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We investigate the electron dynamics in a one-dimensional mesoscopic ring under the influence of short,
linearly polarized half-cycle electromagnetic pulses. It is shown that the pulses induce a nonequilibrium
coherent population of electronic states such that a time-dependent charge polarization of the ring is induced.
The time-dependent charge oscillations persist after the pulses have diminished and decay on a time scale
determined by the relaxation time. The overall duration of the charge polarization can be controlled by
applying an appropriate train of half-cycle pulses. Furthermore, we show that the emission spectrum associated
with the pulse-induced charge oscillations can be modulated appropriately by tuning the parameters of the
driving pulses. It is shown theoretically how the induced charge polarization can in principle be utilized to
measure experimentally the relaxation time of the system in a field-free manner.
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I. INTRODUCTION

At low temperatures the phase coherence lengthLf of the
charge carriers in a mesoscopic system increases signifi-
cantly. This results in a series of quantum phenomena that
are currently under intensive theoretical and experimental in-
vestigations. For instance, if in a mesoscopic ring(MR) Lf is
comparable to the ring size, the physical properties of the
MR become dominated by quantum interferences of the elec-
tronic states. If the ring is threaded by a static magnetic field,
the MR thermodynamic properties possess a periodic depen-
dence on the magnetic flux. Prominent phenomena that
emerge in this case are the so-called persistent currents1–7

and the Aharonov-Bohm conductance oscillations which are
the result of the free energy dependence on the magnetic
flux.8 The various facets of the persistent currents generated
in MR’s by a static magnetic field are well established. In
particular, the electron-electron interaction,9–11 the impurity
scattering,9 and disorder5,10 effects on the persistent currents
have been investigated in considerable detail. Persistent cur-
rents in carbon nanotube-based rings have recently been
studied.12 On the experimental side, several measurements
have been reported of persistent currents.13–16

The dynamical effects produced by atime-dependentelec-
tric field acting on a MR threaded by a static magnetic field
have been investigated in Refs. 17–20. In this case the exis-
tence of a direct nonequilibrium(charge) current has been
theoretically predicted. The direct nonequilibrium current
caused by nonlinear effects is an odd function of the static
magnetic flux(as for the case of persistent currents). Conse-
quently, this current vanishes if the static magnetic flux is
zero.18–20 Further investigations concerning the dynamical
properties of MR’s subject to external continuous-wave
(CW) laser fields have also been reported.21–23

In the present paper we investigate the dynamics of
charge carriers confined in a one-dimensional(1D) ballistic
MR subject to linearly polarized half-cycle electromagnetic
pulses(HCP’s). An HCP is a strongly asymmetric monocycle
pulse consisting of a very short, strong half-cycle(we refer
to this part as an HCP), followed by a second half-cycle of
an opposite polarity(the tail of the HCP). This second part of

the pulse can be attenuated and stretched substantially(in
time) by means of optical gating techniques.24 Since the HCP
tail is very weak and very long(compared to the relaxation
time of MR’s), it hardly influences the electron dynamics.
Consequently, once the HCP has passed by, the system be-
haves as under zero-field conditions. Presently HCP’s are
available with durations in the(sub)picosecond regime and
with a peak field up to several hundreds of kV/cm.25 As well,
trains of HCP’s are shown to be experimentally feasible.26–28

The findings reported in this paper can be summarized as
follows: the application of a short linearly polarized HCP on
a ballistic thin MR induces a charge polarization that persists
much longer than the pulse duration. For this reason we also
refer to the post-pulse charge polarization as the field-free
polarization. We consider the case where the round-trip time
(nanoseconds) of the unperturbed charge carriers is much
longer than the pulse durationtd (picoseconds). In this situ-
ation it has been shown that the pulse shape is irrelevant for
the charge dynamics and the HCP can be modeled by an
instantaneous kickapplied at the timet1 and having the
strengthp=−e0

tdFstddt.26,27,29–31Here F is the electric field
amplitude of the pulse. This is the essence of the so-called
impulsive approximation whose validity has already been
demonstrated numerically.29,30 In the impulsive regime, ap-
plying a short HCP delivers a momentum transfer(or kick) to
the charge carriers in the ring which results in time-
dependent charge oscillations. As shown below explicitly,
the deviation from the equilibrium state is governed mainly
by the strength of the pulse. The time scale for the decay of
the induced charge oscillations is governed by the relaxation
time of the system. No total charge current is induced in the
ring when linearly polarized HCP’s are applied with a fixed
polarization axis. As one can expect from an intuitive point
of view, the application of a linearly polarized pulse does not
destroy the clockwise-counterclockwise symmetry of the
charge carriers paths in the ring and thus the total current
vanishes.

II. POSTPULSE POLARIZATION

We consider an isolated 1D ballistic mesoscopic ring at
low temperaturesT<0 Kd. For a thin enough ring with a
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width d!r0, the angular motion is much slower than the
radial motion and, consequently, both degrees of freedom
can be adiabatically decoupled. Furthermore, ifd is smaller
than the Fermi wavelength, then the MR becomes a single-
channel 1D ring. In what follows we limit our analysis to the
case of a single-channel 1D ballistic ring. Despite the relative
simplicity of this model, it has been shown to provide valu-
able physical insight into the description of thin MR’s in the
ballistic regime.1–6,15,21 A further advantage of using the
single-channel model is that analytical results can be ob-
tained and analyzed. In the conclusion section we will com-
ment on the effects expected when 2D rings are used. Att
= t1 a linearly polarized HCP withF ix is applied to the ring.
The duration of the pulse is assumed to be much shorter than
the ballistic timetF, wheretF is the time needed by a par-
ticle at the Fermi level for completing one turn around the
ring. This requirement is realizable experimentally since for
typical ballistic ringstF is of the order of several tens of
picoseconds15,32 and typical HCP’s employed in this work
and experimentally feasible are as short as 1 ps.25 Conse-
quently, one can safely treat the interaction of the charge
carrier with the HCP within the impulsive approximation
(IA ). In addition, in our case the basic quantity for the the
study of the charge dynamics is the time-dependent single-
particle wave functionC. Mathematically speaking, the IA
means thatC obeys a time-dependent Schrödinger equation
describing rotational states that are kicked instantaneously at
time t1 with a kick strengthp26,27,29—i.e.,

i"
]C

]t
= F−

"2

2m* r0
2

]2

]u2 − qr0«stdcosuGC, s1d

where

«std = pdst − t1d. s2d

In Eqs.(1) and(2), r0 is the radius of the ring,dsxd denotes
the Dirac function, andu is the polar angle of the charge
carrier measured with respect to the HCP polarization axis.
The effective mass and charge of the carriers are denoted by
m* and q, respectively. Henceforth we assume without loss
of generality thatt1=0.

We note that Eq.(1) corresponds, actually, to a kicked
rigid rotor (KRR). Dipolar molecules interacting with HCP’s
are also approximated by a KRR. It has been numerically
shown in Ref. 30 that for molecules with a rotational period
much larger than the duration of the pulses, the IA is excel-
lent. The situation discussed here is quite analogous and one
can expect the IA to be indeed valid.

The solutions of Eq.(1) obey the matching condition

Csu,t = 0+d = Csu,t = 0−deia cosu, s3d

wherea=qr0p/" and t=0− and t=0+ refer, respectively, to
the times just before and right after the application of the
pulse.

The solutionCm0
su ,td of Eq. (1) that corresponds to a

particle initially residing in thesm0dth orbital state can be
expanded in terms of the ring stationary eigenstates(in the
absence of the HCP) as

Cm0
su,td =

1
Î2p

o
m=−`

`

Cmsm0,tdeimue−iEmt/". s4d

Here we denoted the orbital energies of the unperturbed
states byEm, where

Em =
"2m2

2m* r0
2, m= 0, ± 1, ± 2, . . . . s5d

Taking into account the matching condition stated in Eq.
(3) and after applying the expansion theorem one finds that
the expansion coefficients are given by

Cmsm0,td =Hdm,m0
for t ø 0,

im0−mJm−m0
sad for t . 0,J s6d

with Jlsxd representing the Bessel functions anddm,n the Kro-
necker symbol. In obtaining Eq.(6) the identity in Eq.(A2)
has been utilized.

Upon applying the HCP the energy spectrum of the par-
ticles is rearranged. Specifically, the energy corresponding to
a particle initially in thesm0dth state evolves as

Em0
std = kCm0

su,tduHuCm0
su,tdl

= i"KCm0
su,tdU ]

]t
UCm0

su,tdL . s7d

The substitution of Eqs.(4)–(6) in Eq. (7) leads to the post-
pulse energy(i.e., for t.0)

Em0
st . 0d =

"2

2m* r0
2 o

m=−`

`

fmJm0−msadg2. s8d

The infinite sum involved in Eq.(8) can be performed ex-
actly [see Eq.(A3) in the Appendix] and the energy corre-
sponding to a particle initially in thesm0dth state is given by

Em0
std =5

"2m0
2

2m* r0
2 for t ø 0,

"2

2m* r0
2Sm0

2 +
a2

2
D for t . 0.6 s9d

Recalling thata=qr0p/" we can write, for the particle
energy upon the pulse,

Em0
st . 0d = Em0

st , 0d +
q2

2

p2

2m*
. s10d

Thus, applying an HCP to the ring shifts the unperturbed
energy spectrum by an amount that scales quadratically with
the strength of the pulse and does not depend on the size of
the ring. The initial degeneracy is preserved after the pulse is
applied. Furthermore, sinceEm0

st.0d grows quadratically
with m0, Eq. (10) dictates that the energy of a particle at the
Fermi level (for which m0<N/4) be affected only margin-
ally by the pulse ifsN/4d2@a2/2. For smallp and for rings
containing a large number of particles this condition may
well be met—e.g., as for the explicit numerical illustrations
discussed below. To inspect the structure of the coherent
states created by the pulse we inspect Eqs.(4) and(6). Under
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the conditionm8= um−m0u@a we have from Eqs.(6) and
(A1) that

uCmsm0,t . 0du <
1

Îu2pm8u
S ea

2m8
Dm8

, m8 @ a. s11d

In the weak-field regimep is small and, consequently,a is
small too. In such a situation the conditionm8= um−m0u@a
is easily reached anduCmsm0,t.0du2 rapidly decays when
increasing the valueum−m0u; i.e., only few states(labeled by
m) aroundm0 contribute to the coherent population created
by the pulse. It is not difficult to prove from Eqs.(4)–(6) that
Cm0

su ,td=C−m0
s−u ,td; i.e., the clockwise-counterclockwise

symmetry of the charge carrier is preserved after the appli-
cation of the pulse, and therefore, currents carried by par-
ticles initially in the m0 and −m0 states compensate each
other. This fact together with the degeneracy of the states
[see Eq.(9)] confirms the intuitive expectation that no total
current will be induced in the ring.

In order to characterize the degree of polarization in the
direction of the pulse(i.e., along thex axis), we introduce the
localization parameter

kcosulm0
std =E

0

2p

uCm0
su,tdu2 cosudu. s12d

This parameter is the analog to the parameter commonly
used for characterizing molecular orientation.30,33 Thus,
kcosulm0

std is a measure of how strong a particle occupying
initially the sm0dth state localizes along thex direction upon
the application of the pulse. The dynamical quantity
kcosulm0

std varies in the intervalf−1,1g. The extremal val-
ues −1 and 1 are acquired when the particle is perfectly
localized at the anglesu=p and u=0, respectively. Note,
however, thatkcosulm0

std=0 does not necessary mean that
the particle is localized atu= ±p /2. In such a case the only
conclusion is that, statistically, the particle is distributed
symmetrically with respect to they axis, meaning that the
polarization in thex direction vanishes. Note also that the
dipole momentmm0

along thex axis corresponding to a par-
ticle initially in the sm0dth stationary state is proportional to
kcosulm0

std. More precisely,mm0
is given by

mm0
std = qr0kcosulm0

std. s13d

After some mathematical manipulations one can obtain
from Eqs.(4)–(6) and (12) the relation

kcosulm0
std = QstdahsVdsinF2pt

tp
GcosF4pm0t

tp
G , s14d

whereQsxd denotes the Heaviside step function,

V = aÎ2 − 2 cosf4pt/tpg, tp =
4pm* r0

2

"
, s15d

and

hsVd = J0sVd + J2sVd. s16d

In obtaining Eq.(14) we exploited the relation stated by Eq.
(A4).

From Eq.(14) we deduce thatkcosulm0
std=kcosul−m0

std.
Therefore, the contributions of particles initially in them0
and −m0 states to the polarization interfere constructively
and a nonvanishing total polarization is generated. The total
HCP-induced dipole moment along thex axis is given by

mstd = o
m0,s

fsm0,tdmm0
std, s17d

where s refers to the spin of the particle,f represents the
nonequilibrium distribution function, andmm0

std is given by
Eq. (13). If the MR is thin enough, the lowest subband ac-
commodates all the electrons. In this case it has been shown
that the electron-electron interaction plays a subsidiary role
at low temperaturesT.6,11

When a MR is irradiated by the HCP, the charge carriers
are promoted to excited states and start to relax after the
HCP has passed by. ForT<0 K and for relatively weak
pulsesf"2a2/ s4m* r0

2d!EFg, the relaxation time approxima-
tion is a reasonable way for the evaluation of the nonequi-
librium distribution function.32,34,35 In principle the relax-
ation of the system may occur via various mechanisms—e.g.,
electron-phonon scattering, electron-electron scattering, etc.
Here these relaxation processes are incorporated in a single
(averaged) parameter, the relaxation timetrel that is included
at a phenomenological level. In fact, as shown below, the
decay of the induced polarization can be monitored experi-
mentally, providing thus an experimental possibility for mea-
suringtrel (cf. discussion in Sec. IV).

Within the relaxation time approximation, the nonequilib-
rium distribution function is determined by the Boltzmann
equation

]fsm0,td
]t

=
fsm0,td − nFsm0d

trel
, s18d

wheretrel represents the relaxation time and

nFsm0d = F1 + expSEm0
st ø 0d − h0

kBT
DG−1

s19d

denotes the Fermi-Dirac distribution function corresponding
to the equilibrium. In the equation above,T, kB, andh0 rep-
resent the temperature, the Boltzmann constant, and the
chemical potential(for tø0), respectively.

Equation(18) has to be complemented with the boundary
condition specifying the value of the distribution function
right after application of the pulse:

fsm0,0
+d = nF

s1dsm0d = F1 + expSEm0
st . 0d − h1

kBT
DG−1

.

s20d

The values of the chemical potentialsh0 and h1 depend on
the physical nature of the system. If the ring is connected to
a reservoir of particles, for example, the chemical potential is
fixed andh0=h1. In the particular case of our interest, in
which the MR is isolated, the chemical potentialsh0 andh1
have to be calculated, however, by requiring the number of
particlesN in the ring to be a constant. Thus, for a given
isolated ring withN particles,h0 is a function of the tem-
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perature, whileh1 depends on both the temperature and pulse
amplitude.

It is worth noting that in the case of an isolated MR the
relaxation mechanism has to include, necessarily, inelastic
scattering. The interaction of the carriers with the phonons is
then crucial for the estimation oftrel. Here, however, we
consider, as mentioned above,trel as a phenomenological
parameter.

Taking into account that the value of the dipole moment
before the application of the pulse(i.e., its equilibrium value)
is zero and after solving Eq.(18) with the boundary condi-
tion expressed in Eq.(20), one can rewrite Eq.(17) as fol-
lows:

mstd = e−t/trel o
m0,s

nF
s1dsm0dmm0

std. s21d

At zero temperature only the lowest-lying states are occu-
pied. In such a case the sum in Eq.(21) can be performed
analytically by taking into account the dependence of the
filling of the levels below the Fermi level on whether the
carriers are spinless or spin-1

2 particles as well as on the
numberN of particles in the ring.

In the case of spinless particles atT=0 K the filling of the
levels below the Fermi level depends on whether there is an
odd or even number of particles in the ring(we recall that we
are considering an isolated ring and therefore the number of
particles is constant). In the caseN is an odd number all the
occupied levels are completely filled[see Fig. 1(a)] and Eq.
(21) reduces to

mstd = e−t/trel o
m0=−sN−1d/2

sN−1d/2

mm0
std. s22d

Upon substituting Eqs.(13) and (14) into Eq. (22) one ob-
tains an expression for the dipole momentmosN,td in the
case the number of the spinless particles in the ring is odd—
namely,

mosN,td = − Qstdqar0hsVdsinF2pNt

tp
Ge−t/trel. s23d

In the case of an even number of spinless particles the
highest occupied levels are half-filled[see Fig. 1(b)] (due to
the energy degeneracy[see Eq.(9)]). Consequently, in such a
case Eq.(21) reduces to

mstd = e−t/trel o
m0=−sN−2d/2

sN−2d/2

mm0
std +

1

2
fm−N/2std + mN/2stdg.

s24d

From Eqs.(13), (14), and(24) we deduce the relation for the
dipole momentmesN,td in the case of an even number of
spinless particles in the ring:

mesN,td = − Qstdqar0hsVdsinF2pNt

tp
GcosF2pt

tp
Ge−t/trel.

s25d

For the case of spin-1
2 particles the induced dipole mo-

ment can be written as

msstd = m↑std + m↓std, s26d

where m↑std and m↓std refer to the contributions from the
spin-up and spin-down configurations, respectively. Four
cases regarding the number of particles in the ring need to be
considered separately. The situation is shown in Fig. 2,
where the filling of the levels by spin-up[yellow (light)
circles and semicircles and spin-down[blue (dark) circles
and semicircles] particles is sketched. The comparison be-
tween Figs. 1 and 2 reveals the possibility of expressing the
dipole moment corresponding to the case of spin-1

2 particles
as a function of the dipole moment corresponding to the
spinless particles case(see also Ref. 7). We now study in
details the four cases of interest.

(1) An even number of pairs—i.e.,N=0smod 4d. In such a
case one easily obtains from the comparison of Figs. 1 and
2(a) that the contributions to the dipole moment resulting
from up spins and down spins are

m↑sN,td = m↓sN,td = mesN/2,td; s27d

i.e., they are identical and each is equal to the dipole moment
corresponding to the case ofN/2 spinless particles(note that
N/2 is even).

(2) An even number of pairs plus an extra particle—i.e.,
N=1smod 4d. From Figs. 1 and 2(b) it follows that

m↑sN,td = mo„sN + 1d/2,t…,

m↓sN,td = me„sN − 1d/2,t…. s28d

FIG. 1. (Color online) Filling of the energy levels(denoted by
labeled lines) at T=0 K for the case ofN spinless particles(sym-
bolized by dots). (a) N is an odd number and all the occupied levels
are completely filled.(b) N is an even number and, because of the
energy degeneracy, the highest occupied levels are half-filled.
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(3) An odd number of pairs—i.e., N=2smod 4d. Compar-
ing Figs. 1 and 2(c) we conclude that

m↑sN,td = m↓sN,td = mosN/2,td; s29d

i.e., the induced dipole moments associated with spin-up and
spin-down particles are identical and each is equal to the
dipole moment corresponding to the case ofN/2 spinless
particles(note thatN/2 is odd).

(4) An odd number of pairs plus an extra particle—i.e.,
N=3smod 4d. From the comparison of Figs. 1 and 2(d) one
obtains that

m↑sN,td = me„sN + 1d/2,t…,

m↓sN,td = mo„sN − 1d/2,t…. s30d

Taking into account the four cases discussed above, one
obtains from Eq.(26) that for the case of spin-1

2 particles, the
total induced dipole momentmsstd can be expressed in terms
of dipole moments for the spinless case[Eqs.(23) and(25)].
The exact relationships are as follows:

ms =5
2meSN

2
,tD if N = 0smod 4d,

moSN + 1

2
,tD + meSN − 1

2
,tD if N = 1smod 4d,

2moSN

2
,tD if N = 2smod 4d,

meSN + 1

2
,tD + moSN − 1

2
,tD if N = 3smod 4d.

6
s31d

For a typical MR,tp is in the nanosecond regime whereas
the HCP duration and the buildup as well as the decay time
of the polarization are in the picosecond time scale(as dem-
onstrated below). Therefore, the time domain of relevance
here corresponds tot!tp. In such a time domainst!tpd the
dependence of the induced polarization on the parity of the
number of particlesN becomes irrelevant[compare Eqs.(23)
and (25)]. More precisely, fort!tp and for N@1 [i.e., if
sN±1d /N<1] one deduces from Eqs.(23)–(31) that all four
cases in Eq.(31) tend to the same approximate expression

mssN,td < − 2aqr0QstdfJ0sVd + J2sVdgsinFpNt

tp
Ge−t/trel.

s32d

III. EMISSION PROPERTIES

The dynamical polarization in a MR induced by asingle
HCP decays within a time of the order of the relaxation time
trel. These charge oscillations can, however, be sustained for
longer time periods if a sequence of HCP’s is applied. The
oscillating charge density generates electromagnetic radia-
tion. The characteristics of these radiation can be, to a certain
extent, controlled by appropriately designing the sequence of
HCP’s. In this sense the driven MR can serve as a control-
lable source of electromagnetic radiation. Furthermore, the
creation of a planar array of isolated MR’s(similar arrays but
including connected rings have already been experimentally
realized16 ) could resonantly increase the emission intensity.
It is worth noting also that the optical emission from quan-
tum rings has already been experimentally studied in differ-
ent situations.36,37To explore the emission properties in more
detail we consider a driving field consisting of a quasiperi-
odic train of HCP’s linearly polarized in thex direction and
applied att=0. Quasiperiodicity means that the HCPs se-
quence lasts for a certain time lapDT. Within the timeDT
the HCP train is periodic with a periodTp. Of a particular
interest is the case whereTp is much longer than the relax-
ation timetrel. Designing the pulse train such thatTp@trel,
the task of describing the time evolution of the system under

FIG. 2. (Color online) Filling of the energy levels(labeled solid
lines) at T=0 K for the case ofN spin-12 particles. Yellow(light)
and blue(dark) circles and semicircles correspond to spin-up and
spin-down particles, respectively.(a), (b), (c), and(d) correspond to
the cases N=0smod 4d, N=1smod 4d, N=2smod 4d, and N
=3smod 4d particles.
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the action of the HCP’s train reduces to the treatment of the
system evolution triggered by one pulse and then exploiting
the time periodicity withinDT.

For spin-12 particles, the charge polarizationmkstd of the
MR induced by a periodic train ofk HCP’s with periodTp
@trel is obtained from the one-HCP polarization Eq.(32)
through the relation

mkstd = o
j=0

k−1

msst − kTpd, s33d

where the dependence onN has been omitted for brevity.
The emission spectrumIsvd produced by the charge os-

cillations in the MR is given by

Isvd , umksvdu2, s34d

wheremksvd is the Fourier transform ofmkstd.
Taking into account the properties of the Fourier trans-

form one verifies that

mksvd = mssvd
sinSkvTp

2
D

sinSvTp

2
D e−ifsk−1d/2gvTp, s35d

where

mssvd =E
−`

`

msstde−ivtdt s36d

is the Fourier transform of the polarizationmsstd induced by
a single HCP as given by Eq.(32). Then Eq.(34) can be
written as follows:

Isvd , Ysvd3sinSkvTp

2
D

sinSvTp

2
D 4

2

. s37d

Here we introduced the functionYsvd= umssvdu2. From Eq.
(37) it is evident that the emission spectrum has peaks at the
integer harmonicssv=nv0,v0=2p /Tp, n=0,1,2, . . .d. The
amplitudes of these peaks are determined by the modulation
function k2Ysvd.

In general, the Fourier transform in Eq.(36) must be
evaluated numerically. However, for the case of very weak
pulses sa!1/2d we conclude thatV!1 and the Bessel
functions in Eq.(32) can be approximated by38

JnsVd <
1

Gsn + 1dSV

2
Dn

, n Þ − 1,− 2,− 3, . . . . s38d

In this limit sV!1d Ysvd acquires the analytical expression

Ysvd =
s2paqr0Nd2

S tp

trel
2 +

p2N2

tp
− v2tpD2

+ 4v2 tp
2

trel
2

. s39d

Therefore, we conclude that forsa!1/2d the modulation
function Y has a maximal valueYmax at the frequencyvmax,
where

k2Ymax= skaq r0treld2 s40d

and

vmax

v0
=ÎSNTp

2tp
D2

− S Tp

2ptrel
D2

. s41d

Note, however, that asvmaxmust be a real number, the maxi-
mum, Eq.(40), exists only iftrelùtp/ spNd. It is also worth-
while to note that although the amplitude of the modulation
function depends on the pulse amplitude, its form is deter-
mined exclusively by the ring parameters.

IV. NUMERICAL RESULTS

For a concrete demonstration of the above findings we
calculated the HCP-induced polarization for a ballistic
GaAs-AlGaAs ring similar to that used in the experiment
reported in Ref. 15. We stress, however, that the ring used in
Ref. 15 is not a single-channel ring, since its widthd
<0.16mm is greater than the corresponding Fermi wave-
length lF<0.042mm. Here we consider a ring with the
same parameters as in Ref. 15 but assume its widthd!lF,
so that only the lowest channel participates in the dynamics
of the system. The ring radius isr0=1.35mm, whereas the
electron effective mass ism* =0.067me, andN=1400. Sine-
square-shaped HCP’s with a time duration of 1 ps are em-
ployed. Zero temperature is considered in all calculations.

The time dependence of the localization parameter
kcosulm0

corresponding to the ground statesm0=0d is dis-
played in Fig. 3(a) for different values of the field amplitude
F of the HCP. As evidenced by this figure, a particle initially
in the ground stationary state reaches its maximum localiza-
tion aroundu=p after a time of the order of 20 ps for a peak
field F=1 kV/cm. When stronger fields are applied, the lo-
calization of the particle oscillates faster with time. IfF
=2 kV/cm, the particle localizes roughly along the −x and

FIG. 3. (Color online) Time dependence of the localization pa-
rameterkcosulm0

.
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along thex direction after times of about 8 and 27 ps, respec-
tively.

We note that with an increasing HCP field strength the
electronic states undergo a larger momentum and energy
change[cf. Eq. (9)]. Therefore the oscillations in the charge-
density localization parameterkcosulm0

become faster with
increasingF. The same argument applies if initially(before
applying the HCP’s) the carriers reside in a high-angular-
momentum state. In this case the localizationkcosulm0

has a
fast oscillatory behavior in time, even for small fields. This
situation is illustrated in Fig. 3(b), in which casem0=300. In
this context it is important to mention that the localization
parameterkcosulm0

is strictly periodic with a period deter-
mined bytp [see Eq.(14)]. However, sincetp<13.26 ns is
much longer than the typical relaxation timetrel, the field-
free (postpulse) charge oscillations decay before thetp peri-
odic dependence becomes apparent. Figure 3(b) indicates
that stronger fields lead faster to a localization of the charge
carriers. We remark, however, that a strong field strength if
not necessarily a prerequisite for stronger localization.

Having discussed the general properties of the localiza-
tion parameter we focus now on the details of the induced
electric dipole. Using the relaxation time approximation we
evaluated the time dependence of the total dipole momentms

for different values oftrel and for varying pulse field ampli-
tudes in Figs. 4(a) and 4(b), respectively. We recall that the
duration of the pulse is 1 ps. Taking this into consideration
we conclude that the buildup and decay of the polarization,
as illustrated in Figs. 4(a) and 4(b), occur in a field-free
manner; e.g., the polarization is generated within 10 ps after
the application of the pulse. It is also noteworthy that the
magnitude ofms is substantial[ms in Figs. 4(a) and 4(b) is
depicted in units of 106 D]. The maximum absolute value of
the induced electric dipole moment decreases when shorten-
ing the relaxation time[see Fig. 4(a)]. Nevertheless, the post-
pulse polarization is still appreciable within a typical range
of values oftrel in ballistic semiconductor MR’s(Ref. 1) as
shown in Fig. 4(a). On the other hand, the induced dipole
moment increases with the pulse field strength, but the time
within which the polarization is formed decreases with stron-
ger fields[see Fig. 4(b)]. Thus, the amount and duration of
the induced dipole moment can, to a certain extent, be tuned
by applying an appropriately designed HCP. In view of the
above results it might appear tempting to increase the HCP

field strength in order to enhance the amplitude of the in-
duced polarization. It should be noted, however, that the
treatment presented in this work is justified for relatively
weak pulses which ensures that the energy delivered to the
system is much smaller thanEF and the relaxation time ap-
proximation becomes viable.

The time evolution of the post-pulse dipole moment cor-
responding to an even number of spin-1

2 carriers has a
damped oscillating behavior with nodes[see Eqs.(23), (25),
and (31)] at t=ntp/N (with n being an integer number) and
at those values oft for which hsVd=0. Therefore the dura-
tion of the first half-cycle of the polarization(note that this
cycle gives the strongest polarization, since the dipole mo-
ment is exponentially damped by the relaxation of the sys-
tem) depends, essentially, on the number of carriers in the
ring. This situation is illustrated in Fig. 5, where the time
evolution of the induced dipole moment is displayed for dif-
ferent values of the number of particles in the ring.

The charge polarization depicted in Figs. 4 and 5 emerges
after the HCP is diminished(the pulse duration is 1 ps). Thus
the polarization buildup and decay occur in a nearly field-
free environment. This observation can be exploited as a
unique opportunity for investigating relaxation processes in
the absence of external perturbations. The situation is quali-
tatively different from the case where astationarypolariza-
tion is induced by a dc electric field, because the switch-on
and switch-off time of the dc field is usually very slow com-
pared totrel.

So far we have discussed results corresponding to the case
in which a single HCP is applied. When the MR is subjected
to a quasiperiodic train of HCP’s(with periodTp@trel) the
behavior of the time dependence of the polarization shown in
Fig. 4 can be periodically repeated as many times as the
number of applied pulses. This situation is displayed in Figs.
6(a) and 6(b) which show the time dependence of the in-
duced polarizationms corresponding to the case of a train of
k=10 HCP’s with periodTp=100 ps. In Figs. 6(a) and 6(b)
the peak fields are, respectively,F=1 V/cm and F
=1 kV/cm. It is worth mentioning that although we have
limited our study to the case of a quasiperiodic train of uni-
directional HCP’s, it is also experimentally feasible to gen-
erate trains of bidirectional HCP’s(Ref. 28) as well as the
control of the time delay between consecutive pulses. There-
fore it is possible to engineer the ring polarization on a pi-
cosecond time scale by appropriately designing the sequence
of HCP’s.

The radiation emission spectra corresponding to the po-
larization oscillations shown in Figs. 6(a) and 6(b) are dis-

FIG. 4. (Color online) Time dependence of the dipole moment
ms corresponding to the case of spin-1

2 particles for different values
of the relaxation timetrel (a) and with varying the pulse strength
F (b).

FIG. 5. (Color online) Time dependence of the dipole moment
ms corresponding to the case of spin-1

2 particles for different values
of the number of particles,N, in the ring.
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played in Figs. 7(a) and 7(b), respectively. For the sake of
comparisonIsvd has been expressed in the same arbitrary
units in both Figs. 7(a) and 7(b). We note that the results
depicted in Fig. 7(a) correspond to the case of very weak
fields (i.e., for F=1 V/cm the conditiona!1/2 holds).
Therefore, the curves in that figure were computed by using
the analytical expressions stated by Eqs.(37) and(39). Since
for F=1 kV/cm, the conditiona!1/2 is no longer valid,
the results shown in Fig. 7(b) are obtained numerically by
computing the Fourier transform according to Eq.(36). As
anticipated in the previous section, the emission spectrum is
composed of peaks at the integer harmonics(v=nv0, n
=0,1,2, . . .) with amplitudes that are modulated by the
modulation functionk2Ysvd. Thus, the system studied here
can be useful for harmonic generation. The quantityIsvd
depends quadratically on the strength of the impulsive kicks
mediated by the pulses to the system[see Eqs.(32)–(34)].
Therefore, the intensity of the emission lines increases with
the peak fieldF. This behavior is particularly evident from a
comparison of Figs. 7(a) and 7(b). The modulation function
depends essentially on the ring parameters. Thus, by choos-
ing appropriate values forr0 andN one canfilter (to a certain
extent) some specific harmonics from the emission spectrum.
For example, one can choose the system parameters such
that vmax/v0 coincides with the order of the harmonic one
wishes to highlight[see Eq.(41) for the case of very weak

fields]. We also note that the charge polarization effects oc-
cur mainly between consecutive pulses and, therefore, in a
field-free environment. This behavior is in contrast to the
case in which a CW laser or symmetric laser pulses are used.
In the case of CW lasers, the system is driven all the time by
the external field and, therefore, no field-free charge oscilla-
tions occur. On the other hand, the post-pulse polarization
strongly depends on the amount of momentum transferred by
the external field to the system. This is the reason why HCP’s
should be employed instead of nearly symmetric laser pulses
in order to be able to observe the effects discussed in the
present work(a time-symmetric pulse transfers no net mo-
mentum to the system).

The emission spectrum displayed in Fig. 7 corresponds to
charge oscillations that take place after the HCP’s have faded
away. Therefore, the emission spectrum contains information
inherent to the properties of the system under zero external
fields. This fact can be used as a tool for studying relaxation
processes in absence of external perturbations. In fact, the
results depicted in Fig. 7 hint on a method for measuring
experimentally the relaxation timetrel. By measuring the
emission spectrum, the relaxation time can be found as the
value oftrel in the modulation functionk2Ysvd that leads to
the best correspondence with the emission peaks as deter-
mined experimentally. Furthermore, we believe that it is, in
principle, possible to infer from the emission spectrum the
existence or not of the various relaxation processes and their
relevance. A definitive answer to this question, however, re-
quires the detailed inclusion of the relaxation mechanisms.
The proposed model includes the relaxation at a phenomeno-
logical level and cannot provide such a detailed information.

V. CONCLUDING REMARKS AND OUTLOOK

Summarizing we showed that when a thin ballistic MR is
subjected to a single, linearly polarized HCP, a time-
dependent charge polarization is induced in the ring. The
induced polarization of the MR persists even after the HCP
has passed by, i.e., under field-free conditions. The depen-
dence of the field-free polarization induced in the ring on the
pulse parameters was investigated. When a single HCP is
applied, the MR charge polarization decays on a time of the
order of the relaxation time of the system. Nevertheless, we
have indicated that the charge polarization can be sustained
for a longer time if an appropriate train of HCP’s is utilized.
The charge oscillations induced in that way can be engi-
neered on the picosecond time scale by designing the pulse
sequence in a predefined way. The emission spectrum gener-
ated by the induced charge oscillations was studied. The ob-
tained results show the potentiality of the system investi-
gated here as a tool for harmonic generation. A procedure
was proposed for the experimental measurement of the time
of relaxation of the excited states to the equilibrium state in
absence of external perturbations.

The results are strictly valid for anideal single-channel
1D ballistic ring. In these rings it has been shown that the
electron-electron scattering is of a marginal importance for
the stationary state due to the momentum conservation.
Hence our treatment of the stationary system is well justified.

FIG. 6. Time dependence of the dipole momentms for the case
of spin-12 particles. The results correspond to a train ofk=10 HCP’s
with periodTp=100 ps.

FIG. 7. (Color online) Emission spectrum(solid lines) and
modulation function(dashed lines) for the case of spin-12 particles.
The results correspond to a train ofk=10 HCP’s with periodTp

=100 pssv0=2p /Tp<6.2831010 Hzd.
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For the excited state the situation changes because, in gen-
eral, the external field induces a charge polarization which
breaks the rotational symmetry. Hence, the momentum con-
servation in the electron-electron scattering is violated. Thus,
the excited ring resembles the situation encountered when
going from clean to “dirty” metal rings in which the rota-
tional symmetry is broken due to the presence of disorder.
Therefore, the question arises as to the influence of the
electron-electron interaction on our results which we treated
on the basis of the relaxation time approximation. In general,
the influence of the electronic interaction and disorder may
affect qualitatively the properties of the rings. To contrast
with our present case we recall the discussion following Eq.
(10) where we showed explicitly that a weak pulse does not
drive the system significantly far from the equilibrium and
hence(in the studied case) the ground-state properties are not
changed completely upon applying the pulse. To give some
numbers for the studied case we note the following: applying
a pulse with a peak field amplitude of 1 kV/cm leads to a
maximal change of only 1.6 meV in the energy of an elec-
tron at the Fermi level. This value is considerably smaller
than the Fermi energyEF=38.2 meV. Hence, we expect that
including the effect of electronic correlation in a more so-
phisticated manner than within the relaxation time approxi-
mation will not alter qualitatively the essential findings of
this study. We also recall that in the high-quality
GaAlAs/GaAs MR used in the experiment of Ref. 15 the
disorder was found to be very weak. For such ballistic rings
the disorder effects are irrelevant. Nevertheless, in the au-
thors view, it is highly interesting to study the emergence of
electronic correlation effects as well as the influence of dis-
order in metallic rings and with increasing the strength of the
pulses. In such a case the present analytical model is no
longer justified and we have then to resort to full numerical
simulations.

A further remark concerns the dimensionality of the ring.
It is instructive to analyze whether the results of the single-
channel 1D model offers a qualitatively correct picture for
the electron dynamics in thin ballistic MR’s withlF,d
!r0 and involving a small numberLsL<d/lF.1d of radial
channels. This is, for example, the case of the ring realized in
the experiments of Ref. 15. For these thin rings and weak
fields the angular and radial motion are adiabatically decou-

pled and the decisive effect of including the different radial
channels is a lowering of the Fermi energy compared to the
Fermi energy of the single-channel case. We expect that the
peak of the polarization(see, for example, Fig. 4) will in-
crease when other channels are included, since the system
will be more easily excited(a similar situation occurs for the
case of persistent currents, where the peak current scales as
the square root of the number of channels4,15). On the other
hand, loweringEF is accompanied by a reduction of the an-
gular velocity of the particles near the Fermi level and, con-
sequently, one could expect the time oscillations of the
single-channel polarization(see Fig. 4) to occur in a slower
time scale when the different radial channels are included.

APPENDIX

Here we present some mathematical identities that were
used in obtaining Eqs.(11), (6), (8), and (14). In all the
identitiese represents the Euler number,m,nPZ, and a,b
PR.

Jmsad <
1

Î2pm
S ea

2m
Dm

, m,a . 0, m@ a. sA1d

The cases corresponding to negative values ofm and/ora are
easily obtained from Eq.(A1) by taking into account that
J−msad=Jms−ad=s−1dmJmsad:

E
0

2p

eimueia cosudu = 2pimJmsad = 2pimJ−ms− ad, sA2d

o
m=−`

`

fmJn−msadg2 = n2 +
a2

2
, sA3d

o
m=−`

`

JmsadJm+1sadHcosmb

sinmb
J = J1svd5 Î1 − cosb

2

sinb
Î2s1 − cosbd

6 ,

sA4d

wherev=aÎ2−2 cosb.
All the identities above were obtained, after some math-

ematical manipulations, from identities reported in Ref. 38.
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