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Indirect exchange interaction between two quantum dots in an Aharonov-Bohm ring
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We investigate the Ruderman-Kittel-Kasuya-Yosida~RKKY ! interaction between two spins located at two
quantum dots embedded in an Aharonov-Bohm~AB! ring. In such a system the RKKY interaction, which
oscillates as a function of the distance between two local spins, is affected by the flux. For the case of the
ferromagnetic RKKY interaction, we find that the amplitude of AB oscillations is enhanced by the Kondo
correlations and an additional maximum appears at half flux, where the interaction is switched off. For the case
of the antiferromagnetic RKKY interaction, we find that the phase of AB oscillations is shifted byp, which is
attributed to the formation of a singlet state between two spins for the flux value close to integer value of flux.
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I. INTRODUCTION

When two magnetic moments are embedded in a me
they induce spin polarization in a conduction electron
and couple each other even if they are spatially separa
Such indirect exchange interaction, the Ruderman-Kit
Kasuya-Yosida~RKKY ! interaction, has been known from
the 1950s.1 The indirect exchange interaction in magne
nanostructures is one of basic mechanisms for spintron2

and it is well understood for ferromagnet and nonmagn
metal multilayer structures.3 However for semiconducto
nanostructures, the indirect exchange interaction betwee
cal spins formed in two quantum dots has not yet been
served, in spite of the importance as a basic physics and
potential application for semiconductor nanospintronics.

Recent improvement of the fabrication technique
semiconductor nanostructures enables one to make ra
complicated structures with the possibility of the prec
controlling of their parameters. For example, a double qu
tum dot ~QD! system4 and the composite system of QD an
an Aharonov-Bohm~AB! ring have been made.5,6 The
double-dot system was proposed for a candidate of ‘‘qubi
because in the Coulomb blockade~CB! regime a dot with
odd numbers of electrons, behaves as a local spin and
dot spins can be entangled by introducing the exchange
teraction between them.7 Such exchange interaction has be
also discussed from the point of view of the competiti
between the Kondo effect and the antiferromagnetic~AF!
interaction.8 However the direct exchange interaction w
considered rather than the RKKY interaction. Investigatio
on the AB ring embedded with QD are aimed at understa
ing the coherent transport through QD~Refs. 5,9 and 10! and
the indirect exchange interaction between two local spins
not been addressed.

So it is intriguing to investigate the RKKY interactio
between two QD’s in CB regime embedded in AB ring. W
will show that the RKKY interaction, the sign of which os
cillates as a function of the distance~RKKY oscillations!, is
affected by the flux and it dominates the transport propert
0163-1829/2004/69~15!/155320~10!/$22.50 69 1553
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For ferromagnetic~F! coupling between dot spins, the am
plitude of AB oscillations is enhanced by Kondo correlatio
and an additional maximum appears at half flux. For A
coupling case, the phase of AB oscillations is shifted byp.

II. MODEL AND CALCULATIONS

A. Model Hamiltonian

Figure 1~a! shows the schematic picture of an AB rin
embedded with one QD in each arm. They are formed i
two-dimensional electron gas~2DEG! by means of gate volt-
ages. QD’s denoted by 1 and 2 weakly couple to left a
right leads, which are connected strongly to reservoirs.
order to discuss RKKY interaction, we need to consider
situation when each quantum dot is occupied by odd num
of electrons, so both of them are in the local moment regim
The leads can include several channels depending on
width. In the following for simplicity, we will assume the

FIG. 1. ~a! Aharonov-Bohm ring embedded with one QD
each arm. The system has the parity symmetry along the horizo
and vertical axes~dot-dashed lines!. ~b! The flux dependent~left
panel! and independent~right panel! particle-hole excitation.F is
the flux penetrating the ring. The directed solid and dashed lines
the particle and hole propagators, respectively.
©2004 The American Physical Society20-1
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single-channel case. The effective Hamiltonian of such s
tem may be written with two one-dimensional~1D! leads
Hamiltonian H0 and the tunneling HamiltonianHT as H
5H01HT . The lead Hamiltonian is given byH0

5(k r5L,R s«kakrs
† akrs , whereakL(R)s is an annihilation op-

erator of an electron with quantum numberk and spins in
the left ~right! lead. For simplicity, we adopt the so-calle
Coqblin-Schrieffer model,

HT5 (
r ,r 85L,R

n51,2

(
s,s85↑,↓

J

2
arns

† Xs8 s
n ar 8ns8 , ~1!

for the tunneling Hamiltonian through QD’s with odd num
bers of electrons in CB regime. The Hubbard opera
Xs8 s

n [un,s8&^n,su describes the spin state of then-th QD
and J.0 is a coupling constant. The annihilation opera
arns is written using the projection̂nukr& of wave function
of an electron in the leadr with quantum numberk at the
boundary of thenth QD, asarns[(k^nukr&akrs .11

Here we encounter a problem: One needs to know
proper wave function including the information on the coh
ent propagation of an electron through the arms. Though
scattering theory12 is suitable for treating the electron cohe
ency, it is complicated to combine it with a theory based
the Hamiltonian in the second-quantization representat
i.e., the tunnel Hamiltonian approach.13 In this paper we cir-
cumvent this problem. Rather, we utilize an assumption
parity ~mirror! symmetry along the horizontal and the ver
cal axes@dot-dashed lines in Fig. 1~a!#; namely, the total
Hamiltonian is invariant under the interchange of indic
L↔R or 1↔2. Such an approximation will make calcula
tions simple and will contain all important physics. Any d
viations from such a symmetry will change the result on
quantitatively.

For practical calculations, it is convenient to introduce
annihilation operator of even/odd parity states14 ar 6s

5(ar1s6ar2s)/A2 @ar 6s5(k^6uk&akrs , where u6&
5(u1&6u2&)/A2; we dropped the indexr from ukr& because
of the parity symmetry along the vertical axis#. Annihilation
operators for even and odd parity states are orthogonal,

$arps ,ar 8p8s8%5d rr 8dss8dpp8 , ~2!

because of the parity symmetry along the horizontal axis
When magnetic field is applied, an AB phase factoreif/2

(e2 if/2) must be counted in Eq.~1!, when electron tunnels
through a QD in the clockwise~anticlockwise! direction.15

The AB phase is written with vector potentialAW as,

f5 2p
F

F0
, F5 R AW •d lW, ~3!

whereF05hc/e is the flux quantum and the line integral
performed along the ring in the clockwise direction. An A
flux breaks the time-reversal symmetry and it generates
main difference between features of the orthodox tw
impurity Kondo model14,16–19 and the AB ring embedded
with one QD in each arm. Here, we note that the magn
field in leads and QD’s is not zero for an experiment and
15532
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causes Zeeman splitting of electron spins. In the follow
discussions, we consider an ideal situation where the Zee
splitting is negligible. As we comment in Sec. IV B, such
situation will be typical for materials with a small Lande´ g
factor.

B. Flux dependent RKKY interaction

The Hamiltonian for the RKKY interaction can be ob
tained by the second order perturbation theory in terms
J/«F , where«F is the Fermi energy:1,20

HRKKY5
JRKKY~f!

2 (
ss8

Xss8
1 Xs8s

2 . ~4!

The coupling constantJRKKY(f) can be written as

JRKKY~f!5
J2

2
x~212 cosf!, ~5!

where a susceptibility functionx can be found by the pertur
bation theory based on the Keldysh Green funct
technique.20 In the equilibrium, it can be written as

J2x5 Sp

1

4
ReE d«d«8

gp~«!gp~«8!2gp~«!g p̄~«8!

«1 ih2«8

3$ f 1~«!2 f 1~«8!%, ~6!

where h is a positive infinitesimal number andgp(«)
5J(k^puk&^kup&d(«2«k) is a spectral function of parityp
‘‘electron propagator.’’ The subscriptp̄ represents the oppo
site parity of p, i.e., p̄56 for p57. Here, f 6(«)51/(1
1e6b«) is the electron~hole! distribution function, andb
[T21, ~We use the unitkB[1.) In Eq. ~5!, a phase depen
dent factor (212 cosf) appears, which is related to the fou
configurations of particle-hole excitations—two of which e
close the flux@left panel of Fig. 1~b!# and pick up a phase
factor eif or e2 if and give term 2 cosf, and the others
~right panel! are independent of the flux and give term
Equation~5! is one of the main results of this paper. It show
that by means of external fluxf one can control the ampli
tude of the RKKY interaction but it is impossible to chang
its sign since (212 cosf)>0.

Since we consider 1D leads, we approximategp(«) as for
the 1D free-electron gas with the linearized dispers
relation:14

g6~«!. J̄F16cosH kFl S 11
«

D D J G , ~7!

wherekF is the Fermi wave number andl is the length of an
electron path between two QD’s. The argument of cos
function is the energy dependent ‘‘orbital phase,’’21 i.e., the
accumulated phase during electron propagation between
QD’s. We introduced the cutoff energyD5\vFkF , wherevF

is the Fermi velocity. Here,J̄ is written with the density of
statesr as J̄[Jr.

Substituting Eq.~7! into Eqs.~5! and ~6!, we obtain for
short distance between two QD’s (kFl !2p) the ferromag-
0-2
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netic coupling asJRKKY(f).22 ln2J̄2D(212 cosf) and,
more relevant, the RKKY oscillations of 1D free-electro
gas1,22 as a function ofl for long distance between dot
(kFl @2p),

JRKKY~f!.2
p J̄2D cos~2kFl !

4 kFl
~212 cosf!. ~8!

Above expressions are obtained by replacing the Fermi fu
tions in Eq.~6! with those atT50, which is valid below the
characteristic temperatureT* defined by

T* [
\

t
, t[

\kFl

D
5

l

vF
. ~9!

Here,t is the characteristic time scale for an electron tra
eling between two QD’s. It can be understood from the f
lowing argument: Electrons deep inside the Fermi sea
responsible for the RKKY oscillations. On the other han
electrons with energy« (u«u!T* ), i.e., electrons around th
Fermi level, are unimportant, because such electrons con
ute only oscillations whose characteristic wave len
hvF /T* is much longer thanl. Thus the RKKY oscillations
are insensitive to the temperature in the regimeT!T* .
However, when the temperature reachesT* , the RKKY os-
cillations are affected by the thermal excitations of lead el
trons and will be smeared out.

Due to the RKKY interaction, depending on the sign
the couplingJRKKY(f) @Eq. ~8!#, the two dot spins are en
tangled and form a singlet stateu0,0& for AF coupling
@JRKKY(f).0# or a triplet stateu1,m& (m50,61) for F
coupling @JRKKY(f),0#.

We should note the limitation of the above approximatio
Equation ~7! may not count the influence of the potenti
barrier at the boundary of QD’s and the shape of junctio
between leads and reservoirs on an electron wave func
Thus, in reality, the RKKY oscillations would be modified
however our main result, the flux dependent RKKY intera
tion, Eq. ~5!, will not be much affected by such an approx
mation.

C. Conductance

In the following, we will discuss how the flux depende
RKKY interaction affects the conductance. The effect of t
RKKY interaction would be pronounced below the tempe
tureT'uJRKKY(0)u. In this regime, it might be unrealistic t
ignore Kondo correlations, which grow already much abo
the Kondo temperatureTK'D exp$21/(2J̄)% and cause the
logarithmic variation of transport properties with tempe
ture already aboveTK .23 In the following, we will calculate
the conductance foruJRKKY(0)u@TK and will take into ac-
count Kondo correlations within the third-order perturbati
theory in terms ofJ̄.

First we rewrite the tunnel Hamiltonian, Eq.~1!, using the
vector operator of thenth local spinSW n, whose components
are defined asS1/2

n 5X↑↓/↓↑
n andSz

n5(X↑↑
n 2X↓↓

n )/2. Further

we introduce operatorsSW 65SW 16SW 2, which satisfy the fol-
lowing commutation relations:
15532
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p ,Sj

p#5 i e i jkSk
1 , @Si

p ,Sj
p̄#5 i e i jkSk

2 , ~10!

wheree i jk is the Levi-Chivita antisymmetric tensor. The op
eratorSW 1 does not change the total spin-quantum numb
while SW 2 is the operator of the singlet-triplet transition. B
using above operators, we obtain the symmetrized form
HT

16,24,14taking into account the AB phase as

HT5
J

4 (
p56

s,s85↑,↓
H(

r
~sW rr

p
•SW p1v arps8

† ds8sarps!

1cos
f

2
~sW RL

p
•SW p1v aRps8

† ds8saLps!1H.c.

1 i sin
f

2
~sW RL

p̄
•SW p1v aRp̄s8

† ds8saLps!1H.c.J .

~11!

Here, sW r 8r
1(2)

5(ss8par 8ps8
† sW s8sarp( p̄)s denotes effective

conducting electron spin and is defined with the vector Pa
matrix sW . Terms proportional tov represent potential scat
tering process and for our case,v51. The first line repre-
sents the reflection process and shows that the chang
parity and the singlet-triplet transition occur simultaneous
The second and the third lines describe transmission
cesses. The third line describes the singlet-triplet transi
without changing the parity, which is not invariant under t
interchange of indices,L↔R, or 1↔2, ~i.e., the replace-
ment ofar6s with 6ar6s). Here it does not mean that th
parity symmetry is broken by the flux: the space invers
transformation changesf→2f, because it also reverses th
direction of the line integral in Eq.~3!.

In order to calculate the linear conductance, we adopt
diagrammatic technique for the density matrix in the re
time domain.25,26With the help of the commutation relations
Eq. ~10!, the perturbative calculation is performed rather s
tematically ~see the Appendix!. The ‘‘partial self-energy’’
which represents the transition rate for an electron from
left lead to the right lead accompanied by the triplet-trip
transitionS11

LR preserving a singlet stateS00
LR or accompanied

by the singlet-triplet transitionS j j̄
LR ( j 50,1) is obtained as

follows:

S11
LR.

3p i

2 E d« (
p56

FgpL
1 ~«! gpR

2 ~«!ReH 11
v2

2
1s1 p~«!

1 (
j 50,1

s1 p̄~«2D j j̄ !

2 J cos2
f

2
1gpL

1 ~«! g p̄R
2

~«!

3ReH 11
v2

2
1s0 p~«!1 (

j 50,1

s0 p̄~«2D j j̄ !

2 J sin2
f

2 G ,
~12!
0-3
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S00
LR.

p i

4 E d« (
p56

v2H gpL
1 ~«! gpR

2 ~«! cos2
f

2

1gpL
1 ~«!g p̄R

2
~«! sin2

f

2 J , ~13!

S j j̄
LR.

3p i

4 E d« (
p56

FgpL
1 ~«! g p̄R

2
~«2D j̄ j ! Re$11s1 p~«!

1s1 p̄~«2D j̄ j !%cos2
f

2
1gpL

1 ~«! gpR
2 ~«2D j̄ j !

3Re$11s0 p~«!1s0 p̄~«2D j̄ j !%sin2
f

2 G , ~14!

where we neglected the integral Re*d«8gp(«8)/(«1 ih
2«8). The subscriptj 51(0) denotes the total-spin quantu
number and j̄ 50(1). Here D1052D015JRKKY(f) and
gpr

6 («)5gp(«) f 6(«2m r) denotes the ‘‘lesser’’ or ‘‘greater’’
Green function wheremL52mR5eV/2. The functions0(1)p
defined by

s0(1)p~«!5E d«8
gp

1~«8!1g p̄(p)R
1

~«8!

«1 ih2«8
~15!

gives the logarithmic divergence related with Kondo cor
lations. By substituting Eq.~7! into Eq. ~15!, we obtain

s06~«!.2J̄ ln
2egD

pT
,

s16~«!.s06~«!62J̄ ReFeikFl H ln
2T*

pT
1Ei~2 ikFl !J G ,

for V50 and«!T,T* . Here Ei(x) denotes the exponentia
integral function andg'0.577 is the Euler constant. Equ
tion ~5! supplemented with Eq.~6! and Eqs.~12!–~14! are
main results of this paper.

Using the partial self-energy, Eqs.~12!–~14!, the current
can be expressed as

I 52
ie

\ (
j , j 850,1

Pj$S j j 8
LR

2~L↔R!%, ~16!

where probabilitiesP0 for a singlet state andP1 for each of
particular triplet states~we consider no Zeeman splitting! can
be obtained for the linear response from the Boltzmann
tribution as

P05
1

113 exp@2bJRKKY~f!#
, P15

12P0

3
. ~17!

The linear conductance is defined asG5 limV→0]I /]V.

III. RESULTS

For the AB ring geometry without quantum dots in arm
the conductance oscillates as a function of the fluxf.12 Fur-
thermore, because of the orbital phase, the conductance
oscillates as a function of the length of the arml for enough
15532
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low temperatures: As the thermal excitation of lead electr
scrambles various orbital phases, the oscillatory compon
would be reduced for temperatures above the character
temperatureT* , where characteristic lengthhvF /T reachesl.
When one local spin, i.e., QD, is embedded in each arm
the AB ring, in addition to the oscillatory component, th
nonoscillatory background of oscillations related to spin-fl
processes will appear: Spin-flip processes do not contrib
to the interference effect27 because if a local spin is flipped
we can determine the path which an electron propaga
Such nonoscillatory background reduces the portion of os
latory component. However, if we take account of the RKK
interaction, the oscillatory component can be enhanced f
the following mechanism: First, according to Eq.~17!, the
probabilities for singletP0 and tripletP1 states will be af-
fected by the RKKY coupling constantJRKKY(f), which is
an oscillatory function in terms off and l. Second, as the
conductance would be sensitive to a state of local spins
would show also the oscillatory behavior related to the
cillations of JRKKY(f). Such RKKY dominant oscillations
one could expect for the enough low temperatureT
!uJRKKY(0)u!T* .

In the following, we will discuss the properties of ou
system for temperatures where the thermal scrambling of
bital phases is unimportantT!T* and above the Kondo
temperatureT.TK . We note that asuJRKKY(f)u!T* , the
modification of orbital phases by inelastic spin-flip scatteri
events is also unimportant.

A. l dependence

First we will discuss the RKKY oscillations without mag
netic flux f50 as a function of the distancel between two
QD’s. Figure 2~a! shows the RKKY oscillations of the cou
pling constantJRKKY(0) as a function of the length of a
electron pathl obtained using Eq.~8!. It oscillates with the
period ofkFl /p51, and shows local minima at integer va
ues ofkFl /p corresponding to F coupling and local maxim
at half-integer values ofkFl /p corresponding to the AF cou
pling between the spins. The amplitude of the oscillatio
decays with 1/kFl as predicted for RKKY interaction in
quasi-1D geometry.22 In Fig. 2~b!, there is a plot of the prob-
ability P0 of the singlet state obtained from Eq.~17!. At low
temperatureT&uJRKKY(0)u ~the solid line!, a singlet state
~triplet state! is formed when value ofkFl /p is close to half
integer ~integer!. As the temperature increases@the dashed
line for T;uJRKKY(0)u and the dotted line for T
@uJRKKY(0)u] the amplitude of oscillations is suppresse
and system approaches uniform distribution between the
glet and triplet states—P05P051/4. There are also the os
cillations of the conductance@Fig. 2~c!# with the period of
kFl /p51. In the same way as in Fig. 2~b!, the amplitude of
oscillations is suppressed forT@uJRKKY(0)u, which indi-
cates that in the regimeT,uJRKKY(0)u the conductance os
cillations are mainly determined by the RKKY interactio
Experimentally, it can be difficult to control the length o
arms keeping other parameters fixed. However, the cond
tance oscillations would be possible to observe by chang
0-4
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INDIRECT EXCHANGE INTERACTION BETWEEN TWO . . . PHYSICAL REVIEW B69, 155320 ~2004!
the Fermi wave numberkF , by controlling the carrier density
of 2D electron gas with an additional gate.

B. f dependence, analytical results

Though above discussions suggest that the RKKY in
action dominates the length dependent conductance, it w
be more convenient experimentally to measure the flux
pendence. In the following we will discuss the modificati
of AB conductance oscillations by the presence of RKK
interaction.

As we mentioned before by means of external fluxf one
can change the amplitude of the RKKY interaction but not
sign since (212 cosf)>0. In the particular experimenta
situation depending on the lengthl of the arm and Ferm
wave vectorkF the spins can be coupled ferromagnetically
antiferromagnetically. By means of fluxf one can control
the strength of the interaction but does not switch betw
them. For this reason it is sufficient to discuss three typ
situations, for which we are able to get analytic resu
These three cases are classified by the value of the RK
coupling constant: ~i! the uncorrelated local-spin cas
(uJRKKY(f)u!T), ~ii ! the ferromagnetic coupling cas
(2JRKKY(f)@T), and ~iii ! the antiferromagnetic coupling
(JRKKY(f)@T). These cases are explained below.

~i! Uncorrelated local-spin limit is realized for high tem
peratureuJRKKY(f)u!T or for the flux f'p12pn since
then, according to Eq.~5!, the RKKY interaction is weak,

FIG. 2. Length dependent~a! RKKY coupling constant,~b!
probability for singlet state, and~c! conductance forT/D55
31025 ~solid line!, 1024 ~dashed line!, and 1023 ~dotted line!.

Parameters are taken asf50 andJ̄50.04.
15532
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JRKKY(f)→0. In this case, the local-spin state is distribut
with equal probability among a singlet state and a trip
state P1'P0'1/4 @see Eq.~17!#. The conductance is ex
pressed as

G

GK
.~p J̄!2H v2~11cosf cos2kFl !13S 114J̄ ln

2egD

pT D J ,

~18!

whereGK5e2/h is the quantum conductance. The first ter
which is proportional tov2 and thus independent of spin-fli
processes, is attributed to the phase coherent compone
the cotunneling process. It shows the ordinary AB oscil
tions. The second term in Eq.~18!, which is related to spin-
flip processes~does not depend onf), forms the background
of AB oscillations. We can see that with decreasing of te
perature the Kondo correlations enhance the backgrou
The second term can be interpreted as the parallel con
tance through two independent spin-1

2 local moments whose
conductance is enhanced by Kondo correlations.28 In the
third-order contribution inJ̄ in Eq. ~18!, there is no interfer-
ence related to the orbital phasekFl , which was pointed out
by Beal-Monod.16 We explicitly showed by Eq.~18! that
there is also no interference related to the AB phase in
third-order contribution.

~ii ! The ferromagnetic coupling,2JRKKY(f)@T : In this
case, two local spins form a triplet stateP1'1/3 and P0
'0 @see Eq.~17!#. Thus, the conductance is that ofS51
Kondo model plus the potential scattering. For the case
long distance between QD’s (kFl @1),

G

GK
.2~p J̄!2F4J̄cos2kFl cos2

f

2
ln

2T*

pT

1S 11
v2

2
12J̄ ln

2egD

pT D ~11cosf cos2kFl !G .
~19!

For the opposite case,kFl !1, we obtain the same equatio
as Eq.~19! with replacingT* in the logarithm bye2gD. The
striking feature is that as opposed to the case~i!, the Kondo
correlations enhance the oscillatory component as it is sh
in the second term of Eq.~19!. Loosely speaking, two spin
are no longer independent phase-breaking scatterers bec
they ‘‘observe’’ each other and the Kondo correlations e
hance the AF coupling of each QD spin to the conduct
electrons spins. The first term of Eq.~19! shows the logarith-
mic divergence, whose cutoff energy is equal to the char
teristic temperature of the orbital phase coherenceT* . This
term appears because the spin-1 moment stretches ovl.
Using Eq. ~19!, we can relate the F coupling of spins b
RKKY interaction@Fig. 2~a!# with the maximum in the con-
ductance@Fig. 2~c!# around integer values ofkFl /p.

~iii ! The antiferromagnetic coupling,JRKKY(f)@T: In
this case two local moments form a singlet stateP1'0 and
P0'1 @see Eq.~17!#. As the singlet state is decoupled fro
lead electrons, i.e., electrons flowing through QD’s can
0-5
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excite local spins to a triplet state, so only the potential sc
tering process contributes to the conductance:

G/GK.~p J̄!2 v2~11cosf cos2kFl !. ~20!

Because we consider the Coulomb blockade regime, the
tunneling current is very small. It is the reason why the co
ductance is suppressed around each half-integer valu
kFl /p @Fig. 2~c!#, where the RKKY coupling is antiferro
magnetic@Fig. 2~a!#. Here we note that situations~ii ! and
~iii ! are not realized for the fluxf'p12pn since
JRKKY(f) is small there and the limit~i! is approached. Fo
uJRKKY(0)u.T by means of the fluxf we can tune between
~ii ! and ~i!, or ~iii !, and ~i! but not between~ii ! and ~iii !
situations.

C. f dependence, numerical results

For above three cases, we obtained simple analytic res
and clarifed that the local-spin state due to RKKY interact
causes the pronounced effect on the conductance. Next
will analyze the conductance of the system for the full ran
of the fluxf and discuss the additional structures caused
the flux dependent RKKY interaction, which can be an e
dence of the RKKY interaction in our system. Figures 3~1-a!
and 3~2-a! show the RKKY coupling constantJRKKY(f) as a
function of the fluxf/(2p). The former shows plot for F
coupling case (kFl /p is an integer! and the latter shows th
plot for AF coupling case (kFl /p is a half integer!. The pan-
els ~1-b! and ~2-b! are the corresponding plots of the pro
ability for the singlet state for various temperatures, and
panels~1-c! and ~2-c! are plots of the conductance. For p
rameters used in Fig. 3, the Kondo temperature is appr
mately TK /D'3.731026. In the vicinity of zero fluxp
50, electron wave functions constructively interfere a
thus the maximum RKKY interaction is induced@panels
~1-a! and~2-a!#. For F coupling case, a triplet state is forme
i.e., P0;0, at low temperature@panel ~1-b!# and thus the
conductance is enhanced@panel ~1-c!# as discussed in cas
~ii !. For AF coupling case at low temperature, a singlet
formed @panel ~2-b!# and the conductance is suppress
@panel ~2-c!# as it was discussed in case~iii !. At half flux,
electron wave functions destructively interfere and
RKKY interaction is switched off@panels~1-a! and ~2-a!#.
Surprisingly at half flux we can observe the maximum in t
conductance for both situations F and AF. According to d
cussion in case~i!, this maximum is caused by the term
Eq. ~18!, which does not depend on the flux and which c
responds to incoherent transport thought the two indepen
spin-12 local moments related to Kondo correlations. Esp
cially for AF coupling case, it leads to the effective pha
shift of AB conductance oscillations byp @panel~2-c!#.

In order to compare our results with the limit, where t
RKKY interaction is negligible, we show curves of AB os
cillations for uJRKKY(f)u!T in panels~3! and ~4!. As dis-
cussed in case~i!, the component of the ordinary AB osci
lations is very small. The Kondo correlations only enhan
the background and they do not promote characteristic st
tures as the case of the AF or F coupling.
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Here we will make a note on the Onsager symmetry. F
the two-terminal geometry, it means that the conductanc
an even function of the flux. We can see that the RKK
coupling constantJRKKY(f) is an even function of the flux
@Eq. ~5!#. This property depend only on the symmetry of t
Hamiltonian under the inversion of time and magnetic field29

and does not depend on the assumption of the mirror s
metry.

IV. DISCUSSION

A. Relation to experiments

Here we note some features to distinguish experiment
the RKKY dominant oscillations from the ordinary AB os
cillations. The first feature is the characteristic temperat
below which the oscillations can be observed: The charac
istic temperature of the ordinary AB oscillationsT* is higher
than that of RKKY dominant oscillationsuJRKKY(0)u by the
factor ; J̄22. One can point out that the RKKY dominan
oscillations is sensitive to the temperature. The second
ture is the temperature dependence of the amplitude of o
lations: Suppose we decrease the temperature from en

FIG. 3. Flux dependent RKKY coupling constant@~1-a! and
~2-a!# probability for singlet state@~1-b! and 2-b!#, and conductance

@~1-c! and 2-c!#, for J̄50.04. Panels~1-a!, ~1-b!, and ~1-c! corre-
spond to the F coupling case (kFl /(2p)55) and panels~2-a!, ~2-b!,
and ~2-c! correspond to the AF coupling case@kFl /(2p)55.25#.
Flux dependent conductance for~3! kFl /(2p)550 and~4! 50.25.
The solid, dashed, dotted, and dot-dashed lines show the resul
T/D5531025, 1024, 231024, and 1023, respectively.
0-6
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high temperatureT@uJRKKY(0)u, where singlet and triple
probabilities areP1'P1'1/4 and the conductance is e
pressed by Eq.~18!. As temperature is lowered, singlet an
triplet probabilities are modified as P0'1/4@1
23JRKKY(f)/(4T)# and P1'1/4@11JRKKY(f)/(4T)#.
Therefore, the correction depending on both the orbital ph
and the AB phase,

dG.2~p J̄!2H 3S 114J̄ ln
2egD

pT D ~21cos2kFl cosf!

12v2~11cos2kFl cosf!J JRKKY~f!

4T
,

emerges. It grows as}(ln T)/T; the logarithmic correction is
related to the Kondo correlations. We expect that with
help of the Kondo correlations one can distinguish
RKKY dominant AB conductance oscillations from the ord
nary AB oscillations.

We also should make a note on our assumptions. In
calculation, we assumed the single-channel leads, howev
real experimental situation there could be several chann
As discussed in Ref. 30, for theN-channel case, the oscilla
tory component of the conductance decreases approxim
as 1/N. From the same discussion it occurs that the coup
constantJRKKY(f) of RKKY interaction, Eq.~5!, will be
enhanced approximately byN.

In Sec. II A, we also assumed the parity symmetry in
der to get the simpler expressions. The lack of the symm
along the vertical axis will reduce the oscillatory compone
as a function of AB phase in Eq.~5!. The symmetry along the
horizontal axis is important in order to get compact expr
sions for the partial self-energy, Eqs.~12!–~14!. The devia-
tion from this symmetry will mainly affect the orbital phas
which in turn can modify details of both the RKKY oscilla
tions and the conductance oscillations. However such de
tion will not change the general features of the conducta
oscillations, i.e., the oscillations dominated by the flux d
pendent RKKY interaction.

B. Parameters

Finally we discuss on parameters. For a 2DEG system
an AlAs/GaAs heterostructure, the carrier density of which
typically 3.831015 m22,6 the Fermi energy and the Ferm
wave length are«F'D'14 meV and 2p/kF'40 nm, re-
spectively. The RKKY coupling constantJRKKY(0)
; J̄2D/(kFl ) should be larger than the Kondo temperatu
TK;D exp$21/(2J̄)%, uJRKKY(0)u@TK , otherwise each
spin-12 local moment forms Kondo singlet and is screen
out and thus the RKKY interaction is unimportant. In o
calculations, we putJ̄50.04 which gives the small Kondo
temperature,TK;3.731026D!uJRKKY(0)u. Because we
adopted the perturbation theory, the temperature should
above the Kondo temperature,T@TK . In order to obtain the
large RKKY interactionJRKKY(0)*T we put the size of the
ring askFl'10p ~about 200 nm!.
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For a small AB ring, the Zeeman splitting could becom
important. In order to reduce the Zeeman splittingEZ keep-
ing the number of fluxes constant, one could increase the
of the AB ring becauseJRKKY(0)/EZ; l . In such a case, the
consideration of the Kondo regime~unitary limit!, T&TK ,
could be necessary because the RKKY interaction was
reduced so the limitTK*uJRKKY(0)u was approached. An
other way to reduce or to remove the Zeeman splitting is
utilize materials with small Lande´ g factor: Such situations
are realized in AlGaAs parabolic quantum wells31,32 or can
be achieved by manipulation of the electron wave-funct
position in 2DEG by means of the gate voltage.33

V. SUMMARY

In conclusion, we have theoretically investigated t
RKKY interaction acting between local spins, i.e., two QD
with odd numbers of electrons in CB regime, embedded
the AB ring. We assumed the parity symmetry of the syst
and such an assumption does not change the result qu
tively. We calculated the RKKY coupling constant and t
conductance above the Kondo temperature,T.TK , but in
the regime where Kondo correlations had already beco
important. The RKKY coupling constant, the sign of whic
oscillates as a function of the distance, also depends on
flux and the distance between two QD’s. When the RKK
interaction is ferromagnetic, two local spins form a tripl
state around zero flux, where the electron wave const
tively interferes, and thus the maximum RKKY interaction
induced. As the temperature decreases, the amplitude o
oscillations is enhanced by Kondo correlations, which is
distinctive difference between the ordinary AB oscillatio
and those of the ferromagnetically coupled two local spi
The maximum was found at half flux where the RKKY in
teraction is switched off and the conductance is described
the parallel conductance of two independent spin-1

2 local mo-
ments whose conductance is enhanced by Kondo corr
tions. When the RKKY interaction is AF, the phase of A
oscillations is shifted byp. It is because around zero flux
where we obtain the maximum AF interaction, two loc
spins form a singlet state, which is decoupled from the le
electrons.

Note added. After submission of this work, we learne
that the RKKY interaction between two QD’s was observ
experimentally in a different geometry.34
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APPENDIX: THIRD-ORDER PERTURBATION THEORY

In this appendix, we present detailed calculations of
third-order partial self-energy in terms ofJ̄ on the basis of
the diagrammatic technique in the real-time domain.25,26Fig-
ure 4 shows the second-order diagrams for the partial s
energy representing the transition preserving the total-s
quantum numberj, S j j

LR @~a-1!, ~a-2!, and ~a-3!# and the
singlet-triplet transition,S j j̄

LR ( j 50,1) @~b-1! and ~b-2!#.
Green functions of lead electrons are represented by dire
solid lines, which are also called ‘‘reservoir lines,’’ and so
lines on the Keldysh contour~two horizontal lines! represent
propagators of local spins. Here diagrams~a-1! and ~a-3!
represent different processes. For the former case, we
count factor21 for the vertex denoted withSz

1 when s
5↓. We omitted diagrams which could be obtained by a
plying the mirror rule.35

Following the rules in Ref. 25, the diagram~a-1! plus its
mirror diagram can be calculated as

S j j
LR(a21)5 (

p56
2 j <m< j

ip

8 E d«gpL
1 ~«!gpR

2 ~«!

3cos2
f

2
Rê j ,mu2~Sz

1!2u j ,m&. ~A1!

The results for the diagrams~a-2! and ~a-3!, which we term
S j j

LR(a22) and S j j
LR(a23), can be obtained from Eq.~A1! by

changing 2(Sz
1)2 to S6

1S7
1 and to 2v2, respectively. In the

same way, the diagram~a! plus its mirror diagram is calcu
lated as

FIG. 4. The diagrams for the second-order partial self-ene
representing the transition preserving total-spin quantum numbj
@~a-1!, ~a-2!, and ~a-3!# and the singlet-triplet transition@~b-1! and
~b-2!#. Directed lines represent propagators for lead electrons. T
solid lines on the Keldysh contour~two horizontal lines! represent
propagators for the local spins.
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S j j̄
LR(b21)5 (

p56
2 j <m< j

ip

8 E d«gpL
1 ~«!g p̄R

2
~«2D j j̄ !

3cos2
f

2
Re^ j ,mu2~Sz

2!2u j ,m&, ~A2!

where D j j̄ is the energy difference between the total-sp
quantum numberj state andj̄ state. The result for the dia
gram ~b-2!, which we denote byS j j̄

LR(b22), is obtained from
Eq. ~A2! by replacing 2(Sz

2)2 by S6
1S7

1 .
The third-order diagrams give the vertex correction to

second-order diagrams. Figures 5~a8-1!, 5~a8-2!, 5~b8-1!, and
5~b8-2! show the correction for the vertex on the upp
branch of diagrams~a-1!, ~a-2!, ~b-1!, and ~b-2! in Fig. 4,
respectively. Except for the topmost two diagrams, we om
ted the lower branch of each diagram, which is exactly
same as for the corresponding diagram in Fig. 4. The
diagrams and the right diagrams show direct tunneling p
cesses and exchange processes, respectively. We did
show the correction for the diagram~a-3! of Fig. 4 because it
is proportional to(2 j <m< j^ j ,muSz

1u j ,m& and thus vanishes

y

k

FIG. 5. The third-order diagrams: Each four diagrams of~a8-1!,
~a8-2!, ~b8-1!, and ~b8-2! show corrections for the vertex on th
upper branch of the diagram~a-1!, ~a-2!, ~b-1!, and~b-2! in Fig. 4,
respectively.
0-8
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For example, the topmost two diagrams in Fig. 5 plus th
mirror diagrams are calculated by utilizing the commutat
relations, Eq.~10!, as

S j j
LR(a21)correction

5
2i

43
Im(

r p
E d«1d«2d«3

gLp
1 ~«1!gRp

2 ~«3!

«12«31 ih
cos2

f

2

3^ j ,muSz
1H g rp

2 ~«2! S1
1S2

1

«12«21 ih
2

g rp
1 ~«2! S2

1S1
1

«22«31 ih J u j ,m&

.
ip

8 (
p
E d«gLp

1 ~«!gRp
2 ~«!cos2

f

2

3ReH s1p~«!

4
^ j ,mu2~Sz

1!2u j ,m&J , ~A3!

wheres1p is defined in Eq.~15!. Here we counted the minu
sign for a loop with three vertices in the anticlockwise dire
tion and we dropped terms except for the renormalization
the transmission probability. We checked that terms wh
we dropped are canceled out by the diagrams other
those depicted in Fig. 5, i.e., diagrams in which the posit
of a lower vertex is inbetween upper two vertices. Further
neglected the integral Re*d«8gp(«8)/(«1 ih2«8) which is
at most; J̄«/D for kFl !1 or ; J̄$u«u/D11/(kFl )% for kFl
@1. By adding Eqs.~A1! and~A3!, we obtain Eq.~A1! with
replacing 2(Sz

1)2 by 2@11s1p(«)/4#(Sz
1)2.

Other two diagrams in panel~a8-1! of Fig. 5 can be cal-
culated in the same way. In Fig. 5 we omitted diagrams
tained by reversing direction and indices for spin and lead
reservoir lines. By calculation of all such diagrams and a
ing them to Eq.~A1!, we obtain Eq.~A1! with replacing
2(Sz

1)2 by 2zj j8 (Sz
1)2, where the renormalization factor i

given by

zj j8 511
1

2 H s1p~«!1
s1p̄~«2D j̄ j !1s1p̄~«2D j j̄ !

2 J .

~A4!

In Fig. 5 we did not show the lower vertex correction
which are given in the same way as the upper vertex cor
tions. By counting lower vertex corrections,zj j8 is modified
as
Sc

,

s.
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zj j 511s1p~«!1
s1p̄~«2D j̄ j !1s1p̄~«2D j j̄ !

2
. ~A5!

Finally, the third-order contributions changeS j j
LR(a21) to

S j j
LR(a21)(2), where the latter is obtained from the former b

replacing 2(Sz
1)2 with 2zj j (Sz

1)2. For the diagrams othe
than those of panel~a8-1! of Fig. 5, we can repeat the sam
discussions as above. The result for diagrams~a-2! and~a8-2!
of Figs. 4 and 5, respectively, and their derivative diagram
which we termS j j

LR(b22)(2), is obtained from Eq.~A1! by
replacing 2(Sz

1)2 with zj j S6
1S7

1 .
By calculating diagrams~b8-1! of Fig. 5 and their deriva-

tive diagrams, and adding them to the diagram~b-1! of Fig.
4, we obtainS j j̄

LR(b21)(2), which is the same expression a
Eq. ~A2! with replacing 2(Sz

2)2 by 2zj j̄ (Sz
2)2. Here

zj j̄ 511s1p~«!1s1p̄~«2D j̄ j !. ~A6!

The result for the diagrams~b-2! and~b8-2! of Figs. 4 and 5,
respectively, and their derivative diagrams, which we te
S j j̄

LR(b22)(2) is obtained from Eq.~A2! by replacing 2(Sz
2)2

with zj j̄ S6
2S7

2 . Finally, by summarizing S j j
LR(a-1)(2),

S j j
LR(a-2)(2), andS j j

LR(a-3), we obtain the first term of Eq.~12!
for j 51 and the first term of Eq.~13! for j 50. By adding
S j j̄

LR(b-1)(2) to S j j̄
LR(b-2)(2), we obtain the first term of Eq.~14!.

For now, we have explained only the diagrams related
the time-reversal symmetric term, corresponding to the fi
and second lines in Eq.~11!. Diagrams related to the time
reversal symmetry breaking term, the third line in Eq.~11!,
are obtained from Figs. 4 and 5 by changing the parity in
ces of the right reservoir lines. For example, the correspo
ing diagram of~a-1! of Fig. 4 is calculated as

S j j
LR(a21)̃5 (

p56
m561,0

ip

8 E d«gpL
1 ~«!g p̄R

2
~«!sin2

f

2

3Rê j ,mu2~Sz
1!2u j ,m&. ~A7!

For vertex corrections, the change in the parity indices of
right reservoir lines corresponds to the operation of the
placement ofs1 p by s0 p . Thus the second terms of Eq
~12!–~14! can be obtained from first terms by replacin
s1 p , cos2(f/2), and gp( p̄)R

2 with s0 p , sin2(f/2), and

g p̄(p)R
2 , respectively.
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