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Abstract

The continuum theory of micromagnetism is used to study ultrathin films with magnetic anisotropy varying laterally

on the nanometer scale. A series of infinitely long stripes with alternating in- and out-of-plane uniaxial anisotropy is

considered as a model for patterned ferromagnetic films. The analytical solution based on an effective anisotropy

description of the dipolar energy is given as a function of the material parameters (exchange and anisotropy constants)

and the width of the stripes. States of uniform and non-uniform magnetization are obtained. For film of finite thickness

the exact value of the dipolar energy is calculated numerically and the numerical solution is compared with the

analytical one. We find that the correction to the dipolar energy is negligible for nickel, while for cobalt and iron it has

to be considered as a function of the anisotropies, the width of the stripes and the thickness of the film.

r 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Modern nanofabrication techniques allow the
design of new magnetic devices [1]. Nanopattern-
ing can be achieved by means of ion irradiation
[2,3], self-organization [4,5], growth on vicinal
single-crystal substrates [6,7] and lithography. This
last technique is particularly suitable to obtain
model samples well-ordered magnetically and well-
defined morphologically in reduced dimensions.
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Driven by the large number of potential applica-
tions, in the last decade a lot of effort has been put
in the study of multi-layer devices. Only recently
the interest for lateral magnetic nanostructures
[5,7,8] has increased because of the progress in
fabrication. The lateral investigation below
B100 nm is possible by means of magnetic force
microscopy [9] and scanning electron microscopy
with spin polarization analysis [10]. Besides, recent
advances in scanning tunneling microscopy and
spectroscopy allow to image magnetic structures
with nanometer resolution by using ferromagnetic
tips [11,12].
With the advent of nanotechnology the task of

micromagnetics is to connect the magnetic proper-
ties of the material with the morphological
d.
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Fig. 1. Unit cell for a system with alternating uniaxial

anisotropies. The easy axis of the anisotropy is out-of-plane

in the stripe of width L1 and in-plane in the stripe of width L2:
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structure obtained by fabrication. The task is
fundamental because on the nanometer scale the
structure of the material competes with the
micromagnetic characteristic length. At nanoscale,
new magnetic phenomena are expected, as recently
theoretically examined [13] and experimentally
found [14].
In thin films the breaking of symmetry at the

surface generates an anisotropy that can favor
either an in-plane or an out-of-plane magnetiza-
tion [15]. The direction of the easy axis may change
if a new layer is added to cap the system [16–18].
The capping layer can cover the system entirely or
partially. In the last case the surface anisotropy
varies locally and, as a consequence, the direction
of the magnetization may be a function of the
position [19]. These systems can be modeled
analytically by means of a series of stripes with
alternating in- and out-of-plane uniaxial anisotro-
pies. In this work, the analytical solution of the
problem, exact in the limit of infinitely thin films, is
given as a function of the system parameters. In
this case the dipolar energy is treated as a local
demagnetizing energy and is part of the anisotropy
energy. For films of finite thickness the exact
solution is obtained numerically by computer
simulation1 and is compared with the approxi-
mated analytical one.
2. The model

The geometry of the problem is shown in Fig. 1.
The unit cell consists of two stripes infinitely long
in the y direction of width L1 and L2 with easy axis
out-of-plane and in-plane, respectively. The geo-
metry repeats along the x direction, so that the
magnetization results symmetric with respect to
the center of each stripe.
The magnetization vector M is uniform in the

vertical direction since the thickness of the slab is
smaller than the magnetic characteristic length
[22]. Furthermore M is assumed to lie in the yz

plane and to vary only along x; i.e., M=M(x).
Therefore the divergence of the magnetization is
1The simulations are performed with LLG Micromagnetic

SimulatorTM by M. Scheinfein.
zero and only the surface charges contribute to the
magnetostatic energy.

2.1. Magnetization profiles

The total energy per unit area of the unit cell is
given by [21,22]:

GðL1;L2Þ ¼
Z 0

�L1

f1ðxÞ dx þ
Z L2

0

f2ðxÞ dx; ð1Þ

where the energy densities f1 and f2 are given by

f1ðxÞ ¼ A1
dy
dx

� �2

þksh cos
2yþ k1 sin

2y;

� L1pxp0; ð2Þ

f2ðxÞ ¼ A2
dy
dx

� �2

þksh cos
2yþ k2 sin

2y;

0pxpL2; ð3Þ

k1 and k2 being the magneto-crystalline anisotropy
constants and yðxÞ the angle between MðxÞ and the
normal to the film. The constant ksh ¼ 2pM2

s gives
the value of the shape anisotropy (or magneto-
static energy) for an infinite film out-of-plane
uniform magnetized. The first term of Eqs. (2) and
(3) is the exchange energy density, A1 and A2 being
the exchange stiffness constants. The remaining
part is the sum of the shape and the magneto-
crystalline anisotropy energies. Since these quan-
tities have the same angular dependence, they can
be written by using the effective anistropies
keff
1 ¼ k1 � ksh > 0; that favors an out-of-plane
magnetization and keff

2 ¼ k2 � ksho0; that favors
an in-plane magnetization. In this formulation
only the local demagnetizing energy is considered.
Minimizing Eq. (1) we obtain yðxÞ: By applying
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Fig. 2. Magnetization profile across two neighbor stripes. The

numerical solution agrees with the analytical one in the limit of

infinitely thin films (see text).
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variational calculus [23] it follows:

dy
dx

� �2

¼
sin2y

l21
þ c1; �L1pxp0; ð4Þ

dy
dx

� �2

¼ �
sin2y

l22
þ c2; 0pxpL2 ð5Þ

with l1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1=keff

1

q
and l2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A2=keff

2

q
positive

quantities, c1 and c2 constants to be determined.
Since the structure is periodic along the x

direction, the derivative of y at the center of the
stripes must be zero, i.e., limx- �L1=2ðdy=dxÞ ¼ 0
and limx- L2=2ðdy=dxÞ ¼ 0: As a consequence
Eqs. (4) and (5) become

dy
dx

� �2

¼
sin2y� sin2yð�L1=2Þ

l21
; �L1pxp0; ð6Þ

dy
dx

� �2

¼
sin2yðL2=2Þ � sin2y

l22
; 0pxpL2: ð7Þ

Taking the square root and integrating along the x

direction, Eq. (7) results:

Z yðxÞ

yð0Þ

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m sin2y

p ¼
x

l2
ffiffiffiffi
m

p ; ð8Þ

where yð0Þ; the angle of the magnetization at the
border between two stripes, is an unknown
parameter and m ¼ ðsin2yðL2=2ÞÞ

�1: Since Eq. (9)
is the difference between elliptical integrals of the
first kind [24], we obtain

F ðyðxÞjmÞ � F ðyð0ÞjmÞ ¼
x

l2
ffiffiffiffi
m

p : ð9Þ

By means of the properties of the elliptical
integrals Eq. (9) transforms into

F asin
sinyðxÞ

sinyðL2=2Þ

� �
jsin2yðL2=2Þ

� �

� F asin
sinyð0Þ

sinyðL2=2Þ

� �
jsin2yðL2=2Þ

� �
¼

x

l2
:

ð10Þ

Eq. (10) is valid for 0pxpL2 and is symmetric
with respect to the center of the stripe, i.e.
x ¼ L2=2: In the same way from Eq. (6) we obtain

F asin
cosyðxÞ

cosyð�L1=2Þ

� �
jcos2yð�L1=2Þ

� �

�F asin
cosyð0Þ

cosyð�L1=2Þ

� �
jcos2yð�L1=2Þ

� �
¼ �

x

l1
ð11Þ

valid for �L1pxp0: To extract yðxÞ from Eqs. (10)
and (11) we use the Weierstrass–Erdmann law [25]:

A1
dy
dx

� �
x¼�0

¼ A2
dy
dx

� �
x¼þ0

: ð12Þ

By inserting Eqs. (6) and (7) in Eq. (12) we obtain

cos2yð�L1=2Þ ¼ cos2yð0Þð1þ xÞ

� xcos2yðL2=2Þ ð13Þ

with x ¼ keff
2 =keff

1 : Eqs. (10), (11) and (13) consti-
tute a system of equations from which yðxÞ can be
extracted.
As an example let us consider a system with unit

cell L such that L1=L2 ¼2/3. The exchange
stiffness and the absolute values of the effective
anisotropy are the same in the two stripes, i.e.,
A1 ¼ A2 ¼ 10�6 erg/cm and keff

1 ¼ �keff
2 ¼ 1�

107 erg=cm3: The resulting magnetization profile
is plotted in Fig. 2 for a unit cell L ¼ 15 nm: Since
L1aL2 the angular dependence of the magnetiza-
tion is asymmetric with respect to the center of the
unit cell and the angle at the border between two
neighbour stripes is yð0Þa45�: In this example yð0Þ
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is bigger than 45� because L2 > L1: In Fig. 2 we
compare the analytical solution with the numerical
one obtained in the limit of infinitely thin films.
The perfect agreement between the two curves
shows that the numerical solution is correct. In
Section 2.3 we will compare the two curves in the
case of films of finite thickness where the
numerical solution is exact and the analytical one
is an approximation. It is worth noting that for
infinitely thin films the dipolar interaction does not
play any role in the formation of the magnetic
microstructure that is rather due to the balance
between the exchange and the effective anisotro-
pies. Moreover, the stability of the analytical
solution is guaranteed by the non-homogeneity
of the anisotropy. In fact, Brown and Shtrikman
showed that in a one-dimensional homogeneous
ferromagnet all the solutions in which the magne-
tization is non-uniform are unstable [26,27].
The problem of the determination of the

geometrical size under which a ferromagnet is
uniformly magnetized was solved by Brown in the
case of fine particles with uniaxial anisotropy [28].
Brown rigorously proved that a sphere is uni-
formly magnetized below a certain critical radius
determined by the exchange and the anisotropy
constants. In the case of a thin film, Thiaville and
Fert showed that for transition metals the magne-
tization is homogeneous in the vertical direction
and never modulated [20]. In this case, in spite of
the presence of the surface anisotropy the ex-
change stiffness constant is considered to be strong
enough to keep all the magnetic moments aligned.
This result allowed us to reduce our analysis to
one- dimension, i.e., the magnetization is consid-
ered not to vary across the film thickness. The first
author who addressed the problem for ultrathin
films with laterally varying magnetic anisotropies
was Elmers, who calculated the transition point to
the uniform configuration using the Jacobi criter-
ion [21]. This result defines the regions of uniform
and non-uniform magnetization, but does not
clarify how the transition takes place. By means
of Eqs. (10), (11) and (13) it is possible to study the
magnetization profile as a function of the system’s
parameters. In particular the transition between
non-uniform and uniform magnetization can be
studied by shrinking the width of the unit cell. In
order to study the transition we have determined
the direction of the magnetization at the center
of the two stripes, i.e. yð�L1=2Þ and yðL2=2Þ;
and at the border between them, i.e., yð0Þ: The
result of this calculation is shown in Fig. 3 (top
right) where the values obtained numerically and
analytically are compared showing an excellent
agreement.
In Fig. 3 we have plotted two magnetization

profiles obtained for large and small values of the
width of the unit cell, i.e., Lbl and Lpl: In the
first case (see bottom left of Fig. 3) the unit cell is
so wide (L ¼ 45 nm) that the magnetization is
almost parallel to the easy axis at the center of the
stripes: yðL1=2ÞE5� and yðL2=2ÞE90�: Shrinking
the width of the system the relative importance of
the exchange energy increases and therefore the
amplitude of the modulation of the magnetization
reduces, until the magnetization becomes uniform
(Lp10 nm) (bottom right of Fig. 3). Since L2 > L1

the angle yð0Þ tends to rotate in-plane with
the reduction of L: yð�L1=2Þ behaves similarly.
The behavior of the two curves with respect to the
width of the unit cell is monotonic, while yðL2=2Þ
has a minimum around L ¼ 15 nm. The existence
of the minimum shows that there are two factors
determining the direction of the magnetization. On
the one hand the exchange energy that tries to
reduce yðL2=2Þ in order to minimize the amplitude
of the modulation. On the other hand the
geometry of the system that favors the rotation
of the magnetization in-plane and thus the increase
of yðL2=2Þ: Finally, a continuous transition be-
tween states of non-uniform and uniform magne-
tization is obtained upon shrinking the width of
the unit cell.

2.2. The magnetic energy

The exchange energy per unit volume is given
by:

fex ¼
2

L
A1

Z 0

�L1=2

dy
dx

� �2

dx

þ
2

L
A2

Z L2=2

0

dy
dx

� �2

dx: ð14Þ
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Fig. 3. In the top panel some reference angle, see sketch, are plotted as a function of L; width of the unit cell. By changing L the

magnetization profile results either alternating (bottom left) or uniform (bottom right).
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By integration, see appendix, Eq. (14) transforms
into

fex ¼
2A1

l1L
DEðf1jm1Þ � ð1� m1Þ

L1

2l1

� �

þ
2A2

l2L
DEðf2jm2Þ � ð1� m2Þ

L2

2l2

� �
ð15Þ

with DEðf1jm1Þ ¼ Eðfð�L1=2Þjm1Þ � Eðfð0Þjm1Þ;
DEðf2jm2Þ ¼ EðfðL2=2Þjm2Þ � Eðfð0Þjm2Þ; m1 ¼
cos2yð�L1=2Þ and m2 ¼ sin2yðL2=2Þ: EðfjmÞ is
the elliptical integral of the second kind. A
compact form of Eq. (15) is obtained when A1 ¼
A2 ¼ A; L1 ¼ L2 ¼ L=2 and l1 ¼ l2 ¼ l:

fex ¼
4A

lL
EðfðL=4ÞjmÞ � Eðfð0ÞjmÞ � ð1� mÞ

L

4l

� �
:

ð16Þ

In the derivation of Eq. (16) also the condition
of symmetry yð�L1=2Þ þ yðL2=2Þ ¼ p=2; that leads
to m1 ¼ m2 ¼ m and fð�L1=2Þ ¼ fðL2=2Þ ¼
fðL=4Þ; has been used.
In Fig. 4 the exchange energy density is plotted

as a function of L; width of the unit cell. The
system considered is Ni on Cu(0 0 1) partially
covered by H2: The film of Ni on Cu(0 0 1) with a
thickness below 10 monolayers is magnetized in-
plane; adsorption of H2 changes the surface
anisotropy so that an out-of-plane magnetization
becomes favorable [29]. This system is a good
candidate for experimental studies for films with
alternating anisotropies. In fact, by e-beam irradia-
tion it is possible to partially remove H2; until a
scale of B10 nm; in order to prepare films with
spatially varying magnetic anisotropies. The sum
of the interface and the surface anisotropy is
ksþi;Ni ¼ �0:611 erg=cm2 for Ni on Cu(0 0 1) and
ksþi;H2

¼ �0:396 erg=cm2 when H2 is adsorbed
[29]. Considering that the value of the volume
anisotropy is kv ¼ 0:439� 107 erg=cm3 and the
shape anisotropy is ksh ¼ 1:098� 106 erg=cm3; for
a thickness of 9ML we have keff

H2
¼ �keff

Ni ¼
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Fig. 5. Effective anisotropy energy vs. L; width of the unit cell.

The maximum value is obtained for L-0 when the magnetiza-

tion is uniform at 45� with respect to the normal. The minimum

is reached for large width of the unit cell when the magnetiza-

tion alternates from in-plane to out-of-plane in successive

stripes.

Fig. 4. Exchange energy density vs. L; width of the unit

cell. The curve refers to the system H2/Ni/Cu(0 0 1) (see text).

The dots are the result of the simulation, where the

dipolar interaction is exactly considered. The line plots

Eq. (16).
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0:702� 106 erg=cm3: By means of Eq. (16) we
can study the exchange energy as a function of
the width of the unit cell. The angle between
neighbor magnetic moments increases with L: As a
consequence also the exchange energy increases
since it is proportional to the square of the
derivative of the angle to the normal, i.e.,
fexpðdy=dxÞ2: If L is wide enough so that the
magnetic structure is virtually free of geometrical
constrictions, any further increase of the width of
the unit cell does not increase the exchange energy.
Therefore, after the maximum, the exchange
energy density decreases with power law L�1:
The perfect agreement between analytical and
numerical solution shows that the exchange energy
is correctly predicted for H2/Ni/Cu(0 0 1) if the
demagnetizing energy is treated as an anisotropy
term.
In the anisotropy-type description the sum of

the magnetostatic energy and of the anisotropy
energy is given by

fms þ fan ¼ ksh þ
2

L
keff
1

Z 0

�L1=2
sin2yðxÞ dx

þ
2

L
keff
2

Z L2=2

0

sin2yðxÞ dx: ð17Þ
After integration, see Appendix, Eq. (17) becomes

fms þ fan ¼ ksh þ
2keff

1 l1
L

DEðf1jm1Þ

�
2keff

2 l2
L

DEðf2jm2Þ þ
L2k

eff
2

L
: ð18Þ

With the same conditions used to obtain Eq. (16),
Eq. (18) transforms into

fms þ fan ¼
ksh þ k2

2
þ
4keff

1 l1
L

E f
L

4

� �
jm

� ��

� Eðfð0ÞjmÞ
�
: ð19Þ

Eq. (19) is plotted in Fig. 5 as a function of L

in the case of Ni on Cu(0 0 1) partially covered by
H2: The second term Eq. (19) is a positive number
that reduces with increasing L: In the limit of large
unit cell the magnetization in successive stripes
alternates between in-plane and out-of-plane
directions. Therefore, since L1 ¼ L2 ¼ L=2; the
magnetostatic energy density is half of the value
obtained for a film magnetized uniformly out-of-
plane, i.e., fms ¼ ksh=2 because the magnetic sur-
face charges are only present in the stripes with
out-of-plane anisotropy. Similarly the anisotropy
energy density due to the contribution inside the
stripes of Ni, which are in-plane magnetized, is
fan ¼ kNi=2 ¼ k2=2: In the limit of vanishing width
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of the unit cell, the magnetization is uniform at 45�

with respect to the normal. As a consequence the
integrand function contained in Eq. (17) is con-
stant and the integration is straightforward.
Considered that keff

1 ¼ �keff
2 ; it follows fms þ fan ¼

ksh: In this way we find that in the limit of small
unit cell, i.e., for L-0; the effective anisotropy
energy is equal to the magnetostatic energy of a
film uniformly magnetized out-of-plane. It is
interesting to notice that the second derivative of
the anisotropy energy changes sign for LE50 nm:
The same behavior is found in the plot of the
exchange energy, see inset of Fig. 4. The existence
of the point of inflection is the result of two
competing factors that contribute to the variation
of the energy as a function of L: For Lo50 nm the
dependence of the fine structure, represented by
the elliptical integrals, dominates the energy
variation; for L > 50 nm the geometrical scale
factor 1=L becomes dominant since the magneti-
zation is almost free from geometric constrain, i.e.,
the contribution of the elliptical integral is
constant with L: The good agreement of the value
of the effective anisotropy, together with the
exchange energy, obtained analytically and nu-
merically shows that the anisotropy-type descrip-
tion is correct for any width of the unit cell.
The total energy is a function of L and is given

by the sum of Eqs. (15) and (18). The gain in
energy due to the modulation of the magnetization
is given by

DftðLÞ ¼ f unift � f modt ðLÞ ð20Þ

being f unift a state of uniform magnetization
function of the effective anisotropies. If L1k

eff
1 >

L2k
eff
2 the out-of-plane anisotropy dominates and

f unift ¼ ksh: If L1k
eff
1 oL2k

eff
2 the in-plane anisotro-

py dominates and f unift ¼ k1 þ k2: If the effective
anisotropies balance, i.e., L1k

eff
1 ¼ L2k

eff
2 ; the

magnetization tilts at 45� for L-0 and f unift ¼
ksh; as seen above. In this case Eq. (20) becomes

DftðLÞ ¼
1

2
� m

� �
keff
1 �

8

L
keff
1 l E f

L

4

� �
jm

� ��

� Eðfð0ÞjmÞ
�
: ð21Þ

Eq. (21) as a function of L is plotted in Fig. 6 in
the case of Ni on Cu(0 0 1) partially covered by H2:
Comparison between Figs. 4 and 5 shows that the
anisotropy energy is at least one order of
magnitude larger than the exchange energy and
therefore dominates the behavior of DftðLÞ: Note
that in the limit of small stripes, i.e., Lpl; the
magnetization slightly oscillates around 45� giving
rise to a canted state represented macroscopically
by a fourth-order anisotropy term [19,30].
The scaling properties of the system are briefly

addressed in the following. Let us define two
magnetization profiles as equivalent if their shape
is the same after scaling of the width of the unit
cell, i.e., L1=L2 ¼ const: The scale invariance of
the magnetization profiles is obtained with the
analysis of Eqs. (10) and (11). These equations are
invariant for L1=l1 ¼ a and L2=l2 ¼ b; where a

and b are constants. In particular if the effective
anisotropies balance the scaling variable is L=l: In
this case also the reduced energy DftðLÞ=keff is
invariant, see Eq. (21).

2.3. The role of the dipolar interaction

The alternating anisotropies produce a modula-
tion of the magnetization and thus of magnetic
surface charge. As a consequence the stray field is
non-uniform and, if the thickness of the film is
finite, a torque is generated in the stripe with in-
plane anisotropy (see Fig. 7). This torque can
modify the profiles calculated in the effective
anisotropy approximation. The comparison be-
tween anisotropy-type description (analytics) and
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fully dipolar description (simulation) shows that
the correction to the energy due to the dipolar
interaction for Ni/Cu(0 0 1) partially covered by
H2 is negligible. The generality of this result is not
a priori guaranteed. In fact, the effect of the stray
field is expected to be stronger than in H2/Ni/
Cu(0 0 1) in systems of higher thickness or with
higher value of the magnetic moments. In Fig. 7 is
plotted the magnetizazion profile for a film of
4ML of Co/Pd(1 1 1) partially covered by Pd. The
width of the unit cell is L ¼ 36 nm and the effective
anisotropies keff

Pd ¼ �keff
Co ¼ 0:48� 107 erg=cm3:

The effect of the torque shows up in a rotation
of the magnetic moments in the in-plane stripe
and, as a consequence, in a decrease of the
magnetostatic energy.
The rotation is a function of the value of the

effective anisotropy, the width of the unit cell and
the thickness of the film. The error that we make by
using the analytical solution to describe films of
finite thickness is plotted in Fig. 8. In Fig. 8a the
variation of the magnetostatic energy, i.e., Dfms=fms;
is plotted versus the effective anisotropy for a film
of iron of thickness t ¼ 0:6 nm and unit cell of
width LE40 nm: The plot, obtained with the
scaling procedure introduced above, shows that
the softer the material is, the stronger is the effect of
the dipolar interaction. For systems with keff >
4� 106 erg=cm3 the error is smaller than 3%. In
Fig. 8b the error is plotted versus the width of the
unit cell for the same system with an effective
anisotropy keff ¼ 4� 106 erg=cm3 (stars). The ef-
fect of the stray field is negligible (Dfms=fmso1%)
for Lo10 nm; where the exchange interaction is
strong enough to keep the magnetic moment almost
parallel. If the unit cell of the system increases the
magnetic moments follow the alternating aniso-
tropy and the stray field induces their rotation.
The maximum variation is obtained for LE40 nm:
For L > 40 nm the effect of the rotation decays as
B �1=L; like the magnetic potential. The value of
Dfms is a function of the saturation magnetization
Ms: Among the 3d ferromagnetic transition metals
the variation is maximum for iron (Ms ¼
1714 emu=cm3) and minimum for nickel (Ms ¼
470 emu=cm3). The effect of the stray field is
negligible for Lo10 nm and L > 80 nm for each
material and in the whole range of widths of the
unit cell in the case of nickel. Finally, the stray field
is a function of the thickness of the film [31] and its
effect may be evaluated for a fixed width of the unit
cell (L ¼ 40 nm) and the effective anisotropy
(keff ¼ 4� 106 erg=cm3), see Fig. 8c. The plot
shows that the variation of the magnetostatic
energy grows linearly with the thickness and
increases with Ms: It is worth noting that in general
the magnetic anisotropy is not constant but is a
function of the thickness of the film. As a
consequence in real systems the thickness depen-
dence of the stray field will be in general not linear.
3. Summary

In this work, a periodic system of stripes with
alternating anisotropies has been studied by means
of micromagnetics. The magnetization profiles and
the energies have been analytically calculated as a
function of the system’s parameters by considering
the dipolar energy as a local demagnetizing energy.
The magnetization profiles scale linearly with the
ratio L=l between the width of the unit cell and the
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Fig. 8. Error made by considering the analytical solution as

valid for films of finite thickness. The error is a function of the

effective anisotropy (a), the width of the unit cell (b), the

thickness of the slab (c) and of the saturation magnetization

(b,c). The same exchange stiffness constant A ¼ 1:55�
10�6 erg=cm3 has been used in the calculations.
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magnetic characteristic length. A transition be-
tween non-uniform and uniform magnetization
occurs by shrinking the width of the unit cell of the
system. Finally, for films of finite thickness the
approximated analytical solution is compared with
the numerical one that contains the exact value of
the dipolar interaction. The comparison shows
that the effect of the stray field is always negligible
for nickel. In the case of cobalt and iron the effect
has to be considered as a function of the
anisotropy, the scale and the thickness of the
system. In conclusion, in the limits indicated, we
have found that the analytical solution is of high
accuracy and numerical modeling is not necessary.
Therefore the analytical solution can be used to
determine the anisotropy constants by fitting
experimental magnetization profiles. For applica-
tions, ultrathin films with spatially varying mag-
netic anisotropies might be used as high storage
magnetic media and as magnetic field sensors.
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Appendix A

A.1. Derivation of Eq. (15)

The following integrals contained in Eq. (14)
have to be solved

I1 ¼
Z 0

�L1=2

dyðxÞ
dx

� �2

dx;

I2 ¼
Z L2=2

0

dyðxÞ
dx

� �2

dx: ðA:1Þ

With the change of variable yðxÞ ¼ arcsin
ð

ffiffiffiffiffiffi
m2

p
sinfðxÞÞ; where m2 ¼ sin2yðL2=2Þ; we calcu-

late the integrand function of I2:

dyðxÞ
dx

¼

ffiffiffiffiffiffi
m2

p
l2

cnðF ðfðxÞjm2ÞÞ: ðA:2Þ

Substituting we obtain

I2 ¼
m2

l2

Z L2=2

0

cn2zdz; ðA:3Þ

where z ¼ x=l2 þ F ðfð0Þjm2Þ: Using the properties
of the elliptical integral it follows

I2 ¼
EðfðL2=2Þjm2Þ � Eðfð0Þjm2Þ � ð1� m2ÞL2=2l2

l2
:

ðA:4Þ
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From Eq. (A.1) in the same way we obtain

I1 ¼
Eðfð�L1=2Þjm1Þ � Eðfð0Þjm1Þ � ð1� m1ÞL1=2l1

l1
:

ðA:5Þ

with m1 ¼ cos2yð�L1=2Þ: Finally, substituting in-
tegrals (A.4) and (A.5) in Eq. (14) it follows
Eq. (15).

A.2. Derivation of Eq. (18)

To calculate Eq. (18) we need to solve the
following integrals:

I1 ¼
Z 0

�L1=2
sin2yðxÞ dx; I2 ¼

Z L2=2

0

sin2yðxÞdx:

ðA:6Þ

By using cosyðxÞ ¼ sinfðxÞcosyð�L1=2Þ Eq. (A.6)
becomes

I1 ¼
L1

2
� m1I

�
1 ðA:7Þ

with m1 ¼ cos2yð�L1=2Þ and

I�1 ¼
Z 0

�L1=2
sin2fðxÞ dx: ðA:8Þ

Considering Eq. (9) for �L1=2pxp0 it follows

I�1 ¼
Z 0

�L1=2
sn2 �

x

l1
þ F ðfðxÞjm1Þ

� �
dx: ðA:9Þ

After the change of variable z ¼ �x=l1 þ F ðfðxÞ
jm1Þ we obtain

I�1 ¼
L1

2m1
�

l1
m1

ðEðfð�L1=2Þjm1Þ � Eðfð0Þjm1ÞÞ:

ðA:10Þ

Substituting in Eq. (A.7) we have

I1 ¼ l1ðEðfð�L1=2Þjm1Þ � Eðfð0Þjm1ÞÞ: ðA:11Þ

In a similar way for 0pxpL2=2 we find

I2 ¼
L2

2
� l2ðEðfðL2=2Þjm2Þ � Eðfð0Þjm2ÞÞ: ðA:12Þ

Finally, inserting integrals (A.11) and (A.12) in
Eq. (17) we obtain Eq. (18).
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