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Femtosecond control of electronic motion in semiconductor double quantum wells

A. Matos-Abiague and J. Berakdar
Max-Planck Institut fu¨r Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany

~Received 21 November 2003; published 1 April 2004!

A presently realizable picosecond half-cycle electromagnetic pulse~HCP! consists of a short (,1 ps)
unipolar part followed by a long (;100 ps), much weaker unipolar part of opposite polarity. In this work we
investigate the quantum dynamics and emission properties of an electron driven by a train of HCP’s in a
Al xGa12xAs based symmetric double quantum well. Our full numerical results, analyzed with the aid of a
simple analytical model, show that an appropriately designed train of HCP’s allows the coherent control of the
electron motion on a subpicosecond scale, i.e., the electron can be driven to achieve and maintain a predefined
final state for hundreds of picoseconds. We further show that it is possible to engineer the emission spectrum
by an appropriate choice of the HCP’s parameters. Consequences of the absence of the generalized parity of the
Floquet modes on the dynamics of the system are discussed. Phenomena such as coherent suppression of
tunneling in the absence of accidental degeneration of quasienergies, low-frequency generation, and half-
harmonic generation are observed. An estimate of the pulse parameters that allows the efficient control of the
electron motion and its emission spectrum are derived from a simplified analytical model.

DOI: 10.1103/PhysRevB.69.155304 PACS number~s!: 73.40.Gk, 42.65.Re, 02.30.Yy, 85.35.Be
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I. INTRODUCTION

The study of the electron quantum dynamics in quant
well structures under external time-dependent driving has
vealed a variety of novel phenomena. Here we mention
particular, the coherent suppression of tunneling1,2 and the
low-frequency generation2 in a symmetric double quantum
well under the influence of a continuous-wave~cw! laser as
well as the possibility to coherently control the quantum d
namics by appropriate shaping of the driving field properti
Based on these findings various ideas for applications h
been put forward, such as the laser-induced trapping o
electron in a quantum well,2 the control of electron transfe
reactions,3 the stabilization of a given configuration of a
atom or molecule,4–8 and the creation of entangled state9

The coherent control is also highly desirable for poten
applications in designing electro-optical devices and is
sential for the realization of quantum computation.

For periodic ~cw! driving fields, the coherence propertie
and the quantum dynamics in double-well potentials1,2,10and
in two-level systems1,10–14have been explored theoretical
in considerable details. On the other hand during recent y
new development in shaping electromagnetic pulses re
possible the generation and controlled manipulation of
called half-cycle pulses~HCP’s! ~Ref. 4! in the subpicosec-
ond regime. A HCP acts as a unipolar electromagnetic pu
In fact, for a freely propagating electromagnetic wave Ma
well’s equations require a vanishing time integral over
electric field. Therefore, a HCP is strictly speaking a stron
asymmetric monocycle pulse that is composed of a v
short, strong half-cycle~only this part is usually relevant fo
the dynamics and is referred to as a HCP!, followed by a
much slower half cycle of an opposite polarity and a mu
weaker amplitude~this part is called the tail of the pulse!.
Typical pulse amplitude asymmetry is 13:1.4 The tail of the
HCP acts, on the time scale of the electron dynamics, a
weak offset dc field that hardly affects the electron mot
~this we checked numerically for the results shown below!.
0163-1829/2004/69~15!/155304~8!/$22.50 69 1553
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The influence of cw lasers and HCP’s on the electr
dynamics is then qualitatively different. As demonstrated
a number of studies, in case of a monochromatic cw la
only the characteristic frequency of the laser
relevant.1,2,10–13In contrast, HCP’s deliver a wide range o
frequencies to the system. In addition, if the characteri
time of the electron motion in the the absence of the driv
field ~e.g., the round-trip time of a confined electron! is much
longer than the duration of the HCP, the electron-HCP in
action can be viewed classically as an impulsive ‘‘kick’’ r
ceived by the electron.6,15,16The strength of the kick, i.e., o
the momentum change, is determined byDp52*F(t)dt.
HereF(t) is the time-dependent field of the HCP. Quantu
mechanically, the influence of an HCP on the electron can
described as a linear transformation of the momentum sp
wave function in the direction of the kick,C̃(p)→C̃(p
1Dp). In configuration space we can view the action of t
HCP on the electron as a phase shift of the electron w
function in the following way:C(r )→C(r )e2 i Dp•r. In view
of these fundamental differences between cw and HC
driving it is useful and timely to consider the possibility o
controlling on thesubpicosecondscale the motion of an elec
tron confined in a AlxGa12xAs based double quantum well,
phenomenon that could be useful in designing ultraf
switches or for the construction and control of quantum lo
states~e.g., one can associate 1 and 0 with the states in wh
the electron is localized in the left and in the right we
respectively!. Below we utilize a conveniently designed tra
of ultrashort half-cycle pulses. Although the full control
designing electromagnetic pulses still constitutes a challe
for experimentalists, an enormous progress has b
achieved recently. Laser techniques available nowadays
low the generation of electromagnetic pulses with duratio
in the femtosecond17 or even in the attosecond18 regimes.
HCP’s with a peak field up to hundreds of kV/cm and du
tion in the subpicosecond regime are currently available4,15

and new principles for generation of unipolar pulses as sh
as 0.1 fs and with intensities up to 1016 W/cm2 have recently
©2004 The American Physical Society04-1
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A. MATOS-ABIAGUE AND J. BERAKDAR PHYSICAL REVIEW B 69, 155304 ~2004!
been proposed.19 Techniques for sampling HCP’s20 and for
creating trains of ultrashort HCP’s are also availa
nowadays.5,6 These techniques allow a fine control of th
time delay between consecutive pulses. In particular, tra
of HCP’s have been employed in the experimental study
the ionization and dynamical stabilization of Rydbe
atoms.5,6

The key finding of the present study is that an approp
ately designed train of HCP’s renders possible the femto
ond control of the electron motion in symmetric quantu
wells ~in contrast, such a process lasts several picoseco
when cw lasers are used as driving fields2!. The emission
spectrum of the system can also be selectively designed.
thermore, it is shown that, contrary to the case of cw laser
driving fields, when HCP’s are used the control process
robust to appreciable changes in the parameters of the
ing field.

II. GENERAL FORMULATION

We consider a conduction electron confined in a typi
Al xGa12xAs based double quantum well. Within the par
bolic band and the effective-mass approximations, the tim
dependent Schro¨dinger equation describing the dynamics
the system under a train of HCP’s can be written as

i\
]C

]t
5HC, H5H01Vconf1V~z,t !, ~1!

whereH0 represents the bare Hamiltonian,Vconf refers to the
double-well confinement potential, andV(z,t) stands for the
interaction of the electron with the pulses. We employ in
present work a symmetric shape for the confinement po
tial similar to that used in Ref. 2. The central barrier heigh
about 240 meV and the wells and central barrier widths a
approximately, 50 Å and 60 Å, respectively. The electr
effective massm* 50.067m0 is assumed constant throug
the heterostructure. For the phenomena studied in this w
effects of elastic scattering and electron-phonon interac
are subsidiary. The reason lies in the different time scales
demonstrated explicitly below, HCP’s-driven localization
the electron wave packet is achieved on the femtosec
scale. On the other hand, for typical electron concentrati
in high quality Ga~Al !As-GaAs heterostructures elastic sc
tering and electron-phonon interaction occur on the scal
several picoseconds,21 i.e., these processes are too slow to
able to affect the localization process.

The electron interaction with the train of strongly asym
metric pulses can be described by the potential

V~z,t !5z(
k50

N21

FkU~ t2tp2kT!, ~2!

where

U~ t !5H expF2
t2

2s2GcosVt if2
p

2V
<t,T2

p

2V

0 otherwise.
~3!
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In Eqs.~2! and~3! Fk denotes the peak field of thekth pulse,
tp5p/(2V) corresponds to the time at which the positive t
of the first applied pulse is centered,T is the time between
consecutive pulses,N is the number of applied pulses, ands
characterizes the width of the pulses. The parameterV
5p/(3sAln 2) in Eq. ~3! guarantees a ratio 8:1 between t
peak amplitudes of the positive and negative parts of
pulses. The durationd of the positive part of each pulse~i.e.,
of the HCP’s! is given byd53sAln 2.

A. Numerical model

The time-dependent Schro¨dinger equation@Eq. ~1!# can-
not be solved analytically, we therefore implemented a fa
Fourier-transform based numerical method as describe
~Ref. 22! for the propagation of the initial wave function i
time. After computation of the time-dependent wave functi
C(x,t), we calculated the time-dependent probability

PL~ t !5E
2`

0

C* ~x,t !C~x,t !dx. ~4!

The time-averaged probability

^PL&t5
1

tE0

t

PL~ t !dt, ~5!

we use as a measure for finding the electron in the left w
The emission properties are studied through the quantity

I ~v!5U E
2`

`

m~ t !exp@2 ivt#dtU, ~6!

where m(t)5^C(z,t)uzuC(z,t)& is the time-dependent di
pole moment. All calculations were performed withs
520 fs andT5100 fs.

B. Analytical approach

For a better understanding of dependencies of the elec
motion on the various parameters of the pulses we de
oped, in addition to the numerical scheme, a simple ana
cal approach that is capable of reproducing and explain
the main features of the numerical calculations. The anal
cal model is based on the observation that for the sys
under study the two lowest-energy levels are well separa
from the other energy states. Hence, for a certain rang
pulse parameters the system will behave, basically, as a
level system. Although, the two-level system approximat
~TLSA! introduces certain simplifications, the correspondi
time-dependent Schro¨dinger equation with the interactio
potential in Eq.~2! cannot be solved analytically. Howeve
further simplification is brought about by the fact that f
ultrashort HCP’s the duration of each pulse is much sma
than the typical characteristic timeTc of the undriven system
~in the double quantum well studied here, we have, for
ample, Tc'665 fs in the absence of the pulses, while t
duration of the employed pulses is about 80 fs!. As the width
of the pulses is very small compared to the characteri
time of the undriven system, one can apply the sudden
proximation ~SA!. As outlined in the Introduction, the SA
4-2
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FEMTOSECOND CONTROL OF ELECTRONIC MOTION IN . . . PHYSICAL REVIEW B 69, 155304 ~2004!
amounts to replacing thekth pulse by an instantaneous kic
that results in the momentum transfer

Dpk5E
2p/2V

T2p/2V

FkU~ t !dt ~7!

to the system.6,15,16The electron-pulses interaction can th
be approximated as

V~z,t !'z(
k50

N21

Dpkd~ t2tp2kT!, ~8!

whered(x) represents the Dirac delta function. Note that t
kth kick is applied at the time when the originalkth pulse
reaches its maximum amplitude. Hence, the actual train
pulses@Eq. ~2!# starts att50, while within the SA the HCP’s
sequence@Eq. ~8!# starts att5tp . For the sake of generality
in what follows we will denote byt0 the time at which the
train of pulses is turned on~i.e., t050 for the exact calcula-
tion andt05tp for the analytical approach!. Where confusion
may occur we specify explicitly the particular value oft0.

Within the TLSA the wave function of the system can
expressed as

C~z,t !5 (
n51

2

Cn~ t !Cn
(0)~x!, ~9!

where Cn
(0)(x)(n51,2) represent the two lowest levels

the field-free system. The expansion coefficientsCn(t) de-
fine a two-dimensional spinorC(t)5„C1(t),C2(t)…T. For
our purpose it is convenient to perform a transformat
from the spinor space to the real space. It can be d
through a transition from SU~2! to SO~3! by introducing the
Bloch vectorB5(Bx ,By ,Bz) whose components are give
by

Bi5C†s iC, i 5x,y,z, ~10!

wheres i represent the Pauli matrices. The evolution of t
system is then described by rotations of the real vectoB
with the constraintuBu51 imposed by the normalization o
the wave function.

From Eqs. ~1!, ~8!–~10! one obtains, after the corre
sponding time integration, that the action of thekth pulse on
the system is determined, in the Bloch space, by the follo
ing relation:

B~ tk!5S 1 0 0

0 cosak sinak

0 2sinak cosak

D B~ tk
2!, ~11!

where

ak5
2m

12
Dpk

\
, ~12!

m12 is the dipole corresponding to transitions between
two lowest eigenstates of the unperturbed system, andtk

2

5tk2e ~with e→01) and tk refer to the times just before
15530
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and right after thekth pulse, respectively. On the other han
the field-free evolution of the system in the time interva
tk<t,tk11 is determined by

B~ t !5S cosbk 2sinbk 0

sinbk cosbk 0

0 0 1
D B~ tk! , ~13!

where

bk5
2p~ t2tk!

Tc
. ~14!

The probabilityPL(t) of finding the electron in the left
well can be written, in terms of the Bloch vector, as follow

PL~ t !5
11Bx~ t !

2
, ~15!

while the time-dependent dipole reads as

m~ t !5m
12

Bx~ t !. ~16!

Equations~15! and ~16! lead to

m~ t !5m
12

@2PL~ t !21#. ~17!

This expression relates the dynamics of the electron mo
@characterized byPL(t)] to its emission properties@charac-
terized by the Fourier transform ofm(t)].

In the case of a quasiperiodic train of pulses, the study
the properties of the Floquet states and their quasienergi
of particular interest for understanding the dynamics of
system as well as its emission spectrum. Within the Floq
theory, the wave function of the system can be expande
Floquet statesCl(z,t) as10

C~z,t !5(
l

AlCl~z,t !, ~18!

where

Cl~z,t !5e2 i«lt/\Fl~z,t !. ~19!

The substitution of Eqs.~18! and~19! in Eq. ~1! leads to the
following eigenvalue problem:10

FH2 i\
]

]t GFl~z,t !5«lFl~z,t !, ~20!

for determining the Floquet modesFl ~eigenfunctions! and
their corresponding quasienergies«l ~eigenvalues!. Unlike
the wave functionC(z,t), the Floquet modesFl(z,t) are
periodic, i.e.,Fl(z,t)5Fl(z,t1T). This periodicity can be
exploited to obtain the Floquet modes at stroboscopic tim
(t5t01kT, k50,1,2, . . . ) and thecorresponding quasiener
gies from the eigenfuntions and eigenvalues, respectively
the evolution operator over one period, i.e.,

U~ t01T,t0!Fl~ t0!5e2 i«lT/\Fl~ t0!, ~21!

whereU(t01T,t0) represents the evolution operator fromt
5t0 to t5t01T.
4-3
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A. MATOS-ABIAGUE AND J. BERAKDAR PHYSICAL REVIEW B 69, 155304 ~2004!
It is worth noting that, in contrast to the case of a cw las
for HCP’s Eq.~20! is not invariant under the transformation
z→2z;t→t1T/2. Consequently, the Floquet mod
Fl(z,t) do not have well-defined generalized parity. In su
a situation one can conclude, based on the von Neuma
Wigner theorem,23 that the existence of exact quasiener
crossings in the space of system parameters is no lo
guaranteed and the quasienergies exhibit typically avoi
crossings.

Within the TLSA and the SA, the quasienergies we
found to be given by

«l5e l1n\v0 , ~22!

wherel5( l ,n)( l 51,2; n50,61,62, . . . ) and

e152
\v0

2p
arccos~cosw cosq!; e252e1 , ~23!

with w5m12Dp/\ and q5pvc /v0 (vc52p/Tc is the
characteristic frequency of the field-free system andv0
52p/T is the frequency corresponding to the train
pulses!.

III. RESULTS

As the evolution of the wave function strongly depen
on the initial conditions, we consider two possibilities for t
initial wave function corresponding to initially localize
~tunneling initial condition! and initially delocalized~optical
initial condition! states.

A. Tunneling initial condition

In this case we consider an electron whose state att50 is
given by uC0&5(u1&2u2&)/A2, whereu1& and u2& are the
two lowest-energy eigenstates of the electron in the abse
of the pulses. This case corresponds to a particle trap
initially in the left well. As in this case the coherent suppre
sion of tunneling leads to the maintenance of the localiza
of the electron in the left well, in what follows we will refe
to the coherent suppression of tunneling just aslocalization.

1. Wave-function localization

The dependence of the average probability^PL& of find-
ing the electron in the left well on the pulse strength is d
played in Fig. 1 for the case of a quasiperiodic train

FIG. 1. ~Color online! Time average ofPL as a function of the
pulse strength for tunneling initial condition.
15530
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HCP’s. The solid and dashed lines correspond to the
numerical calculation~including all the levels! and the ana-
lytical approximation, respectively. A good agreement b
tween both calculations is found in the region of small pu
amplitudes. For strong pulses more than two levels are
volved in the dynamic’s of the system and the TLSA is
longer valid. In this case the differences between the ana
cal model and the exact numerical results become m
prevalent.

A remarkable fact is that, contrary to the case of a
laser as a driving field, a train of HCP’s can maintain t
localization of the initially trapped particle in a wide range
pulse parameters. The existence of certain pulse amplitu
leading to optimal localization and delocalization can also
appreciated in Fig. 1. This behavior can be explained~within
the analytical approximation! from the geometrical interpre
tation of the dynamics of the system in the Bloch space
the Bloch space the tunneling initial condition is represen
by the vector (21,0,0). Before applying the first pulse, th
vectorB rotates counterclockwise around thez axis until the
first pulse is applied att5tp . Just before the first kick, the
vectorB has then rotated an angleb52ptp /Tc ~see position
1 in Fig. 2!. The first kick induces a rotation ofB around the
x axis. If the anglea of the kick-induced rotation is

a5
2m12Dp

\
5~2n11!p ~nPZ!, ~24!

then after the kick the vectorB will be at position 2~see Fig.
2!, i.e., before the first pulse the particle was leaving the
well and now, after the pulse, the particle is returning to t
well. If this procedure is iterated withT,Tc/4 the vectorB
will remain oscillating in the vicinity of (21,0,0), i.e., the
particle will remain localized to a large extent in the le
well. This situation corresponds to a quasiperiodic cyc
evolution of the Bloch vector@in general, B(tp12kT)
5B(tp) and in the particular caseT52tp then B(tp1kT)
5B(tp)]. Therefore, we can conclude that iterated~or qua-
siperiodic in the case of a time quasiperiodic external fie!
cyclic evolution can be regarded as anecessarycondition for
achievement of sustainable~i.e., can be sustained for a tim
interval longer than the characteristic time of the unperturb
system! localization. Note, however, that the existence
quasiperiodic cyclic evolution is not sufficient for achievin
localization. For this to happen, it is also necessary that
particle does not delocalize during one evolution cyc

FIG. 2. ~Color online! Geometrical interpretation of the loca
ization condition, Eq.~24!.
4-4
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FEMTOSECOND CONTROL OF ELECTRONIC MOTION IN . . . PHYSICAL REVIEW B 69, 155304 ~2004!
Therefore, ifT,Tc/4 ~this condition prevents the delocaliza
tion of the particle during an evolution cycle!, Eq. ~24! rep-
resents a condition for determining the pulse parame
leading to the optimization of the electron localization in t
left well. This behavior is illustrated in Fig. 3~a!, where the
time dependence of the probabilityPL of finding the electron
in the left well is displayed for a pulse amplitudeF
584.068 kV/cm corresponding ton50 in Eq. ~24!. Solid
and dashed lines correspond to the exact numerical calc
tions and to the analytical approximation, respectively~we
stress that the exact numerical calculation is not a two-le
system calculation but a full numerical solution of the Sch¨-
dinger equation, including all the levels of the system!. If, on
the contrary, the parameters of the pulse are such that

a5
2m

12
Dp

\
52np ~nPZ!, ~25!

then after the pulse the vectorB returns to position 1~see
Fig. 2!, i.e., in this case the particle does not feel the fi
and behaves as in the field-free case, oscillating from
well to the other with a period approximately equal to t
characteristic time of the unperturbed system. This situa
is shown in Fig. 3~b!, where the probability of remaining in
the left well as a function of time is shown for a pulse a
plitude F5168.37 kV/cm that corresponds to the casen
51 in Eq. ~25!.

The dependence of the quasienergies~calculated within
the analytical approximation! on the pulse strength is dis
played in Fig. 4, showing that for the system studied here
crossing ~and, therefore, no accidental degeneration! of
quasienergies occurs. This situation, as mentioned in the
ceding section, is a consequence of the lack of well-defi
generalized parity of the Floquet modes.

FIG. 3. ~Color online! Tunneling initial condition. ~a! Time de-
pendence ofPL for a pulse amplitude corresponding ton50 in the
localization condition, Eq.~24!. ~b! Same as in~a! but for a pulse
amplitude corresponding ton51 in the delocalization condition
Eq. ~25!.
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The existence of localization in the absence of accide
degeneration of the quasienergies may appear surprisin
first sight, since the existence of quasienergy crossings in
system parameter space is usually regarded as a nece
condition for the achievement of coherent suppression
tunneling.1,2,10,11 However, as discussed before, the act
necessary condition for inducing a sustainable localizat
by a quasiperiodic external field is the requirement of qua
periodic cyclic evolution of the wave function of the syste
and, as will be explained bellow, the existence of acciden
degeneration of the quasienergies is not the only mechan
that can lead to quasiperiodic cyclic evolution.

The quasiperiodic cyclic evolution corresponding to
system, that is, in a knowninitial state at the time the exter
nal time-quasi-periodic perturbation is switched on~i.e., at
t5t0) can be mathematically expressed as

C~z,t01kT!5eifkC~z,t0!, k50,1,2, . . . , ~26!

wherefk is a real number andT represents the duration o
one evolution cycle~note thatT does not necessarily coin
cide with T). Equation~26! together with the requiremen
T,tdel ~with tdel the delocalization time of the perturbe
system! can then be regarded as the necessary and suffic
conditions for achieving dynamical localization.

Taking into account the periodicity of the Floquet mode
Eq. ~18! can be written~within the TLSA! as

C~z,t01kT!5expS 2 i
e2kT

\ D
3@e2 ikT(e12e2)/\A1e2 i t 0e1 /\F1~z,t0!

1A2e2 i t 0e2 /\F2~z,t0!#. ~27!

One can see that Eq.~27! can be reduced to Eq.~26! if one of
the following three conditions is fulfilled.

~a! If e12e25n\v0 (nPZ).
~b! If A150 or A250.
~c! If e12e25\v0 /m1n\v0 (m,nPZ; mÞ61).
The condition ~a! corresponds to degeneration of th

quasienergies and leads toT5T. The conditions~b! and ~c!
lead toT5T and T5mT, respectively, and do not requir
crossing of quasienergies. We recall that for reaching a s
tainable localization, the conditions~a!, ~b!, or ~c! have to be
complemented with the requirement that the particle does
delocalizes during one evolution cycleT. For the system

FIG. 4. ~Color online! Dependence of the quasienergies on t
pulse amplitude.
4-5
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A. MATOS-ABIAGUE AND J. BERAKDAR PHYSICAL REVIEW B 69, 155304 ~2004!
under investigation we found~within the analytical ap-
proach! that for T52tp and pulse amplitudes obeying E
~24! the localization mechanism is determined by the con
tion ~b! in which the wave function of the system collaps
into a pure Floquet state. In this case we obtainedA1
50 (A250) for n even ~odd! in Eq. ~24!. For TÞ2tp and
pulse strengths determined by Eq.~24! we found that the
localization mechanism corresponds to the condition~c! and
Eq. ~26! holds withT52T. Consequently, a localization con
dition @equivalent to Eq.~24!# in terms of the quasienergie
can be written as

«l5S n6
1

2D\v0

2
. ~28!

In obtaining Eq.~28! we took into account Eqs.~22! and
~23!.

The condition in Eq.~28! is represented in Fig. 4 by th
intersection of the straight dotted lines with the quasienerg
~dashed lines!. A comparison of Figs. 1 and 4 confirms th
Eq. ~28! determines the pulse amplitudes corresponding
optimal localization.

Apart from the conditions~a!, ~b!, and~c!, the wave func-
tion of the system can be written as in Eq.~26! with T5Tc in
the cases the system dynamics is similar to the field-free
~i.e., when the system behaves astransparentto the external
field!. We have found that this situation occurs if

e22e15~12 j !\v01~2 j 21!\vc ~29!

with j 50 or j 51. The condition in Eq.~29! does not lead,
however, to a sustainable localization, since the localiza
of the particle within one evolution cycle cannot be guara
teed ~note that in this caseT5Tc and the system behave
essentially, as in the absence of external field!. Equation~29!
corresponds to avoided crossings of the quasienergies~see
Fig. 4! and leads to optimal delocalization, as can be app
ciated from the comparison of Figs. 1 and 4@i.e., Eq. ~29!
constitutes a delocalization condition, equivalent to Eq.~25!
with n odd ~even! corresponding toj 50 ( j 51)].

2. The emission spectrum

After performing a procedure similar to that used in R
2, we found that the emission spectrum@Eq. ~6!# is deter-
mined by

I ~v!5uI 1~v!1I 2~v!1I 3~v!u, ~30!

where

I 1~v!52p(
l 51

2

(
m,n52`

` FUAlU2E
2`

`

bln* ~z!zblm~z!dz

3d„~m2n!v02v…G , ~31!
15530
i-

s

o

se

n
-

e-

.

I 2~v!52pA1A2* (
m,n52`

` F E
2`

`

b2n* ~z!zb1m~z!dz

3d„~m2n!v01~e22e1!/\2v…G , ~32!

and

I 3~v!52pA2A1* (
m,n52`

` F E
2`

`

b1n* ~z!zb2m~z!dz

3d„~m2n!v01~e12e2!/\2v…G . ~33!

In Eqs.~31!–~33! Al represents the expansion coefficients
Eq. ~18! andbln(z) are the coefficients of the Fourier expa
sion of thel th Floquet mode, i.e.,

F l~z,t !5 (
n52`

`

bln~z!einv0t; l 51,2. ~34!

Unlike the case of a cw laser as a driving field, in t
present case the coefficientsbln(z) do not have well-defined
parity. Therefore, no selection rules for the integrals in E
~31!–~33! can be stated and the emission spectrum is co
posed, in general, of a static component atv50 @corre-
sponding tom5n in Eq. ~31!#, integer harmonics atv
5(m2n)v0 @corresponding tomÞn in Eq. ~31!#, a band-
head atv5(e22e1)/\ @corresponding tom5n in Eq. ~32!#,
and doublets atv5(m2n)v06(e22e1)/\ @corresponding
to mÞn in Eqs.~32! and~33!# around the integer harmonics
One can design the emission spectrum by using Eq.~23! for
the estimation of the appropriate pulse parameters.

The emission spectrum~vertical lines represent the emis
sion peaks! obtained through exact numerical calculatio
for different values of the pulse strength is shown in Fig.
The general case in which the four kind of emission lines
present is shown in Fig. 5~a!, where the phenomena of low
frequency generation~LFG! is also quite apparent. Becaus
of the absence of accidental degeneration of the quasie
gies there is a lower limit for the LFG determined by th
lowest value of the differencee22e1 ~note that this lowest
value corresponds precisely to the characteristic freque
vc of the undriven system!, i.e., at the pulse parameters lea
ing to optimal delocalization~see Figs. 1 and 4!. Under the
condition of optimal delocalization only the line correspon
ing to LFG ~that in this limit coincides withvc) survives,
while the other lines collapse, i.e., the system behaves
transparent to the external field@see Fig. 5~b!#. On the con-
trary, when e22e15\v0/2, the doublets coincide at od
multiples ofv0/2. This situation corresponds to the proce
of optimal localization and the corresponding emission sp
trum is displayed in Fig. 5~c!, where half-harmonic genera
tion @i.e., at v5nv0/2 (n50,1,2,
3, . . . )] can beclearly appreciated. As clear from Eq.~17!,
the large static component present in Fig. 5~c! is a manifes-
tation of the strong localization effects@note also that in the
case of optimal delocalization displayed in Fig. 5~b! the
static component vanishes#.
4-6
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B. Optical initial condition

Although the previous case is widely treated in the lite
ture, in practice, the more realistic situation is that the ini
state corresponds to the ground state of the field-free sys
Therefore, in the present case we consider this particul
important situation. Because of the symmetry of the doub
well heterostructure, before applying the pulses, the part
is completely delocalized, with the same probability of bei
in the left or right well. This situation is represented by t
vector~0,0,1! in the Bloch space@note that the vector~0,0,1!
actually corresponds to a stationary state, since it is invar
to rotations around thez axis#. On the basis of the analytica
approach one can find several strategies for inducing
electron localization with a quasiperiodic train of HCP’s. B
setting, for example,T5Tc/4 and pulse amplitudes such th

2mDp

\
5~4n11!

p

2
~nPZ!, ~35!

the Bloch vector will follow periodically the cycle A-B-C
D-A @here A~B! represents the positive direction of thez (y)
axis and C~D! the negative direction of thex (y) axis# and
the electron will be localized in the left well. As we ar
specially interested in the caseT,Tc/4 we also studied the
possibility of inducing electron localization for that cas
Following the geometrical interpretation of the evolution
the system one can find~although now the situation is les
intuitive! that for T,Tc/4 the Bloch vector performs close

FIG. 5. Emission spectrum for different values of the pu
strength.
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circuits corresponding to localization in the left~right! well if
the pulse amplitudes obey the relation

2mDp

\
5~2n11!

p

2
1~21!n11

p

4
, nPZ, ~36!

with n even~odd!. On the other hand, forT,Tc/4 and pulse
amplitudes such that

2mDp

\
5np, nPZ, ~37!

the electron will remain delocalized.
The average probabilitŷPL&2ps as a function of the pulse

amplitude is displayed in Fig. 6 for the caseT5100 fs
,Tc . Solid and dashed lines correspond to the exact num
cal calculations and to the analytical approximation, resp
tively. It is clear from Fig. 6 that the initially delocalize
electron can be steered to one well or to the other by cho
ing an appropriate value for the pulse amplitudes. A sim
effect is achieved by changing the direction of the puls
The time dependence of the probability of finding the ele
tron in the left well is shown in Figs. 7~a! and 7~b! for pulse

FIG. 6. ~Color online! Time average ofPL as a function of the
pulse strength for optical initial condition.

FIG. 7. ~Color online! Optical initial condition. ~a! Time depen-
dence ofPL for a pulse amplitude corresponding ton50 in the
localization condition, Eq.~36!. ~b! Same as in~a! but for a pulse
amplitude corresponding ton51 in the delocalization condition
Eq. ~37!.
4-7
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amplitudes obeying Eqs.~36! and ~37!, respectively.
The process of inducing the electron localization of

initially delocalized electron by using a train of uniform qu
siperiodic HCP’s is not highly efficient~compare Figs. 1 and
6!. Therefore we consider the possibility of optimizing th
localization process by applying at first an auxiliary HC
and, after an appropriate time delay, a quasiperiodic train
HCP’s.

By application of an auxiliary pulse with peak amplitud
Faux such that the condition 2mDpaux/\5p/2 holds @this
pulse will rotate the Bloch vector from its initial directio
~0,0,1! into ~0,1,0!# and after a subsequent time delayt
5Tc/41g(g,Tc/4), the Bloch vector of the system evolve
to the position 1 in Fig. 2. One can then induce a stro
localization of the electron in the left well by applying a tra
of HCP’s with periodT'2g and obeying the localization
condition, Eq.~24!. Thus, the first pulse pushes the electr

FIG. 8. Optimal localization process for the case of optical i
tial condition.
p
A

S

15530
of

g

into the left well and the subsequent train of HCP’s ma
tains the particle localization in that well.

The results corresponding to the exact numerical calc
tions are shown in Fig. 8. One can see from Fig. 8 that str
localization of the initially delocalized electron can b
achieved in times of the order of hundreds of femtosecon
This finding is in sharp contrast to the case when cw las
are used as driving fields,2 where it has not been possible
achieve such a strong localization and, in addition, the ti
needed for the control of the electron motion is found to
on the order of few picoseconds.2 Thus, the use of HCP’s for
controlling the electron motion in symmetric double qua
tum wells can be potentially useful for applications in d
signing electro-optical devices such as efficient ultraf
switches.

IV. CONCLUSION

In summary, we showed that electron motion in a sy
metric double quantum well can be controlled efficiently
applying a train of ultrashort HCP’s. An appropriately d
signed train of HCP’s was utilized to control the electr
motion in times on the order of hundreds of femtosecond
finding which is of relevance for designing ultrafast electr
optic devices. Phenomena such as coherent suppressio
tunneling in the absence of accidental degeneration of
quasienergies, low-frequency generation, and half-harmo
generation were discussed. The range of the approp
pulse parameters for controlling the electron dynamics w
determined by means of an approximate analytical mode
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