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Abstract

In solid state physics the solution of tBérac and Schrédinger equation by operatplitting methods leads to differential
equations with oscillating solutions fdré radial direction. For standard timeegtators like Runge—Kutta or multistep methods
the stepsize is restricted approximately by the length of the period. In contrast the recently developed Magnus methods allow
stepsizes that are substantially larger than one period. They are based on a Lie group approach and incorporate exponential
functions and matrix commutators. A stepsize control is irm@eted and tested. As numerical examples eigenvalue problems
for the radial Schrddinger equation and the radial Dirac equation are solved. Further, phase shifts for scattering solutions for
hydrogen atoms and copper are computed.
0 2004 Elsevier B.V. All rights reserved.

PACS 02.70.-c; 71.15.-m

Keywords: Magnus methods; Computational teajunés; Schrodingemal Dirac equation

1. Introduction equations can be noticed, ¢l—10] There are spe-
cial considerations for the calculation of bound states
[1-3]or the scattering stats,6]. Higher-order meth-
ods have been developgt-7]. New numerical tech-
nigues like wavelets have been applied also to solve
the Schrédinger equatidfO].

The multi-particle problem for the electronic struc-
ture of solids is transformed in the framework of den-

—_ , _ _ ~sity functional theonf11] to an effective one-particle
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Large program packages devoted to problems in
quantum chemistry or solid state theory contain as
a core routines to solve the Schrddinger or Dirac
equation. Starting from the very beginning of com-
putational physics, a continuous interest in the de-
velopment of new efficient techniques to solve those
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ansatz with spherical harmonics the radial part is sepa-

rated which leads to a system of linear ordinary differ-
ential equations with varying coefficients. We seek the
eigenvalues of this sy@m under boundary conditions
with singularities.

In this work we present an algorithm to solve

these eigenvalue problems. Eigenvalue problems for

regular boundaries have been treatel 2] as well as
singular boundary value problems. The treatment of

singular eigenvalue problems constitutes a much more

difficult task.

Nevertheless, the efficient treatment of the underly-
ing direct problem (the initial value problem) is cru-
cial for the solution of déved problems like eigen-
value problems. Among the well-known black box in-
tegrators for ordinary differential equations there are
one-step methods like Runge—Kutta methfi®-16]
and linear multistep methods like Adarfib] meth-
ods for nonstiff problems and BDF methods] for
stiff problems. For second order problems Runge—
Kutta—Nystrom method§l7] constitute a very effi-

cient choice, there are even special methods for oscil-

lating problemg18].
We propose a method especially developed for lin-
ear differential equations with time dependent coef-

ficients—the Magnus method. It is based on an expan-

sion given by W. MagnupL9] for the solution of such
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We consider initial value problems for linear ordi-
nary differential equations with varying coefficients

dy
(1) )

ar =AY @),
Assume for the moment that the solutidf{r) is a
matrix, i.e. we solve several systems simultaneously.
The solution Y(t) proceeds in the Lie grougs
whenever the coefficient matrik () belongs to the
corresponding Lie algebrgand the initial matrixYp
belongs to the Lie groug.

The Lie group is in general a nonlinear manifold.
We parametrize it by a linear manifold—the Lie
algebra—by means of the exponential map exps

Y (t0) = Yo.

Y(t) =exp(o (1)) - Yo. (2
Instead ofY (1) € G we computes () € g. In order
to differentiate(2) we need the differential of the
exponential map. It can be expressed in an elegant way
by the function dexp

exp(B +tC) - exp(—B), (3)
t=0
where the linear function dexpcan be given as a
power series of the operator gad) := [B, - ], that
fixes the first argument in the matrix commutator
[A1, A2] := A1A2 — A2Aq, via

d
dexp (C) := @

equations. Magnus methods have been developed and

investigated by several authors, $28—26]

Our paper is organized as follows. Bection 2
we give an outline of the Magnus method. The
complete algorithm to solve the eigenvalue problem
is described irSection 3 The final section deals with
numerical experiments for the Schrddinger and the
Dirac equation, including scattering problems. The
Magnus method with the stepsize selection algorithm
of our choice is much superior to standard integration
methods—whether explicit or implicit ones.

2. The Magnus method
2.1. Basics

For completeness we give a short description of the

Magnus method and the underlying mathematics. For

a more comprehensive overview 486] or the more
detailed paper24,25]

o0

dexp(C)= Yy ———

B (©) kz=o (k +1)!
The function¢ in (4) maps the linear operator ad
to the linear operatoy (adz) that can be applied to
the matrixC. This functiong is given by the analytic
expression

o0

ady (C) =: ¢ (adp)(C). (4)

e -1
X

1 &

X" =
,;‘)(k+1)!

=:¢(x). 5)
From that we obtain a power expansion for the inverse
function dexp® by the power series of /¥ (x),
applied to the operator ad

o]

B
deXpEl(C) = ¢(ad3)7l(c) = Z k_]: ad;;(C)

k=1 "

C 1[B C]
2 > 2

1
+ B 1B, Cl]+--. (6)
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Using the dexp’-map we differentiat¢2) and insert
(1) to obtain a differential equation far(z)

o' (t) = dexp;(l[)(A(t))
1
=A(r) — 5[a(t), AN]

1
+ 1—2[0(t), [c(), AD] ]+

(7

Note, that in the scalar case all commutators vanish

and a simple integration remains. In the general case

Picard iteration is applied t&q. (7) This leads to
the famous Magnus expansion—a series of iterated
commutators and multidimensional integrglS].

t

o(t)y=+ / A(r1)dny

0
t 1

1/[14(11),[%\(72)(112} drg+---. (8)

2
0 0 =
Note, the series for degd converges whenever
lads || < 27. Thisis guaranteed fdrB|| < = because

ladg (O)]| < 2||B|||IC||, se€23]. These conditions are
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The expression above is approximated by the time-

symmetric integrals
th+h
— / (t —tn —h/2) At) dt (11)

with the desired accuracy. At this point numerical
guadrature comes into play—ideallyGauss points
are used to obtai®(h%)-accuracy.

Casas et a[21] produce a sequence of approxima-
tionso @ = w1, o® = w1+ w3, c® = w1+ w3+ ws,
where ¢ has an error of orde®(h't1) for i =
2,4, 6, by the formulas

w1 =hB(0),
s — hz[Bu) Sp0 _ 63(2)}
= ,

1 1 3
ws = |:wl, |:wl, EhBQ) — a)w3:|:| + gh[Bu), wg].

12)
2.2. Step size control with Magnus methods

An efficient implementation of a numerical method

rather restrictive, nevertheless, the Magnus method asinvolves an adaptive steas selection algorithm. The

described below will often work under less restrictive
assumptions, sq23y], too.

The discretization of the integrals in the Magnus
expansion leads to what is called a Magnus method.
A very elegant approach can be found [i21,22]
where the serie¢8) for the interval(s,,t, + h] is
approximated by time-symmetric expressions. The
matrix A(z) is expanded in a power series at
th+h/2

h k
At) = Zak<t - (tn + E))
=0

which leads to an expansion far(z, + h) in odd
powers of the stepsize

(9)

1
—az+

~1
oty +h) =hao+h3(12

E[ao, al])
1
+ h5<

1
80 + %[ao, az] +

5 40[611, az]

1 1
+ %[ao, ao, az] — %[al, ao, ai]

1 7
. 1
+ —5gla0- go. ao,a1]> +0(h").  (10)

choice of the stepsize is based on a uniformly distrib-
uted local error which requires an estimation for the
local error. There are twoomcepts in error estima-
tion for onestep methods—known as embedding and
Richardson extrapolation. Here we follow the lines of
embedding. Besides a method of higher order—say
g—Wwe use a second method of lower orgefthe em-
bedded method) for the purpose of error estimation.

The Magnus method offers a natural choice for the
embedded method—to choose= 6™ = w1 + w3
to produce a embedded forth order solutiffml
ando = 0® = ¢™® + w5 to produce the sixth order
solutionY,, ;1 (both via(2)), see[21,22]

The Lie group version of the local error is therefore
given by

VysaFh = exlo®) exp(—o )

1
= exp(a(ﬁ) —o® 4 E[U(G), o@]

+0(jo® o[

1
oc® _ @ 2[a<6>, s @]

Ellest=

’ =O(h?). (13)
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The drawback is that this error estimator works 3.1. An oscillating example using the Bessel function
only in case of non-commutative matrices. In the
convenient case whed commutes in[zg, rg] then In our first example we want to show that the
the Magnus series breaks down to pure quadrature,method is suitable for differential equations with
the error estimator vanishes. Further, the estimator strongly oscillating solutions.
neglects the quadrature error at all. To overcome this
we propose (in contrast {@1,22]) an error estimator
based on a lower order quadrature formula. We use
a second mt_ethod of fourth order, based on Gauss (1) = Jy(10),
quadrature with the two nodes> = (3+ +/3)/6.

In general, there is an absolute tolerarEOL
and a relative tolerancBTOL prescribed. The code
is forced to keep local error roughly beloTOL +
RTOL| o ||. Whenever the estimated local error satis- by

fies yex(x) = +/x Jo(10x)

which is indeed a strongly oscillating function.

We compare the Magnus methotMAGNUS6)
based on 3 Gauss points of order 6 with

GAUSSS the classical Gauss formula itself (im-
plicit, 6th order[16]),

DOPRI5 a Runge—Kutta method (explicit, 5th or-
der,[14]),

RKV4 the classical Runge—Kutta method (explicit,
4th order[15]),

1
vy (x) = —<100+ ﬁ>y(x) with initial conditions
X

Y= %10(10) —10/1(10),

(16)
whereJ; denotes the Bessel function of first kind. The
analytic solution of this differential equation is given

17

erfest< TOL(0') := ATOL 4+ RTOL || o || (14)
the current step is accepted and a new stepsiggis
computed via

hnew=« ma)((l”min, min(rmax, (;—f%l;t) 1/(q+l)))hold

(15)

where g is the order of the estimator (the order of
the lower order method). Suitable choices for the = RKN86 a Runge—Kutta—Nystrom method from Pa-
constants above are ~ 0.9, rmax = 5, rmin = 0.2. pakostas and Tsitouras (order 8, embedded solution of
These constants serve to minimize the occurrence oforder 6,[17]),

rejected steps. A step is rejected if conditidrt) is RKN2 a Runge—Kutta—Nystrom method from van

not satisfied. In that case the result is discarded and ader Houwen and Sommeijer constructed to solve
new stepsize is computed fro5). oscillating problems. The general order is 2, but the

method uses only one evaluation of the mattixper
step and has a reduced phase error (ordgd8),

By that choice we cover a wide range of suitable
methods. With the Gauss method we have included the
implicit method that has the highest possible order for

The numerical solution of the Schrodinger and a prescribed number of stages. With DOPRI5 we have
Dirac equation plays an important role in quantum included one of the most efficient explicit Runge—
mechanics and in solid states theory. There are two Kutta formulas. For completeness we have added the
different types of problems. The first one is the widely used classical Runge—Kutta method. A very
calculation of bound states which is an eigenvalue efficient class for second order differential equations
problem and will be discussed iBection 3.2 The are Runge—Kutta—Nystrom methods. We use a high
second kind of problems are scattering problems, order method (RKN86) of Papakostas and Tsitouras

3. Numerical tests

where the solution is not normalizable. We will deal
with this in Section 3.3Both types of problems lead
to oscillating solutions, so we will start the numerical
comparison with an equation with oscillating solution
in Section 3.1

and a low order method (RKN2) with improved phase

order (order 8) of van der Houwen and Sommeijer.
The problemis solved on the interyal 100] by all

6 methods. In the first experiment we apply the meth-

ods with constant stepsize= 1.E—1 which results in
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Fig. 1. Global error in the solution &qg. (16)computed with constant stepsize= 1.E—1, x, = 100, the oscillating example using the Bessel
function.

990 steps for the complete interval. We compare the  The Magnus method keeps the global error below
numerically computed values forwith the exact so-  4.E—8 which implies that for the Magnus method
lution yex from (17). In Fig. 1the difference ateach in-  there is almost no phase shift in the numerical solution.
termediate point in the interval of integration is plotted The same is true for the method RKN2 of v.d. Houwen
by dots. The almost-periodic character of the solution and Sommeijer which has order 8 in the phase space.
causes the dots to form regular patterns. For the other methods the error accumulates. For the
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Fig. 2. Global error in the solution dgqg. (16)with stepsize controlRTOL = 1.E—4, x, = 100, the oscillating example using the Bessel
function.

classical Runge—Kutta method RKV4 the solution in  of ATOL = 1.E—6. For the methods RKV4 and RKN2
the endpointis completely wrong, because this method we used Richardson extrapolation, whereas for the
generates a solution with decreasing amplitude. other 4 methods we used embedding. Note, that for the
In Fig. 2 the results with stepsize control for methods based on Gaussian quadrature of order 6 we
the 6 methods are given. We prescribed a relative have chosen the corresponding 4th order method based
tolerance oRTOL = 1.E—4 and an absolute tolerance on two Gauss points as error estimator. The methods
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Fig. 3. Maximum global error versus numbersteps and number of flops for all six methods for the oscillating example using the Bessel
function.

DOPRIS5 respectively RKN86 are equipped with 4th cal components. For the spherical components we use
respectively 6th order error estimators. the eigenfunctions of the spherical part of the Laplace
The Magnus method managed the task with only operator (spherical harmonics). This leads to an eigen-
160 steps, second comes RKN86 with 800 steps. Thevalue problem for the radial componeri {(n Ryd, r
other methods used approximately 2500 steps, exceptin Bohr radii)
RKN2 which took 8000 steps. @ 10+
The third experiment tests the efficiency of the [_2 - ———+E- V(r)]Rl(r; E)=0, (18)
step size control. The left picture fig. 3 displays " r
the maximum global error versus the number of where the energ¥ is the eigenvalue of the eigenfunc-
executed steps, discounting rejected steps. We remarktion R;(r; E). We consider here the cake: 0, i.e. we
that all step size selection algorithms worked quite solve forR = Rg. The potentialvV for the H-Atom is
satisfactory with less than 10 percent rejected steps. given byV (r) = —2/r. We end up with the eigenvalue
The performance of the methods is almost as expected.problem
The Magnus method performs quite superior, whereas 2
the other methods rank with respect to their order. —R"(r) — =R(r)=ER(r), R € L2([0,00)). (19)
RKN86 (order 8) is second, the Gauss method (order o ) ]
6) is third, whereas DOPRIS is fourth best. An asymptotic expansion of the solution near the
For a realistic evaluation we have to take into Poundariesgives boundary valuesgh — 0, rmax—
account the computational effort. On the right picture *°
in Fig. 3the computing time is displayed. The Magnus

R(rmin) = rmin — r2in, R =1, 20
method is again superior. One reason is thaffer2 /(rmm) "min  Tmin (rmax) (20)
matrices there is an elegant way to compute the matrix & ("min) =1 —2rmin,
exponential, sef26]. DOPRI5 performs now as good g/, ——J_E+ 1 21
as the Gauss method because the Gauss method has to (rmax) Fmaxy/—E (21)

solve a linear system of dimension 6. We integrate outwards fromimin Up 10 rmig and

inwards fromrmax Up t0 rmig. The resulting solutions
and derivatives atmig are denoted by(y;, yl’) for
the outward integration respectively,, y.) for the
3.2.1. The non-relativistic case—the Schrédinger inward integration. In order to have a continuously
equation differentiable solution atmig the vectors(y;, y;) and
For the stationary one-particle Schrddinger equa- (y,, y.) must be scalable suchahthey coincide, i.e.
tion we use a separation ansatz with radial and spheri-they must be linearly dependent. At a first glance

3.2. Generalized eigenval ue problem—H-Atom
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this seems to be equivalent to the fact that the angle Table 1

between both vectors vanishes, but a more careful The values and relative errors for the 10 smallest energies of the

analysis reveals that the ang|e can be any multiple of hydrogen atom in the non-relatitis case (Schrodinger equation),
o . computed as the zeros Bf). (22

7. By a restriction of the angle (say, to the interval pu z b (22)

(—m/2,7/2]) the resulting angle is not a continuous N°: Energy (Ryd) —loggg(ern
function of the valuesy,, y, y;, y/. To avoid these 1 —1.00000000 16
difficulties we compute atmig the sine of the angle g :g-i‘l‘fl’iiiflfi ;27
¢, where¢ is defined as the orie.nt_ed angle b_etween 4 0.06250000 &
the vectors(y,, y,) and(y;, y)). This is accomplished 5 0.04000000 &
by the expression 6 —0.02777778 &
7 —0.02040816 @
sing = Nz where 8 —0.01562500 !
= E 9 —0.01234568 /)
., ., 10 —0.00999999 Pl

2= +1y)/Gr +1y,). (22)

We use the Magnus method to sokq. (19)with
a prescribed accuracy &¥TOL = 1.E—8, ATOL =
1.E—10. We mention that the equation has to be
transformed into a system of first order by introducing
a new variable for the first derivative.

By that procedure we have computed the values
given in Fig. 4 for sing on a suitableE-grid. Based
on that grid we start the method of secants to compute 3.2.2. The relativistic case—the Dirac equation
the zero of sip in each interval where the sign As a second example we consider the relativistic
changes. The iteration converges usually in four to case and solve the analogous problem for the Dirac
six steps. The numerical values and the relative errors equation. The underlying physics is completely differ-

(compared with the known analytical solutions) are
given in Table 1 Note, that the errors in the results
are in the magnitude of the prescribed accuracy for the
Magnus method.

1

/\kk il
_‘;i\/ W( (TR

-10° -10™ -107* -10
Energy (Ryd)

r &

sin ¢

Fig. 4. The expression sif( E) given byEq. (22) The zeros of this function are the energy eigenvalues of the hydrogen atom.
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ent but we end up with a linear system of first order,
again.

The radial Dirac equations in atomic units is used:
(E in Ryd, r in Bohr radii, fine structure constant
a~1/137)

ou(r) :—Eu(r)—i—oz(E—i—}—i—iz)v(r), (23)
or r rooo

9v(r) = Ev(r) — ot(E + 1 %)u(r). (24)
ar r ro«a

In this example we calculate the bound state energies.
The analytic solutions for the energi€s(in Ryd) are

given by
(@)?

~1/2
1+ ) 25
( (n — k| + /K2 — (@)?)? @)

wheren andx are quantum numbers.

The energies are found again by integrating the dif-
ferential equation fronmin — 0 tO rmig and rmax —
o0 10 rmig. With the Magnus method of 4th order we
found the lowest energies with more than 12 correct
digits. The results are displayedTable 2

1
=

E

Table 2
The values and relative errors for the 16 smallest energies of the
hydrogen atom in the relativistic case (Dirac equatios; —1)

No. Energy (Ryd) —logyp(ern
1 18778.3624097594774582375976024 16.4
2 18778.7374143368275269949663197 14.0
3 18778.8068601209268138063634978 15.5
4 18778.8311660780564693595806602 15.9
5 18778.8424162350242596630778280 16.0
6 18778.8485274193295282429971848 16.5
7 18778.8522122651340140464526484 16.5
8 18778.8546038689485584427529829 17.0
9 18778.8562435430890218412969261 16.9

10 18778.8574163914461223612306639 16.7

11 18778.8582841660307565234688809 16.3

12 18778.8589441794062651069907587 16.5

13 18778.8594578247742816756726824 16.4

14 18778.8598653864831078408315079 16.7

15 18778.8601941863593225434669875 16.6

16 18778.8604632848805664480096311 16.8

137

3.3. Scattering problems

In the last two examples we consider scattering
problems, where the solution is not normalizable and
strongly oscillating. Here we use the Magnus method
to calculate the values of physical interest—the phase
shifts—where the ratio between the solution and the
first derivativeq; at the endpoint;, is relevant. The
logarithmic derivativg27] is defined as

R/ (ru)
Q= — .
dr Ri(ry)

First we solve the radial Schrédingsguation (18)
for a radial potential well with the potentil (r) =
—Vo®(a — r) for different energies and calculate
the logarithmic derivative(26) (we chooseVpy =
(6.25)%Ryd anda = 2).

With the logarithmic derivative it is possible to
calculate the phase shifts which are the shifts at
the endpoint between solution with and without a
scattering potential. In this example the phases shifts
8; are given by

VEn)(kr) — a;(E)n; (kr)
VEjj(kr) = a(E) jitkr) |r=p,,

l0g R (r)lr=ry, = (26)

Cots;(E) =

k=+E, (27)

where j; are spherical Bessel functions angd are
spherical Neumann functions. The phase shifts are dis-
played inFig. 5. A comparison shows good agreement
between numerically computed values (symbols) and
analytically calculate¢8] phase shifts (solid lines).
The Korringa—Kohn—Rostoker (KKR) method is a
multiple scattering approach to calculate the electronic
structure of solids in the framework of density func-
tional theory. Using a KKR code, described [29],
the spherically symmetric potential of Cu is numeri-
cally calculated in the atomic sphere approximation.
In Fig. 6 the potential (left) and the resulting phase
shifts are given. The Magnus method works efficiently
and reliably in this example. The resonance at approx-
imately 0.45 Ryd for channél= 2 is computed with
satisfying accuracy.

4, Conclusion

Various problems from solid state physics lead to
differential equations with oscillating solutions. We
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05

(in units of 7)
é

|
1
L

phasle shift &

15 20
Energy (Ryd)

Fig. 5. Phase shift; for scattering on a radial potential wel{ = —(6.25)2Ryd, radius 2 a.u.). Analytical values are given by solid lines,
numerically computed are given by symbols, see legend.

W =0

1411

o
-]
@

phase shift , (in units of x)

10 107 107 10 10° 0 0.2 0.8 1

0.4 06
r(a.u.) Energy (Ryd)

Fig. 6. Numerically computed potential for copperf15 < r < ry; = 2.66) and the resulting phase shifts for angular momeritan, 1, 2, 3.

have considered here the radial Schrédinger and Dirac cal experiments illustrate the superior performance of
equation for bounded states as well as for scattering the method compared with classical numerical onestep
solutions. As the method of choice for these prob- methods. The proposed stepsize selection algorithm
lems we propose the Magnus method. This method works efficiently and reliably.

is especially adapted to first order linear equations  An advantage is that the method is very easy to
with varying coefficients. By use of standard trans- implement. Further, the method solves the variational
formations it can be applied to systems of higher or- equations per se and is therefore well suited for the
der, like the Schrodinger equation, too. The numeri- solution of boundary value and eigenvalue problems.
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One drawback is that the evaluation of the matrix ex-
ponential function is needed. This may lead to addi-
tional cost for higher order systems. The incorporation
of Magnus methods for problems of higher dimension
is subject of ongoing research.
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