
ARTICLE IN PRESS
Journal of Magnetism and Magnetic Materials 283 (2004) 133–142
0304-8853/$

doi:10.1016

�Corresp
University,

Main 6005

6979822348

E-mail a

(F. Porrati)
www.elsevier.com/locate/jmmm
Magnetic configurations in anisotropic stripe systems

F. Porratia,�, H.P. Oepenb, J. Kirschnera

aMax-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
bInstitut für Angewandte Physik, Jungiusstr. 11, D-20355 Hamburg, Germany

Received 31 March 2004; received in revised form 10 May 2004

Available online 15 June 2004
Abstract

Numerical micromagnetic simulations are performed to study the magnetic configurations of ultrathin films with

spatially varying magnetic anisotropy. Investigating infinitely long stripes with alternating in-plane/out-of-plane

uniaxial anisotropy we find states of uniform, canted and alternating magnetization as function of the width of the

stripes. A simple analytical model is given to describe the canting by means of a fourth order anisotropy term that is

caused solely by the microstructure. Furthermore, the system is described macroscopically by averaging the

magnetization of the various states. In this framework the spin reorientation transition between states of uniform

magnetization is studied as a function of the stripes density. We find that the rotation of the average magnetization

takes place always continuously and is sharper for a higher density of stripes.

r 2004 Elsevier B.V. All rights reserved.

PACS: 75.70.Ak; 75.30.Gw; 75.70.Kw
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1. Introduction

The interest for magnetic materials of reduced
dimensionality is growing continuously in funda-
mental and applied research. The ability to control
the magnetic properties of materials at the
- see front matter r 2004 Elsevier B.V. All rights reserve
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nanometer scale is leading to smaller and faster
magneto-electronic devices [1]. Among the possi-
bilities offered by spin engineering, the patterning
of continuous magnetic media is of major interest
for the potential application in magneto-recording
industry. Indeed, such media offer the advantage
to control the spin configuration as well as to
overcome bit-size limitations due to superpara-
magnetism and reduced Curie temperature present
in granular media and quantum dot arrays [2].
Experimentally the local tailoring of the magnetic
anisotropy has been obtained by ion irradiation [3]
d.
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and by selective epitaxial growth [4]. Thus
artificially confined magnetic domains are built
on a scale determined by the local patterning. In
theory the response of the fine magnetic structure,
i.e., magnetic domains, domain walls, etc., to the
lateral confinement can be investigated by means
of micromagnetics.
In this paper, we model planar patterned

magnetic media in the limit of ultrathin films by
considering a series of infinitely long stripes with
alternating in-plane/out-of-plane magnetization
easy axis (see Fig. 1). We investigate the magnetic
configuration as a function of two parameters: the
period of the structure (L), i.e., the sum of the
widths of two neighboring stripes, and the ratio
between the width of one stripe and L. In the first
part of the paper a detailed microscopic analysis of
the magnetic states is performed. In the second
part the investigation is generalized by considering
the average magnetization. Finally, the results of
the investigation are discussed and briefly sum-
marized.
1The effective anisotropy keff is defined as the difference

between the uniaxial anisotropy ku (result of surface and bulk

contributions) and 2pM2
s the magnetostatic energy of an infinite

film uniformly magnetized out-of-plane.
2. Modelling

The system studied is sketched in Fig. 1. The
unit cell is given by two stripes of width L1 and L2

infinitely long in the y direction. The magnetiza-
tion easy axis in neighboring stripes changes
periodically between out-of-plane and in-plane.
Periodical boundary conditions are imposed in the
x direction and in the y direction, the latter to
simulate the infinity of the stripes. The orientation
of the magnetization vector M can vary with the x

position while it is not depending on the y and z

position. The magnetic configuration of the system
is obtained numerically [5] by solving iteratively
the Landau–Lifshiz–Gilbert equation [6] related to
the problem.
2.1. Magnetic configurations

In this section, we study the magnetic config-
urations in anisotropic stripe systems by fixing the
width of the unit cell L and varying the ratio L1=L.
The stripes of width L1 have perpendicular easy
axis. The analysis is on the microscopic scale, i.e.,
the micromagnetic structure of the system is
analyzed by plotting the spatial variation of the
angle y, defined as the angle between the magne-
tization M and the normal n to the surface of the
film. In order to calculate the magnetization
profiles we use the values of the anisotropy
constants for the system Pd/Co/Pd(1 1 1) deduced
from experiments [7]. This choice does not
influence the generality of our study since similar
magnetic configurations can be obtained by using
other values of the anisotropy constants. From the
experiment it is known that 4 ML of Co/Pd(1 1 1)
have in-plane easy axis. By covering the film with
an overlayer of Pd the direction of the easy axis
reorients out-of-plane. The resulting second-order
effective anisotropy constants1 for the uncovered
and for the covered system are keffCo ¼ �keffPd ¼

�0:48� 107 erg=cm3. In our numerical investiga-
tion we use these constants for the system of
stripes with alternating uniaxial anisotropies.
Higher order anisotropy terms are neglected.
The values of bulk Co are used for the
saturation magnetization (Ms ¼ 1440 emu=cm3)
and the exchange stiffness constant (Aex ¼

1:55� 10�6 erg=cmÞ. The simulation volume is
divided in cubes of 1 nm size.
In Fig. 2 we plot the magnetization profiles

calculated numerically as a function of L1=L. The
simulation is performed by choosing as a starting
condition a state of uniform magnetization canted
at 45� with respect to the normal. The magnetiza-
tion components are My ¼ Mz ¼ 0:707 and
Mx ¼ 0. Note that the same magnetization
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Fig. 2. Micromagnetic configurations obtained for a unit cell L much larger than the magnetic characteristic length l (a) and for L 	 l
(b). In each figure the magnetization profiles are plotted for various values of the ratio L1=L.
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configurations are obtained for any other angle of
canting as starting parameter. In Fig. 2(a) we plot
the result of the simulation for the system of
stripes with unit cell L ¼ 150 nm. In this case the
unit cell is much wider than the magnetic
characteristic length, i.e., L�l, with
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Aex=k

p
¼ 5:68 nm. For L1=L ¼ 0:067 ðL1 ’

10 nm) the magnetization is mainly in-plane. Only
a small out-of-plane contribution due to the out-
of-plane anisotropy is present. Such a contribution
is localized around the center of the stripe of width
L1. The localization around the center of the stripe
is due to the periodical boundary conditions used
for the simulations. The problem to find the onset
for perpendicular (or parallel) magnetization for
films with laterally modulated anisotropies was
solved analytically by Elmers [8]. From the
calculation one can deduce that the onset is at
L1=l ¼ p=2. As a consequence L1 ’ 8:9 nm, for
l ¼ 5:68 nm. In our case we find 6pL1p10:5 nm
for 0:04pL1=Lp0:07 as one can deduce from
Fig. 8(a). Thus our result is in agreement with the
calculation of Ref. [8]. For L1=L ¼ 0:33 the out-of-
plane component of the magnetization is fully
evolved in L1 and the magnetization changes from
complete in-plane to out-of-plane alignment. For
L1=L4 0:5 the out-of-plane component is dom-
inating in the larger part of the structure. For
L1=L ¼ 0:93 the system is magnetized almost
completely out-of-plane. A small in-plane contri-
bution is still present localized around the center
of the stripe with in-plane anisotropy. The micro-
magnetic picture changes completely for
L ¼ 20 nm. In this case the width of the unit cell
is of the same order as the magnetic characteristic
length. In Fig. 2(b) we plot the corresponding
magnetization profiles. For L1=L ¼ 0:35 the
magnetization slightly oscillates around y ’ 87�.
The amplitude of the oscillation increases with
L1=L becoming maximum for y ¼ 45�. For
L1=L4 0:5 the amplitude gradually decreases
until the magnetization is uniformly out-of-plane.
Note that in experiments these oscillations
might be detected with the help of magnetic
imaging techniques [9] with the appropriate spatial
resolution.

2.2. Higher-order anisotropy

The possibility to obtain states of canted
magnetization due to inhomogeneities of the
magnetic anisotropy in the vertical direction of
the film has been addressed in the past [10–12].
Alternative states of canting can be obtained for
films with lateral inhomogeneities. The role of
higher-order anisotropy terms in films with spatial
fluctuations of the second-order anisotropy was
investigated in the limit of small angular oscilla-
tions of the magnetization direction [13]. In those
papers an elegant mathematical analysis was



ARTICLE IN PRESS

(a)

(b)

Fig. 3. Panel (a) Total energy density vs. angle to the normal

for various values of the ratio L1=L. Solid lines: analytical

description following Eq. (1). Symbols: numerical values. Panel

(b) After relaxation, the system for L1=L ¼ 0:4 shows a

minimum of the energy for y0 ¼ 45� (Pd/Co/Pd(1 1 1) film,

with 3 ML Co). The black points were obtained during the

relaxation process that brings the system from the starting

condition (uniform in-plane or out-of-plane magnetization) to

the minimum.
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carried out following the study of Slonczewski for
biquadratic exchange coupled multilayers [14]. The
authors found that the spatial fluctuation of the
anisotropy gives rise to a canted state phenomen-
ologically described by a higher-order anisotropy
term which is the minimum when the average
magnetization lies at 45� with respect to the
normal of the film. In the following we resume
these results by comparing numerical micromag-
netic calculations with a simple phenomenological
model. Although the modeling neglects the math-
ematical details contained in the previous studies,
it gives a clear insight into the physics of the
problem and leads to the same qualitative results
as Ref. [13]. The goal of this section is to describe
systems with alternating anisotropies for a width
of the unit cell comparable to the magnetic
characteristic length, i.e., L 	 l. With respect to
Fig. 1 we write the total energy density of the
unit cell by means of second-order anisotropy
constants

f ðyÞ ¼ ksh þ ktot sin
2 y; ð1Þ

where ktot ¼ keff1 L1=L þ keff2 L2=L ¼ A þ B, keff1 ¼

k1 � ksh, keff2 ¼ k2 � ksh and ksh=2pM2
s . Eq. (1) is

valid in the limit of uniformly magnetized films.
The anisotropy constant ktot is the sum of the
effective anisotropy constants keff1 and keff2 ,
weighed by the respective stripe width. The sign
of ktot determines which of the two contributions is
dominant and the direction of the easy axis of the
system. In particular the easy axis is in-plane for
ktoto 0 and out-of-plane for ktot4 0. The solid line
in Fig. 3(a) gives the total energy calculated by
means of Eq. (1). We consider a system with unit
cell L ¼ 5 nm consisting of Pd stripes covering a
Co/Pd(1 1 1) film. The effective anisotropy con-
stants are assumed to be keffPd ¼ 0:6571�
107 erg=cm3 and keffCo ¼ �0:4429� 107 erg=cm3,
taken from Ref. [7] for the system Pd/Co/
Pd(1 1 1) with a thickness of the Co film equal to
3 ML (note the difference in Co thickness com-
pared to the previous section). For L1=L ¼ 0 and
L1=L ¼ 0:2 (ktoto 0) the system shows an in-plane
easy axis. For L1=L ¼ 0:6, L1=L ¼ 0:8 and L1=L ¼

1 ðktot4 0Þ the direction of the easy axis reorients
out-of-plane. The transition takes place for
L1=L ¼ 0:4 ðktot ¼ 0) where no angular variation
of the energy is expected from Eq. (1). In Fig. 3(a)
we compare the results of Eq. (1) with the energies
obtained from the simulation when assuming a
uniform magnetization with constant angle y.
Such configuration was then used as starting
condition for the simulation, which yields the state
of lowest energy. As expected, for L1=L ¼ 0 and
L1=L ¼ 0:2 the system relaxes to a state with in-
plane uniform magnetization; for L1=L ¼ 0:6,
L1=L ¼ 0:8 and L1=L ¼ 1, the minimum is a state
with uniform magnetization directed out-of-plane.
The most interesting magnetic structure is
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Fig. 5. Modeling in the limit of L 	 l, see text.

2A more correct expression of the total energy should contain

also the Heisemberg exchange term J cosðDyÞ. However, since
this term contributes only with a constant for Dy � 0, it has

been omitted.
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obtained for L1=L ¼ 0:4 (ktot ¼ 0). In this case the
shape of the magnetization profile results in a state
of non-uniform magnetization slightly oscillating
around y0 ¼ 45�, as shown in Fig. 4. Hence, the
angular-dependent energy has a minimum at
y0 ¼ 45�, being y0 the angle to the normal at the
boundary of two successive stripes (see Fig. 3(b)).
In order to understand this result we extend the

model represented by Eq. (1) to systems with non-
uniform magnetization in the limit of l 	 L. We
call Dy the deviation of the angles to the
orientation of the magnetization at the center of
two successive stripes. Since Dy�y0 we consider
the magnetization as constant inside each stripe
and the system as described by means of two
macromagnetic moments each belonging to one
stripe, see Fig. 5. In the stripe with out-of-plane
anisotropy the macro magnetic moment rotates in
the direction towards the normal by the amount
Dy1=2. In the stripe with in-plane anisotropy it
rotates in the opposite direction by Dy2=2. In
general these angles are different because the
effective anisotropies are not equal. The angular
dependence of the energy can be written as

f ðy0Þ ¼ ksh þ A sin2 y0 �
Dy1
2

� �

þ B sin2 y0 þ
Dy2
2

� �
: (2)

Note that in the modeling the exchange energy
increases with the split angle, while the anisotropy
energy decreases2. In the limit of small splitting,
i.e., Dy1, Dy2 � 0, Eq. (2) becomes

f ðy0Þ � ksh þ ðA þ BÞ sin2 y0 þ
B � A

2
Dy sinð2y0Þ

ð3Þ

with Dy ¼ Dy1=2þ Dy2=2. Eq. (3) reduces to Eq.
(1) if Dy is zero. On the other hand, the second-
order anisotropy vanishes for A ¼ �B, i.e., when
the weighed effective anisotropies are balanced. In
this case Eq. (3) reduces to

f ðy0Þ � ksh � ADy sinð2y0Þ: ð4Þ

This higher-order anisotropy term has a minimum
at 45� with respect the normal in agreement
with the numerical calculation of Fig. 3(b).
The angle Dy, which determines the depth of the
minimum in Fig. 3(b), is plotted in Fig. 6
as a function of y0 and fitted with a sinð2y0Þ
function. The maximum, that we label with c, is
obtained for y0 ¼ 45� and is a function of the
width of the unit cell and the exchange stiffness
constant. The higher-order anisotropy term is a
four-fold anisotropy term with minima for y0 ¼
135�; 225�; 315� and 45�. The angle Dy is positive in
the first and third quadrants of the plane yz and
negative in the second and fourth quadrants, i.e.,
Dy 	 
 c sinð2y0Þ. By inserting this expression in
Eq. (4) we obtain

f ðy0Þ � ksh � Ac sin2ð2y0Þ: ð5Þ
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The minimum of the total energy obtained for
y0 ¼ 45� with respect to the normal is explained
with the help of the two macromagnetic moments.
In fact, the exchange energy is a function of their
split angle Dy but it does not depend on their
spatial orientation. On the contrary the anisotropy
energy is a function of y0 and thus it determines
the angular dependence of the total energy. In
particular the gain in anisotropy energy due to the
splitting is a maximum for y0 ¼ 45�, which follows
from the slope of the sin in Eq. (2). Note that in
the modeling the dipolar energy is considered as a
local demagnetizing energy and is part of the
anisotropy energy. The correction due to the non-
uniformity of the magnetization is neglected. This
assumption is the more justified the smaller the
modulation of the magnetization around y0 is, i.e.
for smaller width of the unit cell [15].

2.3. Macroscopic analysis and SRT

Micromagnetics gives the most complete picture
of the metastable states of a certain system.
However, useful information can be obtained also
by simple macroscopic considerations [16]. In the
following we generalize the previous analysis by
using the average projection of the normalized
magnetization along the plane and the normal to
the film, labelled by mk and m?, respectively. The
assumed anisotropy constants are the same as
Section 2.1. This analysis might help to interpret
experimental results obtained by means of spa-
tially averaging techniques [17].
If the sum of the squares of the projections is

equal to one, i.e., m2
? þ m2

k ¼ 1, the magnetization
is uniform. As plotted in Fig. 7(a) this happens for
L ¼ 150 nm, if L1=Lo 0:05 or L1=L4 0:95, and
for L ¼ 20 nm, if L1=Lo 0:35 or L1=L4 0:65
(Fig. 7(b)). For L ¼ 150 nm, if L1=L4 0:05 the
sum of the squares of the projections decreases
until it reaches the minimum for L1=L ¼ 0:5. This
behavior indicates the formation of magnetic
domains with alternating in-plane and out-of-
plane magnetization (see sketch in Fig. 7(a)). The
sum of the projections (non-squared) is larger than
one for 0:05oL1=Lo 0:95 indicating the presence
of walls between successive magnetic domains. For
L ¼ 20 nm, if L1=L4 0:05 the sum of the projec-
tions increases until it reaches the maximum for
L1=L ¼ 0:5. This behavior might be erroneously
attributed to states of uniform canted magnetiza-
tion (sketch in Fig. 7(b)). Actually, the plot of
Fig. 7(b) gives the macroscopic picture of states
with oscillating magnetization (see Fig. 2(b))
rather than of states of uniform magnetization.
This can be hardly recognized by the macroscopic
investigation. However, the plot of Fig. 7(b) shows
that the sum of the squares of the projections is
slightly smaller than one for 0:35oL1=Lo 0:65, as
expected for states of non-uniform magnetization.
It is well known that the magnetization direction

can undergo a 90� rotation by changing the
thickness, the temperature or the composition of
the film. This phenomenon, known as spin
reorientation transition (SRT), has been investi-
gated for a variety of systems in theory and
experiments. Many research groups have found
that the SRT takes place either by a smooth
continuous rotation of the magnetization or
abruptly. As shown in Fig. 2 anisotropic stripe
systems undergo a SRT by changing the ratio
L1=L. In the following we analyze the macro-
scopic behavior of the system during the SRT.
Fig. 8(a)–(c) give the results of the simulations for
three different values of the unit cell. In each panel
we plot the average projections mk and m?. We
define the transition interval of the SRT as the
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Fig. 7. Macroscopic analysis of the magnetic states. In the plots mk and m? give the averaged projections of the magnetization of one

unit cell. For simplicity the magnetization per cell is set to unity. Panel (a) shows the situation in case of a large unit cell with fully

evolved laterally separated in-plane and out-of-plane magnetization orientation. In (b) the small unit cell situation is displayed. The

plots show the sum mk þ m? and the sum of the squares of the projections m2
k þ m2

?. In (a) one should expect mk þ m? = 1, because of

the magnetization rotation between the stripes with out-of-plane and in-plane magnetization orientation the calculated value is slightly

higher than 1. In (b), the case of magnetization canting, one can expect m2
k þ m2

?=1. The slight angle deviations (see text) cause a value

smaller than 1 in the plot.
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interval DL1=L necessary to reorient the magneti-
zation from uniform in-plane to uniform out-of-
plane (or vice versa). The main result of the
simulation is that the reorientation transition is
always continuous and the transition interval
decreases with the width of unit cell, see Fig.
8(d). For L ¼ 150 nm (Fig. 8(a)), the transition
interval covers almost the whole range available.
The onset of perpendicular magnetization takes
place for L1=L ’ 0:05. The weight of the in-plane
and the out-of-plane projections of the magnetiza-
tion is the same for L1=L ’ 0:5. For L1=L4 0:5
the out-of-plane component dominates and in-
creases with L1=L until saturation. The value of
the two components for L1=L ’ 0:5 is
mk ¼ m? ¼ 0:5, indicating a state with alternating
in-plane and out-of-plane magnetization. For
L ¼ 20 nm, see Fig. 8(b), the reorientation transi-
tion takes place over half of the range available,
i.e., 0:3pL1=Lp0:7. In particular for L1=L ¼ 0:5
we find mk ¼ m? ’ 0:7 that indicates a canting of
the magnetization at 45� with respect to the
normal. For L ¼ 4 nm (Fig. 8(c)) the transition
interval further reduces.3
3To investigate the SRT for L ¼ 4 nm we use square prism

with size of 1 nm in the z direction and smaller sizes in the x–y

directions. The size of the square is varied between 0.138 and

0:364 nm. This choice is necessary to map narrow transition

intervals.
3. Discussion

In the literature many systems are reported that
reorient by means of a continuous transition of the
average magnetization. For example higher-order
contributions to the magnetocrystalline anisotropy
[18] or magnetic domains [19] can show up at the
point of compensation between shape and surface
anisotropies leading to continuous spin reorienta-
tion transitions. Our investigation for ultrathin
films with spatially varying magnetic anisotropies
shows that the behavior of the system in the regime
of the spin reorientation transition has to be
attributed to both the intrinsic properties of the
material and the microstructure.
The different scenarios of spin reorientation

transition described in the former sections are
closely related to the magnetic configurations
found as a function of the length scales of the
system. The average magnetization rotates from
in-plane to out-of-plane by increasing the ratio
L1=L. For L�l the spin reorientation transition
involves states of alternating uniform magnetiza-
tion separated by a transition region where the
magnetization rotates by 90�. The transition
regions are determined by the interplay of the
exchange and anisotropy energy. The latter
changes abruptly within the transition region
causing the rotation. Thus the average magnetiza-
tion is simply determined by the widths of the
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in-plane and the out-of-plane regions. Since the
average magnetization is proportional to the ratio
L1=L, the continuous change of L1=L leads to a
continuous spin reorientation transition. For L 	

l the magnetization is modulated periodically with
an amplitude that is a function of the width of the
unit cell. Magnetic domains are no more present
and the reorientation transition is determined by
the small variations of the magnetic wall fine
structure. The spin reorientation transition is
continuous since the exchange stiffness constant
Aex has a finite value. In fact, for an infinite value
of Aex the reorientation is abrupt, as shown by
Eq. (1). For Aex ¼ 0 the average magnetization
will show a linear dependence on L1=L, like for
L�l, in contrast to Fig. 8(b). It is important to
underline that even though the magnetic aniso-
tropy changes abruptly from one stripe to another
the behavior of the average magnetization in the
regime of the spin reorientation transition is
continuous on macroscopic scale and an higher-
order anisotropy due to the microstructure
appears. The state of canted magnetization
appears at the compensation of the effective
anisotropies (ktot ¼ 0), although intrinsic higher
order anisotropy terms have not been considered
in our simulations and in the analytical model.
Experimentally their presence could be distin-
guished by changing the width of the unit cell,
since the fourth-order anisotropy due to the
microstructure is a function of L. In particular
the depth of the energy minimum in Fig. 3(b)
decreases with L as shown analytically [15].
Tuning the hardness of the material is possible
via patterning. A fundamental question arises:
does the system become perfectly soft at some
point [20]? A number of experiments and theore-
tical investigations have been performed in the
past on various systems in order to answer this
question [21]. Our analysis shows that in thin films
with spatially varying magnetic anisotropies the
fourth-order magnetic anisotropy decreases with L

but never vanishes for La0.
Usually the canting of the magnetization in

ultrathin films is described by considering a
fourth-order term in the expression of the aniso-
tropy energy density [22]. Although this approach
is quite general and it has been used to describe a



ARTICLE IN PRESS

F. Porrati et al. / Journal of Magnetism and Magnetic Materials 283 (2004) 133–142 141
large number of systems, it does not give the
insight into the physics of the problem. Systems
with non-uniform anisotropy may be described in
the framework of the phenomenological model of
Ref. [22], valid for uniformly magnetized films. In
this case the modulation of the magnetization is
neglected and a fourth order term is introduced ad
hoc to describe the reorientation of the easy axis.
As soon as the width of the unit cell increases, the
modulation cannot be neglected anymore and the
model for uniformly magnetized films is no more
strictly suitable. On the macroscopic scale the
system will show two stable magnetization orien-
tation, i.e. apparently local minima in the free
energy for in-plane as well as for out-of-plane
magnetization orientation, which is in literature
phenomenologically explained as a state of coex-
isting phases [22]. On the other hand, by means of
continuum [12] or discrete [10,11] modelling, the
origin of the canting can explicitly be shown to be
connected to non-homogeneous anisotropy. For
ultrathin films with laterally varying magnetic
anisotropy we have shown the existence of the
canted state by means of micromagnetic simula-
tions which employ second-order anisotropy con-
stants. The origin of the canting is explicit and
solely due to the microstructure. This result is
made more transparent by the analytical model
which describe the system by means of two
macromagnetic moments.
In Ref. [15] it was shown that for films

sufficiently thin the role played by the dipolar
interaction is negligible. The modulated
magnetic configuration is only due to the
alternating anisotropy. Such a characteristic
may be used in designing magnetic media for
perpendicular recording. Pattern with out-of-plane
magnetization separated by in-plane regions
should store the bit information. Successive parts
with out-of-plane anisotropy would be either
parallel or anti-parallel magnetized. In both
configurations the role played by the dipolar
interaction is negligible [23] allowing data storage
with high density.
The study presented in this paper has been

performed for anisotropic stripe systems made of
magnetically flat films. The results of this
analysis, however, can be generalized for and
applied to real thin film systems. The direction of
magnetization for example can be rotated by
covering magnetic films with a different material
[24]. If the coverage is partially (submonolayer) a
locally varying anisotropy is created with lateral
dimensions determined by the size of the adlayer
islands. Similar microscopic modulations of aniso-
tropy can appear in magnetic thin films that
exhibit a thickness-dependent spin reorientation
transition. In case of ideal growth, i.e. layer-by-
layer, the film thickness varies locally by incre-
ments of 1 ML and island are formed. Again this
can cause the local variations of magnetic aniso-
tropy when anisotropy changes from one to the
next completed layer. Our study is a simple
approach to model such systems. The simplifica-
tion of periodic stripes makes the simulation
feasible while reality shows more irregular struc-
tures. These structures appear on the same length
scale we have covered with our model. Hence, we
are quite sure that our results are applicable to a
whole class of real systems in the field of ultrathin
ferromagnetism.
4. Summary

In this work, we have studied the magnetic
configurations in anisotropic stripe systems mod-
elled by means of a series of infinitely long stripes
with alternating uniaxial anisotropy. States of
uniform, canted and alternating magnetization
are found as a function of the period of the
structure and of the widths of the stripes. In the
limit of narrow stripes the system has been
modelled with two macromagnetic moments that
describe the canting by means of a fourth order
anisotropy term due to the microstructure. We
have performed a macroscopic analysis of the
system by considering the average magnetization
of the magnetic states. In this framework we can
demonstrate that all the aspects of the spin
reorientation transition between states of uniform
magnetization can be recovered by the variation of
the lateral scale of the stripes. We have found that
the rotation of the average magnetization is always
continuous and is sharper for a higher density
of stripes.
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