantum logic
ond regime. A HCP acts as a unipolar electromagnetic pulsetatede.g., one can associate 1 and 0 with the states in which
In fact, for a freely propagating electromagnetic wave Max-the electron is localized in the left and in the right well,
well’s equations require a vanishing time integral over therespectively. Below we utilize a conveniently designed train
electric field. Therefore, a HCP is strictly speaking a stronglyof ultrashort half-cycle pulses. Although the full control in
asymmetric monocycle pulse that is composed of a verglesigning electromagnetic pulses still constitutes a challenge
short, strong half-cycléonly this part is usually relevant for for experimentalists, an enormous progress has been
the dynamics and is referred to as a HCfllowed by a  achieved recently. Laser techniques available nowadays al-
much slower half cycle of an opposite polarity and a muchlow the generation of electromagnetic pulses with durations
weaker amplituddthis part is called the tail of the pulse in the femtosecond or even in the attosecottiregimes.
Typical pulse amplitude asymmetry is 13:The tail of the HCP’s with a peak field up to hundreds of kV/cm and dura-
HCP acts, on the time scale of the electron dynamics, as @on in the subpicosecond regime are currently avaifalle
weak offset dc field that hardly affects the electron motionand new principles for generation of unipolar pulses as short
(this we checked numerically for the results shown bglow as 0.1 fs and with intensities up to*¥0N/cn? have recently
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been proposetf. Techniques for sampling HCB%and for  In Egs.(2) and(3) F, denotes the peak field of theh pulse,
creating trains of ultrashort HCP's are also availablet,=/(2(2) corresponds to the time at which the positive tail
nowadays:® These techniques allow a fine control of the of the first applied pulse is centerefl,is the time between
time delay between consecutive pulses. In particular, trainsonsecutive pulse$y is the number of applied pulses, and
of HCP’s have been employed in the experimental study otharacterizes the width of the pulses. The paraméter
the ionization and dynamical stabilization of Rydberg = 7/(3¢/In2) in Eq.(3) guarantees a ratio 8:1 between the
atoms>® peak amplitudes of the positive and negative parts of the
The key finding of the present study is that an appropripulses. The duratiod of the positive part of each pulsee.,
ately designed train of HCP's renders possible the femtosegf the HCP'3 is given byd=3c+In 2.
ond control of the electron motion in symmetric quantum
wells (in contrast, such a process lasts several picoseconds
when cw lasers are used as driving fié)dsThe emission _ L )
spectrum of the system can also be selectively designed. Fur- The time-dependent Schiimger equatiorfEq. (1)] can-
thermore, it is shown that, contrary to the case of cw lasers a30t be solved analytically, we therefore implemented a fast-
driving fields, when HCP’s are used the control process iFourier-transform based numerical method as described in

robust to appreciable changes in the parameters of the dri¥Ref. 29 for the propagation of the initial wave function in
ing field. time. After computation of the time-dependent wave function

¥ (x,t), we calculated the time-dependent probability

A. Numerical model

Il. GENERAL FORMULATION

0
— *
We consider a conduction electron confined in a typical PL(V f_m‘y O OW(x dx. @

Al,Ga _,As based double quantum well. Within the para- . .

bolic band and the effective-mass approximations, the time--rhe time-averaged probability

dependent Schdinger equation describing the dynamics of 1(r

the system under a train of HCP’s can be written as (PL>T=;L P, (t)dt, 5)

mﬂzH\p, H=Hg+ Voot V(z,1), (1)  We use as a measure for finding the electron in the left well.
ot The emission properties are studied through the quantity

whereH represents the bare Hamiltonian,, refers to the x

double-well confinement potential, aM{z,t) stands for the I(w):U ,u(t)exp[—iwt]dt‘, (6)
interaction of the electron with the pulses. We employ in the m

present work a symmetric shape for the confinement potenyhere p(t)=(W(z,t)|z|¥(zt)) is the time-dependent di-
t|a| Similar to that Used in Ref 2. The Central barrier he|ght iSpole moment. A” Calcu|ati0ns were performed W|th
about 240 meV and the wells and central barrier widths are- 20 fs andT= 100 fs.

approximately, 50 A and 60 A, respectively. The electron
effective massm* =0.067n, is assumed constant through
the heterostructure. For the phenomena studied in this work, _ _
effects of elastic scattering and electron-phonon interaction For a better understanding of dependencies of the electron
are subsidiary. The reason lies in the different time scales; ABotion on the various parameters of the pulses we devel-
demonstrated explicitly below, HCP’s-driven localization of 0Ped, in addition to the numerical scheme, a simple analyti-
the electron wave packet is achieved on the femtosecongfl! approach that is capable of reproducing and explaining
scale. On the other hand, for typical electron concentration§€ main features of the numerical calculations. The analyti-
in high quality G#Al)As-GaAs heterostructures elastic scat-cal model is based on the observation that for the system
tering and electron-phonon interaction occur on the scale dfnder study the two lowest-energy levels are well separated
several picosecondsj.e., these processes are too slow to beffom the other energy states. Hence, for a certain range of

B. Analytical approach

able to affect the localization process. pulse parameters the system will behave, basically, as a two-
The electron interaction with the train of strongly asym- level system. Although, the two-level system approximation
metric pulses can be described by the potential (TLSA) introduces certain simplifications, the corresponding
time-dependent Schdinger equation with the interaction
N1 potential in Eq.(2) cannot be solved analytically. However,
V(zt) =z, FU(t—t,—kT), (2)  further simplification is brought about by the fact that for
k=0 ultrashort HCP’s the duration of each pulse is much smaller
where than the typical characteristic tinie. of the undriven system

(in the double quantum well studied here, we have, for ex-
ample, T,~665 fs in the absence of the pulses, while the

t? T T
3 ex;{ - cosQt if— Est<T— 20 duration of the employed pulses is about 8D £ss the width
U= 20 of the pulses is very small compared to the characteristic
0 otherwise. time of the undriven system, one can apply the sudden ap-

3 proximation (SA). As outlined in the Introduction, the SA
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amounts to replacing thieth pulse by an instantaneous kick and right after thekth pulse, respectively. On the other hand

that results in the momentum transfer the field-free evolution of the system in the time intervals
ty=t<ty,., is determined by
T—m/2Q
Ap= f_ 0 FU(t)dt (7 cosBy —sinB, 0
B(t)=| sin cos 0 |B(ty, 13
to the systen?:*>1The electron-pulses interaction can then ® P P (t) (13
be approximated as 0 0 1
N1 where
V(zt)=22, Apd(t—t,—KT), ®8) 2m(t—ty)
k=0 k:T—c' (14

where §(x) represents the Dirac delta function. Note that the

kth kick is applied at the time when the originah pulse The probabilityP, (t) of finding the electron in the left
reaches its maximum amplitude. Hence, the actual train ofvell can be written, in terms of the Bloch vector, as follows:
pulseq Eqg. (2)] starts at =0, while within the SA the HCP’s

sequenc¢Eq. (8)] starts at=t,. For the sake of generality, P, (t)= 1+By(1) (15)
in what follows we will denote byt, the time at which the - 2
train of pulses is turned oh._e., to=0 for the exact caICL_lla— while the time-dependent dipole reads as
tion andt,=t, for the analytical approaghWhere confusion
may occur we specify explicitly the particular valuetgf w(t)=pu, By(t). (16)
Within the TLSA the wave function of the system can be 2
expressed as Equations(15) and(16) lead to
2 o u(t)y=p 2P (1)—1]. 17
‘If(z,t)=n§1 CalOF 7700, © This expression relates the dynamics of the electron motion

[characterized by, (t)] to its emission propertiegcharac-
where W (”)(x)(n=1,2) represent the two lowest levels of terized by the Fourier transform gf(t)].
the field-free system. The expansion coefficie@tgt) de- In the case of a quasiperiodic train of pulses, the study of
fine a two-dimensional spino€(t)=(C4(t),C,(t))". For  the properties of the Floguet states and their quasienergies is
our purpose it is convenient to perform a transformationof particular interest for understanding the dynamics of the
from the spinor space to the real space. It can be dongystem as well as its emission spectrum. Within the Floquet
through a transition from S(@) to SQ3) by introducing the  theory, the wave function of the system can be expanded in
Bloch vectorB=(By,By,B;) whose components are given Floquet states?, (z,t) as®

by
B=C'o,C, i=xy,z, (10) \P(z,t>=§ A, (zZ,0), (18)

where o represent the Pauli matrices. The evolution of theynhere
system is then described by rotations of the real veBtor _
with the constrain{B|=1 imposed by the normalization of P, (z,t)=e "D, (z,1). (19
the wave function. - .
. The substitution of Eq918) and(19) in Eq. (1) leads to the
From Egs. (1), (8)—(10) one obtains, after the corre- following eigenvalue(:)sr(ob?erﬁo (19 g.(1)
sponding time integration, that the action of #tl pulse on '

the system is determined, in the Bloch space, by the follow- 9
ing relation: H _ihﬁ D, (z,t)=¢6,D,(z,1), (20
1 0 0 for determining the Floquet modes, (eigenfunctionsand
B(t)=| O cosay siney | B(ty), (11) their corresponding quasienergies (eigenvalues Unlike
. the wave function¥(z,t), the Floquet mode®, (z,t) are
0 —sinay cosay periodic, i.e..®,(z,t)=®,(z,t+T). This periodicity can be
where exploited to obtain the Floguet modes at stroboscopic times
(t=t,+KkT, k=0,1,2 . ..) and thecorresponding quasiener-
2,u,12Apk gies from the eigenfuntions and eigenvalues, respectively, of

ay= (120  the evolution operator over one period, i.e.,

h L
—aig\Tlh
1, is the dipole corresponding to transitions between the Ulto+ T.to) i (to) =€ T, (To), 2D
two lowest eigenstates of the unperturbed system, tand whereU(ty+T,t;) represents the evolution operator fram
=t,—e (with e—~0") andt, refer to the times just before =ty tot=t,+T.
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FIG. 1. (Color onling Time average oP, as a function of the FIG. 2. (Color online Geometrical interpretation of the local-
pulse strength for tunneling initial condition. ization condition, Eq(24).

It is worth noting that, in contrast to the case of a cw laserHCP’s. The solid and dashed lines correspond to the full
for HCP’s Eq.(20) is not invariant under the transformations numerical calculatiorfincluding all the levelsand the ana-
z——z;t—t+T/2. Consequently, the Floguet modes lytical approximation, respectively. A good agreement be-
®,(z,t) do not have well-defined generalized parity. In suchtween both calculations is found in the region of small pulse
a situation one can conclude, based on the von Neumannamplitudes. For strong pulses more than two levels are in-
Wigner theorenf? that the existence of exact quasienergyvolved in the dynamic’s of the system and the TLSA is no
crossings in the space of system parameters is no longésnger valid. In this case the differences between the analyti-
guaranteed and the quasienergies exhibit typically avoidedal model and the exact numerical results become more
crossings. prevalent.

Within the TLSA and the SA, the quasienergies were A remarkable fact is that, contrary to the case of a cw
found to be given by laser as a driving field, a train of HCP’s can maintain the
localization of the initially trapped particle in a wide range of

e\=€+nhag, (22) pulse parameters. The existence of certain pulse amplitudes
_ —19 p— leading to optimal localization and delocalization can also be
wherex=(I,n)(1=1,2; n=0,+1,=2,...) and . S : . MR
(1.n)( ) appreciated in Fig. 1. This behavior can be explaitveithin
hw the analytical approximatigrfrom the geometrical interpre-
€= ﬁarcco@ow cost); e=—€1, (23 tation of the dynamics of the system in the Bloch space. In
the Bloch space the tunneling initial condition is represented

with o=puAp/th and 9=7mow./wy (w.=2m/T, is the by the vector (-1,0,0). Before applying the first pulse, the
characteristic frequency of the field-free system angl vectorB rotates counterclockwise around thaxis until the

=27/T is the frequency corresponding to the train offirst pulse is applied at=t,. Just before the first kick, the
vectorB has then rotated an anghe=2mt, /T, (see position

pulses.
1in Fig. 2. The first kick induces a rotation & around the
IIl. RESULTS x axis. If the anglex of the kick-induced rotation is
As the evolution of the wave function strongly depends 2u10A
Yy oep a= 2P i hr (nez), (24)

on the initial conditions, we consider two possibilities for the 7

initial wave function corresponding to initially localized

(tunneling initial conditiom and initially delocalizedoptical  then after the kick the vectd will be at position 2(see Fig.
initial condition) states. 2), i.e., before the first pulse the particle was leaving the left
well and now, after the pulse, the particle is returning to that
well. If this procedure is iterated witlhi<T./4 the vectorB

. . . will remain oscillating in the vicinity of ¢1,0,0), i.e., the

, In this case we consider an electron whose state-8t is particle will remain localized to a large extent in the left
given by|\If0>:(|1)f|2))/\/§, where|1) and|2) are the | e|| This situation corresponds to a quasiperiodic cyclic
two lowest-energy eigenstates of the electron in the absencg,qiution of the Bloch vectorfin general, B(t,+ 2kT)
of the pulses. This case corresponds to a particle trapped ; ; _
initially ?n the left well. As in this ch)ise the cohgrent supprgg-: ggp;] a_r;(:]épeftgree pv?lglil;lsrcgaiiﬁuast{’h;r:eitl?a(é&+ kT)

. X ; > =B(tp)]. , qua-
sion of tunneling leads to the maintenance of the Iocal'zat'oréiperiodic in the case of a time quasiperiodic external field
of the electron in the left well, in what follows we will refer cyclic evolution can be regarded asecessargondition for
to the coherent suppression of tunneling justagsilization 5 chievement of sustainablie., can be sustained for a time

1. Wave-function localization interval Ionggr th_an the characteristic time of the u_nperturbed
: system localization. Note, however, that the existence of

The dependence of the average probabilRy) of find-  quasiperiodic cyclic evolution is not sufficient for achieving
ing the electron in the left well on the pulse strength is dis-localization. For this to happen, it is also necessary that the
played in Fig. 1 for the case of a quasiperiodic train ofparticle does not delocalize during one evolution cycle.

A. Tunneling initial condition
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-4 06 FIG. 4. (Color onling Dependence of the quasienergies on the
a .
0.4l pulse amplitude.
0.2 The existence of localization in the absence of accidental
0.05—— e e 5000 degeneration of the quasienergies may appear surprising at

first sight, since the existence of quasienergy crossings in the
Time [fs] system parameter space is usually regarded as a necessary
condition for the achievement of coherent suppression of
tunneling®>1%* However, as discussed before, the actual
necessary condition for inducing a sustainable localization
by a quasiperiodic external field is the requirement of quasi-
periodic cyclic evolution of the wave function of the system
and, as will be explained bellow, the existence of accidental

. . . ) degeneration of the quasienergies is not the only mechanism
Therefore, ifT<T/4 (this condition prevents the delocaliza- {14t can lead to quasiperiodic cyclic evolution.

tion of the particle during an evolution cygleEq. (24) rep- The quasiperiodic cyclic evolution corresponding to a
resents a condition for determining the pulse parameterg;ystem’ that is, in a knowimitial state at the time the exter-

:e?tdinghto Lhe kc))p;]imi.zati.on_"of the e(ljeptron Iocalizra]\tion ir? thenal time-quasi-periodic perturbation is switched @®., at
eft well. This behavior is illustrated in Fig.(8, where the t=t,) can be mathematically expressed as

time dependence of the probabil®y of finding the electron

in the left well is displayed for a pulse amplitude P (z,to+ k7j=¢ *P(z,ty), k=012..., (26
=84.068 kV/cm corresponding to=0 in Eg. (24). Solid ] ]

and dashed lines correspond to the exact numerical calcul¥there ¢y is a real number and represents the duration of
stress that the exact numerical calculation is not a two-levefide with T). Equation(26) together with the requirement
system calculation but a full numerical solution of the Sehro 7<Tgel (With 74 the delocalization time of the perturbed
dinger equation, including all the levels of the systethon ~ System can then be regarded as the necessary and sufficient

the contrary, the parameters of the pulse are such that ~ conditions for achieving dynamical localization.
Taking into account the periodicity of the Floquet modes,

Eqg. (18) can be written(within the TLSA) as

FIG. 3. (Color online Tunneling initial condition (a) Time de-
pendence oP, for a pulse amplitude correspondingre-0 in the
localization condition, Eq(24). (b) Same as ir(a) but for a pulse
amplitude corresponding to=1 in the delocalization condition,
Eq. (25).

2,LL12Ap
a=—p =2n7 (ne?2), (25

i €2kT>

W(z,ty+ kT)=ex;{ =i 7
then after the pulse the vect@r returns to position Xsee CiKT(eq— &)l A acitoer I
Fig. 2), i.e., in this case the particle does not feel the field X[e 1A TR (Z,t)
and behaves as in_the fielo!-free case, oscillating from one +Ae 02D (2,t,)]. (27)
well to the other with a period approximately equal to the
characteristic time of the unperturbed system. This situatio®ne can see that ECR7) can be reduced to E(6) if one of
is shown in Fig. 8), where the probability of remaining in the following three conditions is fulfilled.
the left well as a function of time is shown for a pulse am- () If e;— e;=nhwg (N 2).
plitude F=168.37 kV/cm that corresponds to the case (b) If A;=0 orA,=0.
=1 in Eq.(25). (© If e,—e=hwg/Mm+nhiwy (Mne Z; m#x1).

The dependence of the quasienerdiealculated within The condition (a) corresponds to degeneration of the
the analytical approximationon the pulse strength is dis- quasienergies and leadsTe-T. The conditiongb) and(c)
played in Fig. 4, showing that for the system studied here ndead to7=T and 7=mT, respectively, and do not require
crossing (and, therefore, no accidental degeneragtimf  crossing of quasienergies. We recall that for reaching a sus-
guasienergies occurs. This situation, as mentioned in the préainable localization, the conditiorta), (b), or (c) have to be
ceding section, is a consequence of the lack of well-definedomplemented with the requirement that the particle does not
generalized parity of the Floquet modes. delocalizes during one evolution cyclE For the system
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under investigation we foundwithin the analytical ap- * o

proach that for T=2t, and pulse amplitudes obeying Eg. lo(w)=27AAS E [f b%.(2)zb(2)dz
(24) the localization mechanism is determined by the condi- mn=-—ee | J e

tion (b) in which the wave function of the system collapses

into a pure Floquet state. In this case we obtaired X S(M—N)wg+ (e;— €1)/h— w)
=0 (A,=0) for n even(odd in Eq. (24). For T#2t, and

pulse strengths determined by E@4) we found that the gngd

localization mechanism corresponds to the condit@rand

Eq. (26) holds with7=2T. Consequently, a localization con- ” o

dition [equivalent to Eq(24)] in terms of the quasienergies l3(w)=27AZA7 2_30 [f bIn(2)zbym(2)dz
can be written as mne o

, (32

X5((m—n)w0+(el—62)/ﬁ—w) . (33)

1\%
sk=(ni—>ﬂ. 29) _ o
2) 2 In Egs.(31)—(33) A, represents the expansion coefficients in

Eq. (18) andb,,(z) are the coefficients of the Fourier expan-

In obtaining Eq.(28) we took into account Eqg22) and  sion of thelth Floquet mode, i.e.,

(23). -
The condition in Eq(298) is represented in Fig. 4 by the _ inont. _

intersection of the straight dotted lines with the quasienergies iz 0)= n;m bin(z)€720% - 1=1,2. (34

(dashed lings A comparison of Figs. 1 and 4 confirms that

Eq. (28) determines the pulse amplitudes corresponding to Unlike the case of a cw laser as a driving field, in the

optimal localization. present case the coefficierig (z) do not have well-defined
Apart from the conditionga), (b), and(c), the wave func-  parity. Therefore, no selection rules for the integrals in Egs.

tion of the system can be written as in E86) with 7=T, in (31)—(33) can be stated and the emission spectrum is com-

the cases the system dynamics is similar to the field-free cag®wsed, in general, of a static componentest0 [corre-

(i.e., when the system behavestemsparentto the external sponding tom=n in Eq. (31)], integer harmonics at

field). We have found that this situation occurs if =(m—n)w, [corresponding tan#n in Eqg. (31)], a band-

head atw= (e,— €;)/A [corresponding tan=n in Eq. (32)],

and doublets atv=(m—n)wy=* (e,— €1)/A [corresponding

to m#n in Egs.(32) and(33)] around the integer harmonics.

One can design the emission spectrum by using(Eg). for

with j=0 or j=1. The condition in Eq(29) does not lead, the estimation of the appropriate pulse parameters.

however, to a sustainable localization, since the localization The emission spectrurivertical lines represent the emis-

of the particle within one evolution cycle cannot be guaran-sion peaks obtained through exact numerical calculations

teed (note that in this cas@=T. and the system behaves, for different values of the pulse strength is shown in Fig. 5.

essentially, as in the absence of external fiditjuation(29) The general case in which the four kind of emission lines are

corresponds to avoided crossings of the quasienefg®s present is shown in Fig.(8, where the phenomena of low-

Fig. 4) and leads to optimal delocalization, as can be apprefrequency generatiofLFG) is also quite apparent. Because

ciated from the comparison of Figs. 1 andi4., Eq.(29) of the absence of accidental degeneration of the quasiener-

constitutes a delocalization condition, equivalent to &%) gies there is a lower limit for the LFG determined by the

e—6=(1-hwet+ (2] —Dhw, (29

with n odd (even corresponding tg=0 (j=1)]. lowest value of the difference,— €; (note that this lowest
value corresponds precisely to the characteristic frequency
2. The emission spectrum w, of the undriven systejni.e., at the pulse parameters lead-

ing to optimal delocalizatiortsee Figs. 1 and)4Under the
condition of optimal delocalization only the line correspond-
ing to LFG (that in this limit coincides withw.) survives,
while the other lines collapse, i.e., the system behaves as
transparent to the external figldee Fig. B)]. On the con-
l(w)=]l1(w)+]1(w)+]13(w)], (30) trary, whene,—e;=hwy/2, the doublets coincide at odd
multiples of wg/2. This situation corresponds to the process
of optimal localization and the corresponding emission spec-
trum is displayed in Fig. &), where half-harmonic genera-
tion [i.e., at w=nwy/2 (n=0,1,2,
o 3,...)] can beclearly appreciated. As clear from E{.7),
2J bj(z)zbn(2)dz the large static component present in Fi¢c)5s a manifes-
o tation of the strong localization effecfrote also that in the
case of optimal delocalization displayed in Figbp the
, (31)  static component vanishes

After performing a procedure similar to that used in Ref.
2, we found that the emission spectriigq. (6)] is deter-
mined by

where

2 o
L(w)=27>, > [Al

=1 mn=-o

X (M—N)wy— w)
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10’ —————————————————r 1.0
& 1] F=150kV/cm @ 0.l
S 10, i o6
. A
g 10 o’ 04
G 10'] v
- 0.2}
10—t
0.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0 oo . . ..
o/, 0 50 100 150 200 250 300 350 400
10° FIKV/cm]
& (b)
= 10* F = 168.37 kV / om FIG. 6. (Color onIir_m) T?mg average oP_ as a function of the
3 pulse strength for optical initial condition.
-] -
=  10°] 0= . . . ) ) ) )
:‘“— circuits corresponding to localization in the Iéfight) well if
the pulse amplitudes obey the relation
0.0 01 02 0.3 0.4 A
/ MHAD ™ ™
I S - =(2n+1)5+(—1)“+1z, nez, (36
= 10] F=84.068kV/cm ©
= 10 with n even(odd). On the other hand, foF <T./4 and pulse
3 Lo amplitudes such that
L0
E 107 2u
= 10 ‘ 'uh p=n7-r, ne z, (37
0
1053 2 3 4 5 ¢ . . .
o/ o the electron will remain delocalized.
? The average probabilityP, ),,sas a function of the pulse
FIG. 5. Emission spectrum for different values of the pulse@Mplitude is displayed in Fig. 6 for the cade=100fs
strength. <T.. Solid and dashed lines correspond to the exact numeri-

cal calculations and to the analytical approximation, respec-

tively. It is clear from Fig. 6 that the initially delocalized

) L . ) electron can be steered to one well or to the other by choos-
Although the previous case is widely treated in the litera-ing an appropriate value for the pulse amplitudes. A similar

ture, in practice, the more realistic situation is that the initialatfect is achieved by changing the direction of the pulses.

state corresponds to the ground state of the field-free systerq time dependence of the probability of finding the elec-

Therefore, in the present case we consider this particularlyton in the left well is shown in Figs.(@ and 7b) for pulse
important situation. Because of the symmetry of the double-

well heterostructure, before applying the pulses, the particle 1.0
is completely delocalized, with the same probability of being
in the left or right well. This situation is represented by the

B. Optical initial condition

vector(0,0,) in the Bloch spacgnote that the vectoi0,0,1) _ 08
actually corresponds to a stationary state, since it is invariant o 0 ) ]
to rotations around the axis|. On the basis of the analytical ) F=21.017kV/cm
approach one can find several strategies for inducing the 0.2p ------ Approx. ;
electron localization with a quasiperiodic train of HCP’s. By 0.0 _E’:“"" : : (@
setting, for exampleT =T./4 and pulse amplitudes such that
1.0 F=84.068 kV/cm ]
2/,LAp T -
7 =(4n+1)§ (ne 2, (35 o
the Bloch vector will follow periodically the cycle A-B-C- 02 (b)
D-A [here A(B) represents the positive direction of théy) 0.05 5007000 1500 2000
axis and C(D) the negative direction of the (y) axis| and Time [fs ]

the electron will be localized in the left well. As we are

specially interested in the ca3e<T./4 we also studied the FIG. 7. (Color onling Optical initial condition (a) Time depen-
possibility of inducing electron localization for that case. gence ofP, for a pulse amplitude corresponding fe=0 in the

Following the geometrical interpretation of the evolution of jocalization condition, Eq(36). (b) Same as ir(a) but for a pulse
the system one can fin@lthough now the situation is less amplitude corresponding tn=1 in the delocalization condition,
intuitive) that for T<T./4 the Bloch vector performs closed Eq. (37).
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1.0 into the left well and the subsequent train of HCP’s main-
0.9} ] tains the particle localization in that well.

08l | Localization time = 120 fs ] . The results cqrre§ponding to the exact numerical calcula-
a4y F L 42.031KV/cm 1 '[IOI’IS. are shown in Fl.g..s. One can see from Fig. 8 that strong

aux localization of the initially delocalized electron can be
06 F,=84.068kV/cm 1 achieved in times of the order of hundreds of femtoseconds.
05 This finding is in sharp contrast to the case when cw lasers

0 500 1000 1500 2000 .. X . .

) are used as driving fieldswhere it has not been possible to

Time [fs] achieve such a strong localization and, in addition, the time

needed for the control of the electron motion is found to be

on the order of few picosecond&hus, the use of HCP's for

controlling the electron motion in symmetric double quan-

_ _ ) tum wells can be potentially useful for applications in de-

amplitudes obeying Eq$36) and(37), respectively. signing electro-optical devices such as efficient ultrafast
The process of inducing the electron localization of angyitches.

initially delocalized electron by using a train of uniform qua-

siperiodic HCP’s is not highly efficietompare Figs. 1 and

6). Therefore we consider the possibility of optimizing the V- CONCLUSION

localization process by applying at first an auxiliary HCP  In summary, we showed that electron motion in a sym-

and, after an appropriate time delay, a quasiperiodic train ofmetric double quantum well can be controlled efficiently by

HCP’s. applying a train of ultrashort HCP’s. An appropriately de-
By application of an auxiliary pulse with peak amplitude signed train of HCP's was utilized to control the electron

Faux such that the condition 2Ap,, /A= /2 holds[this  motion in times on the order of hundreds of femtoseconds, a

pulse will rotate the Bloch vector from its initial direction finding which is of relevance for designing ultrafast electro-

(0,0,D into (0,1,0] and after a subsequent time delay optic devices. Phenomena such as coherent suppression of

=T 4+ y(y<T.4), the Bloch vector of the system evolves tunneling in the absence of accidental degeneration of the

to the position 1 in Fig. 2. One can then induce a strongjuasienergies, low-frequency generation, and half-harmonic

localization of the electron in the left well by applying a train generation were discussed. The range of the appropriate

of HCP’s with periodT~2y and obeying the localization pulse parameters for controlling the electron dynamics was

condition, Eq.(24). Thus, the first pulse pushes the electrondetermined by means of an approximate analytical model.

FIG. 8. Optimal localization process for the case of optical ini-
tial condition.
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