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Abstract

We present a new neural network-based method of image processing for determining

the local composition and thickness of III±V semiconductors in high resolution electron

microscope images. This is of great practical interest as these parameters in¯uence the

electrical properties of the semiconductor. Neural networks suppress correlated noise

from amorphous object covering and distinguish between variations of sample thickness

and semiconductor composition. Ó 2000 Elsevier Science Inc. All rights reserved.

Keywords: Neural network; Image processing; Electron microscopy; Compound

semiconductor

1. Introduction

Imaging techniques and image processing methods play a central role in
natural sciences. In particular, high resolution transmission electron micros-
copy (HREM) provides submicron information in physics and materials sci-
ence. To quantify essential features of semiconducting materials, a neural
network-based image processing approach has been elaborated. III±V semi-
conductor devices with systematically varied composition, so-called hetero-
structures, are of great practical interest. Nowadays, devices with such
heterostructures are for instance, laser diodes and other quantum well struc-
tures. Typical material systems are:
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In1ÿxGaxAs and Al1ÿxGaxAs �1�
where composition x varies in the range of �0; 1�. Such crystals are of sphalerite
structure with a lattice parameter of about 0.5 nm (see Fig. 1). The sphalerite
structure consists of two shifted fcc sublattices [1]. For physical reasons, the
composition of one sublattice is varied in the crystal growth process (i.e., two
elements statistically occupy the sites of one sublattice, while the other sub-
lattice is homogeneous), which is also the case in examples (1). The best spatial
resolution of composition determination methods is achieved by applying
image processing to HREM images [2±4]. We present a method for deter-
mining composition and thickness from HREM images using neural networks.
It should be noted here that alternative fuzzy logic approaches have also been
elaborated and successfully applied to composition determination [5±9].

The method described here achieves a spatial resolution of about unit cell
size (e.g., AlGaAs: 0.57 nm). Composition determination has to map a part of
the image (image cell of N pixels, equals to a sample region of unit cell size) to a
one-dimensional composition parameter x (cf. (1)). This is done in two steps:

RN!p R3!f x x 2 �0; 1�: �2�
· image preprocessing p, which maps each image cell to a three-dimensional

real vector using prior knowledge of crystal symmetry and imaging process
(Section 2);

· approximation of function 1 f using neural networks (Section 4).

2. Image preprocessing

We cut the HREM image into sections which correspond to sample regions
of unit cell size. The left column of Fig. 2 shows two examples (AlAs,GaAs) for

Fig. 1. Sphalerite structure unit cell: the two di�erent sizes of spheres mark the two sublattices, e.g.,

Ga and As.

1 Function f is only de®ned on a small subset of R3.
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such regions. For each such part there are due to crystal symmetry only 25 sites
where maxima or minima of brightness can appear (for detailed discussion see
[10]). The brightness in these sites is evaluated by ®tting rotational paraboloids
of fourth-order to the image (The fourth-order approximation turned out to be
superior compared to second-order and higher-order approximation). The
second column of Fig. 2 shows the result of that ®rst step for two simulated
images.

According to the crystal point symmetry, we can identify three groups of
equivalent positions, as shown in Fig. 3. Averaging over each group leads to a
three-dimensional vector. In the following, we will call this vector get3 (see
Fig. 2, right).

3. HREM images

To get the function f in (2) between the get3 vector and the composition x of
the sample, we have to look closer to the nature of HREM images.

Fig. 3. Second step of image preprocessing: the numbers show the equivalent positions for the get3

averaging.

G3

G1 G2 G3

GaAs

AlAs

G2G1

Fig. 2. Image preprocessing for simulated examples: GaAs and AlAs. First column: simulated

images of unit cell size, second column: 25 values after evaluating the brightness, third column:

three-dimensional get3 vector.
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3.1. Template regions

Typical HREM images include regions where the composition and sample
thickness are nearly constant by crystal growth. In the following, we will call
these regions ``template regions''. Fig. 4 shows the HREM image of an AlGaAs
sample where such template regions are marked. After image preprocessing we
average for each template region over the included get3 vectors. The results are
two average experimental get3 vectors and with that two experimental points
of function f in (2).

3.2. Simulated HREM images

To interpolate the two experimental points of our desired function f
we need to simulate get3 vectors for certain ranges of sample composition,
thickness and imaging conditions. We get these simulated get3 vectors
by simulating HREM images and performing get3 image preprocessing
on the simulated images analogous to the evaluation of experimental
images.

For HREM image simulation, we use the EMS software package from
Stadelmann [11,12]. This software package calculates dynamical electron dif-
fraction by the multislice method. Images are calculated with nonlinear
imaging theory. EMS is nowadays the most extensively tested and most ac-
cepted among HREM image simulation software.
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Fig. 4. HREM image of an AlGaAs sample with marked template regions at the right rsp. left

boundary of the image.
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3.3. Comparing experiment and simulation

Before comparing the experimental get3 vectors with simulated ones, it is
necessary to adjust brightness and contrast of the simulation (i.e. average and
standard deviation of the image intensities).

Fig. 5 illustrates the adjustment process for two template regions AlAs (left
column) and GaAs (right column). Adjusting the brightness and contrast
means to calculate the resulting image ~R from the raw image~I as:

Rij � b� aIij a; b 2 R: �3�

We want to ®nd the two adjustment parameters a; b so that the simulated
template images (left and right ends of bottom row in Fig. 5) are matching
optimally the experimental ones (top row). This can be achieved by doing a
least-squares ®t 2 to get the best ®tting of experiment and simulation.

3.4. Average experimental parameters

To get average experimental parameters for the template regions we com-
pare the average experimental get3 vectors with linear adjusted simulations
varying the parameters of the simulation systematically. If we consider a

Fig. 5. Adjustment of brightness and contrast.

2 The ®tting process includes the constraint that only positive contrast adjustment is possible.

Otherwise, we would consider image and inverse very similar, which has no physical reason,

however.
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HREM image with two template regions (as in 4) the simulation includes the
following parameters:

composition of the two template regions : x1 x2;
sample thickness of the two regions : t1 t2;
defocus of the electron microscope objective : D:

�4�

The left-hand side of Fig. 6 shows the square deviation (dark �̂ small devia-
tion) of di�erent simulations to one experimental image (two template regions).
The ordinate corresponds to the thickness of one simulated template region t1

and the abscissa corresponds to the defocus D in the simulated imaging process.
It has to be noted that the defocus is an electron optical parameter which
controls the contrast of the image. D is chosen >0 for contrast reasons [13]).
For the other parameters in (4), the optimum values (minimum square devi-
ation) are depicted.

To decide which of the combinations of experimental parameters have to be
taken into account, we need to introduce an error limit. Simulations which
exceed this error limit are not considered. A low boundary for choosing the
error limit is the error in the experimental averages:

Emin � 1

N1

X3

i�1

var�G1i� � 1

N2

X3

i�1

var�G2i�; �5�

where var�Gji� is the variance of the ith get3 vector component in the jth
template region and Nj is the number of statistically independent get3 vectors
included in that region.

The right-hand side of Fig. 6 shows the result when this error limit is ap-
plied. Only one combination of parameters is below this error limit. There is a
unique combination of experimental parameters which is a description for the
experimental situation.

Fig. 6. Squared deviation of simulations from experimental values. Within the left ®gure, dark

shading shows small deviation from experiment, while the right ®gure only shows deviations

smaller than the error limit.
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4. Neural networks

To maintain the relationship f between the get3 vector and the composition
parameter x (see Eq. (2)) we train a feed forward network with simulated
examples (training set) of di�erent experimental parameters (4). The used
architecture is:

f �~G� � W0 �
XNh

i�1

Wi tanh wi0

 
�
X3

j�1

wijGj

!
; �6�

where ~W and w represent the network weights, i.e., the free parameters of the
model. We use the RPROP algorithm [14] to do the network training (super-
vised batch learning).

4.1. Training set generation

The presented method is based on two di�erent training sets. Both contain
the linear adjusted (cf. Section 3.3) simulated get3 vectors as input data. The
®rst training set presents as output (supervised learning) the compositions of
each involved simulation. The second training set contains as output the
sample thicknesses. After the training, there are two neural networks, one for
composition and one for thickness determination 3. Because of their di�erent
in¯uence on the get3 vector composition variations can be distinguished from
thickness variations throughout the image.

It is well known that for HREM images the major contribution of the noise
in the image is due to an amorphous covering of the object. This covering
results from the HREM sample preparation (ion milling). The random varia-
tion in the mass thickness of the covering leads to a random variation in the
phase of the electron wave. Due to the lens aberrations, the imaging process
does a spatial frequency ®ltering which leads to correlation in the noise
throughout the image.

We simulate this amorphous object applying the random density object
approximation (for description and comparison to other simulation models see
[10]). Fig. 7 shows on the left-hand side a simulated AlGaAs interface structure
and on the right-hand side the same simulation including 3 nm of amorphous
object covering. The image distortion caused by the amorphous material is
clearly to be seen.

3 Note that the thickness in Section 3.4 is the average over the template regions and therefore has

much less spatial resolution.
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4.2. Network architecture

The used architecture is ®xed except for the number of hidden units Nh. This
is a task for model selection algorithms. For both thickness and composition
determination, the training time can be neglected compared to the time for
simulations. Hence, we use stable but time-consuming test set validation for
architecture selection (for more elaborate methods see [15]).

We tested architectures Nh � 2±30 and for each architecture size we trained
10 neural networks. Among all the resulting networks we select the one with
best performance on a validation set (validation set patterns are excluded from
training). It turned out that architecture sizes greater than Nh � 30 did not lead
to bene®t in error on a test set.

4.3. Comparison to classical methods

We compare the neural network-based method to classical methods of noise
suppression. We tested all the methods with the same test scenario. The
methods to be compared have to determine composition and thickness of
simulated Al1ÿxGaxAs samples. Among the test samples composition x varies
on the whole range �0; 1� in 10 steps. Sample thickness was from 9 to 15 unit
cells (5.1±8.6) in steps of one unit cell (0.57 nm).The experimental defocus in
the imaging process has the typical value of 58 nm. All the samples carried
amorphous object covering with a thickness of 3 nm. These chosen parameter
ranges are of high practical interest and chosen from parameters of experi-
mental evaluations. Relative error with thickness was calculated in relation to
the average thickness of 12 unit cells.

Fig. 7. Simulated images of AlGaAs interface. Right ®gure includes 3 nm of amorphous object

covering.
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4.3.1. Method: minimum distance to simulated patterns
Similar to our estimation of average template parameters (Section 3.4) we

simulate samples on a wide parameter range and seek the adjusted simulation
with minimum distance to a local experimental get3 vector. In contrast to the
mentioned processing of lateral averaged get3 vectors (Section 3.4), now
methods are much more confronted with noise. The noise caused by the
amorphous object covering leads to 16.2% error in composition determination
and to 14.7% error in determination of sample thickness.

4.3.2. Method: projection perpendicular to principal component
We need to take bene®t of the noise correlation. If we assume perfect cor-

relation of noise then perfect noise discrimination is a projection orthogonal to
the ®rst principal component of noise (for principal component analysis PCA
see [16]). For a detailed investigation of noise we calculated the PCA on get3
vectors of a GaAs sample (thickness: 12 unit cells). The Eigenvalues w and
Eigenvectors v of the correlation matrix were:

w1 � 0:00851 v1
!� �ÿ0:3817; 0:9229; 0:0509�;

w2 � 0:00300 v2
!� �0:9124; 0:3674; 0:1806�;

w3 � 0:00045 v3
!� �ÿ0:148;ÿ0:1154; 0:9822�:

The dominant Eigenvalue w1 indicates a main direction in variation of noise.
The corresponding Eigenvector v1

! indicates an anticorrelation of the ®rst two
components of the get3 vectors.

We calculate the plane perpendicular to v1
! and project experimental get3

vectors and adjusted simulated ones onto that plane. After that we search for
the minimum distance simulation. The errors resulting from this method were
41.7% for composition determination and 15.1% for thickness determination.
The increase of errors is due to the non-vanishing error variation in direction
v2
!, which is not discriminated in contrast to the desired signal.

4.3.3. Method: optimized projection plane
A projection plane is numerically optimized with respect to performance on

a validation set. For both composition and thickness determination an extra
plane was adapted. Again, simulation and experiment are projected onto the
plane and the simulation with minimum distance from experiment is selected.
With this method the errors were 9.1% for composition and 5.7% for sample
thickness.

4.3.4. Method: neural networks
As described in Section 4 we used a neural network-based method for de-

termining compositions and thicknesses in our test set. The errors with the
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neural network-based method were 6.7% for composition and 2.5% for sample
thickness.

Table 1 shows the errors for the investigated noise suppression methods.
The neural network-based method was of advantage in composition determi-
nation as well as in thickness determination. With regard to the thickness
determination, the error with the neural network-based method was only half
the error with the best classical method. The reason is that the neural network
learns to suppress the error from the distorted training patterns. It takes bene®t
out of the correlation in noise.

5. Experimental results

Fig. 8 shows an AlGaAs interface structure. There are two template regions
on both sides of the interface (see Fig. 4). With the parameter estimation

Table 1

Errors of investigated methods for noise suppression

Noise suppression method Error composition

(%)

Error thickness

(%)

Minimum distance to simulated patterns 16.2 14.7

Projection perpendicular to principal

component

41.7 15.1

Optimized projection plane 9.1 5.7

Neural networks 6.7 2.5

4nm

Fig. 8. Experimental HREM image of an AlGaAs interface structure.
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method described in Section 3.4 the image showed the following experimental
parameters:

composition of left template region : xL � 0:65;
composition of right template region : xR � 1:0;
thickness of left template region : tL � 8:5 nm;
thickness of right template region : tR � 6:8 nm;
defocus : D � 58 nm:

With a di�ractogram analysis method (details see [10]) the thickness of the
amorphous object covering was estimated 3.2 nm.

Fig. 9 shows the composition of the sample and the thickness of the crys-
talline part of the sample. Values are determined with spatial resolution of 0.28
nm. Within the graph the height of the columns indicates the local thickness
and the greyscale quanti®es the local composition of the sample.

The mean error for local composition determination was 5.9%. For the
determination of the local thickness (crystalline) the mean error was 4.3%
of mean thickness (8 nm). The composition in the ternary semiconductor
(AlGaAs left-hand side of Fig. 8) varies strongly due to the stochastic
occupation of one sublattice by two elements (random alloy ¯uctuations). The
standard deviation of composition variation in the ternary alloy was in
excellent agreement to a theoretical model.

Note, that the three-dimensional plot of Fig. 9 does not re¯ect the outer
surface of the specimen. The determined thickness is only the thickness of the
crystalline part. It does not include the amorphous object covering mentioned

4 nm 4 nm
4 nm

Fig. 9. Composition and thickness. Each column equals 1=4 of the unit cell area (0:28 nm2�. The

height of the columns represent the sample thickness. The greyscale indicates the composition of

the sample.
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in Section 4.1. Moreover, the variation in thickness results from the rough-
nesses of the top and bottom surfaces of the sample and re¯ects neither of both
individually.

The time consumption of the method on a PII 400 MHz was as follows: the
simulation of training sets took up to one day. The training of the neural
networks took 1 h (training set: 1080 examples) and the evaluation of the image
only 30 s.

Fig. 10. Experimental HREM image of an AlGaAs Bragg-re¯ector.

4nm

4nm
4nm

x in

Fig. 11. Composition and thickness determination for the AlGaAs Bragg-re¯ector.
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Fig. 10 shows a HREM image of an AlGaAs Bragg-re¯ector. Such hetero-
structures are used in laser diodes. The parameter estimation method (Section
3.4) indicated a defocus of 57 nm. The thickness of the amorphous object
covering turned out to be 2.3 nm.

Fig. 11 shows the result of thickness and composition determination. Again
each column equals to an area of 0:28� 0:28 nm2. The mean error for com-
position determination was 4.8% and for thickness determination 5.2% (of
mean thickness 8.5 nm).

By intention this heterostructure does not di�er signi®cantly from a binary
layer system (AlAs and GaAs). Within the thickness of the crystalline part of
the sample there are striking di�erences between the AlAs and GaAs layers.
This height di�erence is created during the HREM sample preparation
applying ion milling.

6. Conclusion

The present paper describes a new neural network-based method of quan-
titative image processing in HREM. It renders the determination of local
composition and thickness of compound semiconductor specimens. The
stability with respect to the in¯uence of amorphous object covering is an im-
portant criterion for methods that analyse microscope images. The suppression
of this correlated distortion was carried out with several methods. It turned out
that a neural network-based method was superior to classical methods. The
application of neural networks led to a remarkable error reduction of up to
56%. The method has been applied to heterostructures of AlGaAs, which is
illustrated by experimental examples.
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