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Abstract
Double ionization of a polarized atom by a single photon with an arbitrary
polarization is theoretically considered. A general expression for the triple
differential cross section is obtained and analysed. We point out the existence of
a circular and a linear dichroism in the angular distributions of photoelectrons.
Generally two types of sources for the dichroism are distinguished: one
connected with the initial polarization of the target, and the other related to the
two-electron final-state properties. We show how these two types of dichroic
effects can be experimentally investigated separately by choosing the detection
geometry appropriately. As an example, the photo-double ionization of 2P
excited and polarized states of atomic helium is considered. The calculations
reveal a measurable dichroism in the angular correlations of two emitted
electrons. Possible applications of circular dichroism measurements to the
study of superconductors and orbitally ordered materials are discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The process of two-electron emission following the absorption of a single vacuum ultra-
violet photon by an atom, widely referred to as the process of photo-double ionization (PDI),
has been under intensive theoretical and experimental investigations, in particular during
the last decade. The interest in this process is mainly driven by the fact that PDI involves
inevitably some sort of electron–electron correlations, for the electron–photon operator is
of a single particle nature. The premise is therefore to gain detailed information on the
electronic correlations by studying the PDI processes [1, 2]. Experimentally, the progress
in studying PDI depends crucially on the availability of high-brilliance synchrotron radiation
sources and on the development of efficient coincidence techniques. In both of these respects
major advances have been made in recent years with the result that nowadays, a wealth
of experimental data have been accumulated mostly for the He atom (for a review see [2]
and references therein). Other noble gas [3, 4] and alkaline-earth atoms [5, 6] have been
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studied by means of PDI as well. This impressive progress on the experimental side has
been accompanied by considerable theoretical efforts using various theoretical approaches,
ranging from simple model and approximate wavefunction calculations [4, 7–9] to fully-
fledged numerical evaluations of the cross sections [10–12]. At this stage of development,
one is therefore tempted to conclude that most of the features of PDI from the ground state of
simple targets (such as He) are currently sufficiently well understood. On the other hand, PDI
studies from more complex systems, such as large molecules, clusters and condensed matter
are still in their infancy. The PDI in this case may serve as a unique tool to map out some of the
aspects of the screened (non-local and frequency-dependent) electron–electron interaction in
the presence of a polarizable medium. Some steps in this direction have been made recently,
in particular for solid surfaces [13–15], for superconductors [16] and for fullerenes [17–19].

To our knowledge all investigations of PDI have been done for unpolarized targets. On
the other hand, recalling the historical development of single photoionization studies, one
can say that utilizing polarized targets increased substantially the amount of information
experimentally obtainable and gave access to a new sort of phenomena. For example,
in atomic physics the study of angular distributions of photoelectrons produced via photo-
ionizing polarized atoms [20–23] offers the possibility of realizing what is called the complete
experiment. Such experiments deliver information on the amplitudes for the photoionization
process including their phases [21]. In solid state physics the study of photoelectron
emission from (spin) polarized targets yields, for example, valuable information on the local
magnetization [24]. Thus, it is natural to raise the question as to what information can be
gained by studying PDI from polarized targets. It is the aim of this work to address this
problem and to provide a realistic estimate of the related cross sections which is important in
judging the experimental feasibility of such measurements.

The paper is organized as follows: in the next section the general expression for the PDI
cross section is obtained for polarized atoms. Section 3 is devoted to the discussion of the
different types of dichroism which are inherent to the PDI from polarized targets. In section 4
we discuss the general properties of the circular dichroism (CD) and derive explicit results
for the CD within the plane wave approximation (PWA). This enables us to reveal the kind
of information that may be extracted from the measurements of PDI of oriented targets. In
section 5 as an illustration we present the results of our calculations of PDI for the simplest
possible two-electron system, namely the excited and polarized He atom. In section 6 we
shortly discuss possible applications of the phenomenon of circular dichroism in PDI to the
problems of superconductors. In the last section some conclusions and further suggestions are
given. Atomic units are used throughout unless otherwise indicated.

2. General theory

We consider double ionization of atoms by a single photon with an arbitrary polarization. The
initial state of the atom is characterized by a certain energy E0, a total angular momentum
J0, a projection of the angular momentum M0, and a set of other quantum numbers which
we denote by α0. Similarly, the final ionic state is determined by Ef , αf , Jf ,Mf . The two
emitted electrons are characterized by their momenta p1, p2 and spin projections σ1, σ2. The
energies of the two detected electrons, E1 and E2, are constrained by the energy conservation

E1 + E2 = Eγ + E0 − Ef , (1)

where Eγ is the photon energy. The transition amplitude for PDI has the form

Tε̂ (p1, p2) = ε̂ · f(p1, p2), (2)
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f(p1, p2) = 〈αf Jf Mf , p1σ1, p2σ2|D|α0J0M0〉, (3)

where ε̂ is the polarization vector of the photon, and D is the dipole operator. In the following
we use the density matrix of the initial atomic state ρi(J0) and the density matrix ρf (Jf , p1, p2)

of the final state consisting of the residual ion and the two emitted electrons. The two density
matrices are connected to each other via the T-operator: ρf (Jf , p1, p2) = Tε̂ρ

i(J0)T
+
ε̂ . The

fully differential cross section for PDI depends on the momentum vectors p1 and p2. Assuming
Ef is known (in addition to E1,2 and Eγ ) one usually utilizes equation (1) and writes the cross
section in terms of the solid angles �1,2 of p1,2 and the energy E1 of one of the emitted
electrons (therefore the cross section is referred to as the triple differential cross section).
Mathematically, the cross section is the trace over the final state density matrix, i.e.

d3σ

d�1 d�2 dE1
= c Tr ρf = c Tr

(
Tε̂ρ

iT +
ε̂

) = c Tr (Dργ ρiD+). (4)

Here ργ = ε̂ · ε̂′∗ is the density matrix of the photon, and c is a kinematical normalization
constant which is specified below. Equation (4) is expressed in an appropriately chosen basis.
For the present purposes we expand equation (4) as follows:

d3σ

d�1 d�2 dE1
= c

∑
M0M

′
0Mf σ1σ2λλ′

〈αf Jf Mf , p1σ1, p2σ2|Dλ|α0J0M0〉〈λ|ργ |λ′〉

× 〈α0J0M0|ρi |α0J0M
′
0〉〈αf Jf Mf , p1σ1, p2σ2|Dλ′ |α0J0M

′
0〉∗, (5)

where the photon is described in the helicity representation. In principle, starting from
equation (5) one may calculate the dipole amplitudes f(p1, p2) and obtain the PDI cross
section. This is done in section 4 for simple systems. However, valuable information can
be extracted by inspecting the general structure and symmetry properties of equation (5).
To exploit the full power of the formalisms of density matrices and irreducible tensors, it is
advantageous to express the polarization of the initial atomic state in terms of the statistical
tensors, ρk0q0 (state multipoles). These are related to the atomic density matrix via the formula
[25–27]

ρk0q0
(α0J0, α

′
0J

′
0) =

∑
M0M

′
0

(−1)J
′
0−M ′

0(J0M0, J
′
0 − M ′

0|k0q0)〈α0J0M0|ρi |α′
0J

′
0M

′
0〉, (6)

where (j1m1, j2m2|jm) are the Clebsch–Gordan coefficients. In this work we consider an
arbitrary atomic target having an initial state with a definite angular momentum J0. Therefore,
we write for brevity

ρk0q0
(α0J0) ≡ ρk0q0

(α0J0, α0J0).

The rank of the statistical tensor k0 and the component q0 are limited by the relations

0 � k0 � 2J0, −k0 � q0 � k0.

In the majority of practically interesting cases the polarized initial atomic state has an axial
symmetry with respect to some axis â ≡ (θa, φa). In this case the statistical tensors of the
state in the laboratory frame can be expressed as follows [27]:

ρk0q0
(α0J0) =

√
4π

2k0 + 1
Y ∗

k0q0
(θa, φa)ρ̄k00(α0J0) (7)

where Yk0q0(θa, φa) are spherical harmonics, and ρ̄k0q0
(α0J0) are the statistical tensors in the

‘atomic’ frame (z′-axis along the target polarization direction â). The photon beam can also
be characterized by statistical tensors that depend on the Stokes parameters P1, P2, P3 [27],
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i.e. ρ
γ

kγ qγ
(P1, P2, P3). In the dipole approximation the rank kγ of the photon tensors is limited

to kγ � 2.
Within the density matrix and the statistical tensor formalism the triply differential cross

section of PDI, equation (4), can be presented as

d3σ

d�1 d�2 dE1
= c

∑
αα′JJ ′kq

ρ
f

kq(αJ, α′J ′)ε∗
kq(αJ, α′J ′). (8)

Here ρ
f

kq(αJ, α′J ′) is the statistical tensor of the system consisting of the residual ion and
the two electrons in the final state, J (J ′) is the total angular momentum of the system, and
α(α′) denote all other quantum numbers which are necessary to determine the final state such
as the angular momentum of the ion Jf , the orbital and the total angular momenta of the
emitted electrons, etc (see below). The tensor εkq(αJ, α′J ′) is the ‘efficiency tensor’ of the
detector system, which we discuss later on. The summation over α, α′ means summation over
all unobservable quantum numbers. The statistical tensors of the final state can be expressed
in terms of the statistical tensors of the initial state (atom+photon) and the reduced matrix
elements of the dipole operator describing photoionization (see, e.g., [27], equation (2.117))

ρ
f

kq(αJ, α′J ′) =
∑

k0q0kγ qγ

k̂0k̂γ (k0q0, kγ qγ |kq)




J0 1 J

J0 1 J ′

k0 kγ k




× ρk0q0
(α0J0)ρ

γ

kγ qγ
(P1, P2, P3)〈αJ ||D||α0J0〉〈α′J ′||D||α0J0〉∗, (9)

where k̂ ≡ (2k + 1)1/2, 〈αJ ||D||α0J0〉 is the reduced dipole matrix element. For the Wigner
9j-symbols we use the standard notations.

We suppose that the residual ion is not detected but both electron momentum vectors
are measured. In addition, we assume, as is usually the case, that the electron detectors are
not sensitive to the electron spins. Expanding the emitted electron wavefunctions in partial
waves one finds for the efficiency tensor εkq in equation (8) the following expression (cf [27],
equation (1.179)).

εkq(αJ, α′J ′) = (4π)−1(−1)j+j ′+Jf +k+j ′
1+j ′

2+1�̂1�̂
′
1�̂2�̂

′
2ĵ1ĵ

′
1ĵ2ĵ

′
2ĵ ĵ ′Ĵ Ĵ ′

{
J j j ′

J ′ Jf k

}

×
∑
k1k2

(�10, �′
10|k10)(�20, �′

20|k20)

{
�1 j1

1
2

j ′
1 �′

1 k1

}{
�2 j2

1
2

j ′
2 �′

2 k2

}


j1 j2 j

j ′
1 j ′

2 j ′

k1 k2 k




×{Yk1(θ1, φ1) ⊗ Yk2(θ2, φ2)}∗kq . (10)

Here �i, ji (i = 1, 2) are the orbital and the total angular momenta of the ith electron. In fact
�i and ji are included in the index α and summation over α in equation (8) means summation
over �i and ji . {Yk1(θ1, φ1) ⊗ Yk2(θ2, φ2)}kq are bipolar harmonics [28] determined as the
tensor product of two spherical harmonics

{Yk1(θ1, φ1) ⊗ Yk2(θ2, φ2)}kq =
∑
q1,q2

(k1q1, k2q2|kq)Yk1q1(θ1, φ1)Yk2q2(θ2, φ2) (11)

where n̂i ≡ (θi, φi) is the direction of emission of the ith electron. We use the coupling
scheme Jf + ( j1 + j2)j = J where j is the total angular momentum of the electron pair.
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Substituting formulae (9) and (10) into equation (8) and making use of equation (7)
we obtain for the triple differential cross section of photo-double ionization the compact
expression

d3σ

d�1 d�2 dE1
= παEγ (3Ĵ 0)

−1
∑

k1k2k0kkγ

ρ̄k00(α0J0)B
k1k2
k0kkγ

F
k1k2
k0kkγ

. (12)

Here the normalization factor is chosen in such a way that for unpolarized atoms upon
integration over the emission angles of both electrons one obtains the conventional expression
for total cross section [29]; α is the fine-structure constant. F

k1k2
k0kkγ

is a kinematical factor
which depends only on the kinematics of the experiment as set by the chosen experimental
arrangement of â, n̂1 and n̂2 and the polarization of the photon beam. Its explicit form reads

F
k1k2
k0kkγ

=
√

4π
({

Yk0(â) ⊗ {
Yk1(n̂1) ⊗ Yk2(n̂2)

}
k

}
kγ

· ρ
γ ∗
kγ

(P1, P2, P3)
)
. (13)

Here (ak · bk) and {ak ⊗ bk} stand respectively for the scalar [28] and tensor (cf equation (11))
product of the two spherical tensors ak and bk . Thus,

{
Yk0(â) ⊗ {

Yk1(n̂1) ⊗ Yk2(n̂2)
}

k

}
kγ qγ

are
tripolar harmonics [28]. The selection rules inherent to the Clebsch–Gordan coefficients in
F

k1k2
k0kkγ

limit substantially the range of indices in the summation present in equation (12).

The dynamics of the process is encompassed in the coefficients B
k1k2
k0kkγ

which depend on

the dipole matrix elements of photoionization, specifically B
k1k2
k0kkγ

has the form

B
k1k2
k0kkγ

= 3Ĵ 0k̂(−1)1+k0+k+Jf

∑
jj ′JJ ′

∑
j1j2j

′
1j

′
2

(−1)j
′
1+j ′

2+j ′+J ĵ ĵ ′Ĵ Ĵ ′ĵ1ĵ
′
1ĵ2ĵ

′
2�̂1�̂

′
1�̂2�̂

′
2

× (�10, �′
10|k10)(�20, �′

20|k20)

{
J j Jf

j ′ J ′ k

}{
�1 j1

1
2

j ′
1 �′

1 k1

}{
�2 j2

1
2

j ′
2 �′

2 k2

}


J0 1 J

J0 1 J ′

k0 kγ k




×




j1 j2 j

j ′
1 j ′

2 j ′

k1 k2 k


〈Jf (j1j2)j : J ||D||J0〉〈Jf (j ′

1j
′
2)j

′ : J ′||D||J0〉∗. (14)

Due to parity conservation the sum �1 + �2 can only be even or only odd, meaning that the
condition

k1 + k2 = even

applies. Integrating over the angles of one of the electrons one obtains∫
F

k1k2
k0kkγ

d�1 = δk10δk2kFk0kkγ
,

where Fk0kkγ
is the geometrical factor introduced by Baier et al [30] for the single

photoionization of polarized atoms. Furthermore, averaging over all target polarization
directions (i.e., for unpolarized targets, k0 = 0) one deduces the formula

F
k1k2
0kkγ

= δkkγ

({
Yk1(n̂1) ⊗ Yk2(n̂2)

}
kγ

· ρ
γ ∗
kγ

(P1, P2, P3)
)
.

In this case the triple differential cross section can be presented in a form identical to that
given in [31]

d3σ

d�1 d�2 dE1
= παEγ (3Ĵ 2

0)
−1

∑
k1k2kγ

Ak1k2kγ

({
Yk1(n̂1) ⊗ Yk2(n̂2)

}
kγ

· ρ
γ ∗
kγ

(P1, P2, P3)
)

(15)

where Ak1k2kγ
= B

k1k2
0kγ kγ

.
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It is useful to inspect some symmetry properties of the dynamical coefficients B
k1k2
k0kkγ

.
Permutation of primed and non-primed angular momenta results in a phase factor and a
complex conjugation, therefore

B
k1k2
k0kkγ

= (−1)k0+kγ
(
B

k1k2
k0kkγ

)∗
.

Hence, if k0 + kγ = even, the B coefficients are real, whereas if k0 + kγ = odd, the B
coefficients are purely imaginary.

For light atoms the LS-coupling approximation is appropriate. Within the LS-coupling
scheme, expression (14) is reduced to

B
k1k2
k0kkγ

= 3L̂0k̂(−1)k0+k+Lf

∑
S̄L̄L̄′LL′

∑
�1�2�

′
1�

′
2

(−1)�
′
1+�′

2+�′+L ˆ̄L ˆ̄L′L̂L̂′�̂1�̂
′
1�̂2�̂

′
2

× (�10, �′
10|k10)(�20, �′

20|k20)

{
L L̄ Lf

L̄′ L′ k

}


L0 1 L

L0 1 L′

k0 kγ k







�1 �2 L̄

�′
1 �′

2 L̄′

k1 k2 k




×〈Lf Sf (�1�2)L̄S̄ : L||D||L0S0〉〈Lf Sf (�′
1�

′
2)L̄

′S̄ : L′||D||L0S0〉∗. (16)

Here L̄ and S̄ denote the orbital angular moment and the spin of the electron pair, whereas
〈Lf Sf (�1�2)L̄S̄ : L||D||L0S0〉 is the reduced dipole matrix element in the LS-coupling
approximation. Since the dipole operator does not act on spin variables, the spin is conserved:
Sf + S̄ = S0.

The derived expressions (12)–(14) and (16) can be used in direct calculations of the
PDI triple differential cross section provided the dipole amplitudes are calculated. On the
other side, they may be used for a qualitative analysis. Thus in order to analyse the possible
contributions from different parts of the target density matrix (different statistical tensors) it
is very convenient to consider the kinematical factor F

k1k2
k0kkγ

. This serves also as an indicator
for choosing the suitable geometry of the experiment that is appropriate for studying certain
goals. We apply such analysis in the next section considering different types of dichroism.

3. Dichroism

The analysis of PDI data based on the general expression (12) for the triple differential cross
section is a rather formidable task. In practice, it is often more convenient to consider not
the cross section itself but differences of cross sections corresponding to different polarization
states of the photon beam or of the target. These kinds of cross-section differences are
conventionally referred to as dichroism. Often a study of dichroism is not only convenient
but very informative as well since the dichroism is related to certain physical properties of the
studied system usually connected with its symmetry. Various types of dichroism were studied
in single photoionization of polarized targets (see, e.g., [22] and references therein). For a
fixed target polarization one can consider, for instance, the difference in the cross sections
for right and left circularly polarized light. This difference defines what is called the circular
dichroism. In single photoionization of atoms the existence of the CD is a signature of the
presence of a preferential orientation direction of the target. We emphasize, however, that
also an alignment of the target atom results in a finite CD in angular-resolved experiments
[22]. If linearly polarized light is used one can consider the difference in the cross sections for
two mutually perpendicular axis along which the light polarization vector (or the electric-field
vector) is aligned. This difference is labelled usually as the linear dichroism (LD). Since we
will be dealing in this paper with angle-resolved experiments only we will always encounter
dichroism effect in angular distribution (AD). We remark in this context that the standard
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abbreviations CDAD and LDAD are shortened to CD and LD in this work. We note also that
from the point of view of symmetry the DPI of oriented atoms is similar to that of diatomic
(linear) molecules, where CD and LD were discussed as well [32, 33]. Many features of the
dichroism are therefore alike for diatomic molecules and for oriented and/or aligned atoms.

A further important kind of dichroism is obtained when, for a fixed polarization of the
photon beam, the direction of the target polarization is changed [34]. If circularly polarized
light is used and the direction of target orientation is reversed, the resulting dichroism is
called circular magnetic dichroism (CMD), similarly if linearly polarized light is employed
one studies then the linear magnetic dichroism (LMD). Finally, if the target is aligned one can
study the photoionization with (fixed) linearly polarized light and two perpendicular directions
of target alignment which yields the linear alignment dichroism (LAD) [35]. In all the cases
the advantage of the dichroism studies is that only few terms of the sum (12) contribute to
the difference of the cross sections, and we can focus on the influence of the existence of a
particular axis or direction on the photoionization process.

In the case of single photoionization of atoms all kinds of dichroism are rooted in a
polarization (i.e. orientation or/and alignment) of the target. If the target atom is unpolarized
the dichroism vanishes. In general, this type of polarization dichroism is anticipated to occur
in double ionization as well, but the information contained in the polarization dichroism in
PDI is different from that appearing in single photoionization. We will elaborate on this point
below. On the other hand, in double photoionization there exists a certain type of circular
dichroism which is related to phase relations within the final-state two-electron wavefunction
[36]. Since the final state wavefunction depends (parameterically) on the experimentally
measurable momenta p1,2 this dichroism is observable by measuring the two-electron energy
and/or angular distributions even for unpolarized targets [9, 37]. Such type of CD was
predicted for direct PDI [9] and experimentally observed for PDI of He [38–40]. Similar CD
effect was predicted for the resonant PDI [31] and experimentally confirmed in the two-step
PDI of Xe [41]. This CD is not determined by the intrinsic chiral properties of the target in
the initial state but rather by the chirality of the emitted electron pair moving in the field of the
residual ion. Hence, the CD is dependent on the choice of the experimental conditions and
therefore we call it hereafter kinematical dichroism. The kinematical dichroism vanishes when
the emitted electron pair loses its chirality, i.e. when electrons are emitted in one or opposite
directions, or have equal energies. Additionally it vanishes when the photon beam direction
and both emission directions are coplanar [9]. The kinematical conditions under which the
kinematical dichroism vanishes are called in this work non-chiral kinematics. Obviously,
both polarization dichroism and kinematical dichroism should be present in PDI of polarized
atoms. Below we discuss some properties of dichroism in PDI. As an illustration we consider
an initial atomic state with J0 = 1. In this case the atom may be aligned (ρ̄20 �= 0) or oriented
(ρ̄10 �= 0). We note that an oriented target with J0 > 1/2 has always nonzero alignment
(ρ̄20 �= 0). Thus the rank of the statistical tensors in the considered initial state is limited to
k0 = 0, 1, 2.

3.1. Circular dichroism

The circular dichroism, CD, is defined as the following difference:

CD = d3σ

d�1 d�2 dE1

∣∣∣∣
+

− d3σ

d�1 d�2 dE1

∣∣∣∣
−

(17)

of the cross sections for right (+) and left (−) circularly polarized light (a convention is
used in which a right (left) circularly polarized light has ε̂+ (ε̂−) polarization vector). The
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z-axis is chosen to be along the photon beam. Evidently, upon substituting the sum (12)
into the definition (17) only terms containing the photon tensor ρ

γ

10 survive, for this tensor is
proportional to the P3 Stokes parameter which changes the sign for right and left circularly
polarized light. Thus, only the dynamical coefficients B

k1k2
k0kkγ =1 contribute to CD. If the target is

unpolarized (k0 = 0) only the subset B
k1k2
011 is relevant to the CD. In this case one can show that

k1 = k2, and the coefficients B
k1k1
011 are purely imaginary [9]. Using a technique developed by

Manakov et al [42] for the reduction of bipolar harmonics one can show that the corresponding
kinematical factors Fkk

011 are proportional to the mixed product (n̂γ · [n̂1 × n̂2]) where n̂γ is
a unit vector directed along the photon beam. This is a typical kinematical dichroism. It
vanishes in the non-chiral kinematics of the experiment. It also disappears upon integration
over the direction of one or both electrons.

If the target is oriented (k0 = 1, 2) CD is generally nonzero even for the total (integrated)
cross section which is governed by the coefficient B00

101. On the other hand, the coefficients
B

k1k2
1k1 and B

k1k2
2k1 determine CD in the angular distribution; the corresponding terms in the cross

section contain as factors the degree of orientation ρ̄10 and the degree of alignment ρ̄20 of the
initial state, respectively. We remark that in this case the kinematical dichroism is also present;
in order to study the target polarization one should therefore choose a non-chiral kinematics
so that the kinematical dichroism is eliminated (e.g., a coplanar geometry where n̂γ , n̂1 and
n̂2 are in one plane). The maximal CD effect is expected when the target orientation vector is
parallel to the photon beam (â ‖ n̂γ ).

If the target is only aligned (i.e. for k0 = 2) the CD is still nonzero even if the kinematical
dichroism vanishes. The alignment-induced dichroism is governed by the coefficients B

k1k2
2k1

which are purely imaginary. CD for aligned atoms is nonzero after integration over the emission
angles of one of the electrons, but vanishes in total cross section (integrated over both solid
angles of the emitted electrons). As clear from the analysis of F

k1k2
2k1 the CD associated with

the atom alignment vanishes in non-chiral kinematics when additionally â ‖ n̂γ or if any three
of four vectors n̂γ , n̂1, n̂2 and â are collinear.

3.2. Magnetic dichroism

Suppose the target is oriented and one is interested in the magnetic dichroism (MD), i.e. in the
difference of the photoionization cross sections for opposite directions of the target orientation
vector

MD = d3σ

d�1 d�2 dE1

∣∣∣∣
↑

− d3σ

d�1 d�2 dE1

∣∣∣∣∣
↓
. (18)

Here the symbols (↑) and (↓) denote ‘up’ and ‘down’ orientation. Obviously, the MD is
proportional to the tensor |ρ̄10| of the target and only the terms with k0 = 1 in the sum (12)
contribute to MD. These terms involve the dynamical coefficients B

k1k2
1kkγ

. MD exists both for
circularly (CMD) and linearly (LMD) polarized photons.

It is important to underline that in general the measurements of CD and CMD yield
different results [22]. For the CD not only the orientation of the target is important but also its
alignment. In contrast, the alignment contribution does not change the sign when the target
orientation direction is inverted and hence such a contribution is not present in CMD. On
the other side, the CMD contains contributions from the second rank statistical tensor of the
photon (kγ = 2), whereas such terms are irrelevant for CD. Nevertheless, as shown below, for
some kinematical arrangement of the PDI experiment the CD and CMD may coincide. If the
main goal of the experiment is to study the chiral properties of the target, one should choose
a geometry in which the kinematical dichroism vanishes i.e. non-chiral kinematics. In these
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cases the final-state chirality of the emitted electron pair is zero, and therefore k = even. Then
in our illustrative case of J = 1 we conclude the following: the relevant terms for the CMD
are only B

k1k2
101 , B

k1k2
121 and B

k1k2
122 whereas for CD only B

k1k2
101 , B

k1k2
121 and B

k1k2
221 are important. By

choosing the target polarization to be along the photon beam (z-axis), the properties of the
Clebsch–Gordan coefficients contained in F

k1k2
k0kkγ

dictate that k + k0 + kγ = even. Since k is
even, we deduce that k0 + kγ should be also even. Hence, in this case both CD and CMD are
determined by only two dynamical coefficients B

k1k2
101 and B

k1k2
121 , and therefore they are equal,

meaning that inverting the chirality of the light is equivalent to flipping the target polarization
direction. This fact is comprehensible from a simple geometrical consideration (see section 5).

3.3. Linear alignment dichroism

We consider now the case where the target is aligned. The difference in the cross sections of
PDI for linearly polarized light with two orthogonal axis of the target alignment constitutes
the linear alignment dichroism.

LAD = d3σ

d�1 d�2 dE1

∣∣∣∣
‖
− d3σ

d�1 d�2 dE1

∣∣∣∣∣
⊥

. (19)

For LAD only terms with k0 = 2 in the sum (12) are relevant. The dynamical coefficients
contributing to LAD are B

k1k2
2kkγ

. The expression for the angular distribution of LAD simplifies
if the alignment axis coincides with the linear polarization axis of the ionizing radiation, a case
which will be discussed in section 5 using numerical illustrations. Generally, LAD persists
even upon an integration over the angles of one of the electrons and even in the total cross
section, in which case the quantity of interest would be the dependence of the total cross
section on the angle between the photon polarization direction and the alignment axis [21, 30].

4. Physical significance of the circular dichroism in PDI

4.1. Plane wave approximation

For understanding qualitatively the general features of the PDI cross sections from polarized
targets, it is instructive to consider a simple analytic approximation for the continuum two-
electron final-state wavefunction such as the plane wave approximation. Generally, the PWA is
not a useful method for describing quantitatively PDI from atomic targets, unless the electron
energies are high as compared to the two-electron initial binding energy (strictly speaking the
PWA is never exact for scattering potentials that involve an infinitely long-range tail, such as
Coulomb potentials). In solids where naturally (orbitally) ordered state may occur, the direct
electron–electron repulsion is screened on the scale of a few lattice constants. This feature
extends the validity of the PWA beyond the range, typically assumed in atomic scattering
processes.

To exploit the advantages of the PWA we consider at first the dipole amplitude f(p1, p2),
as given by equation (3). The dipole operator does not act in spin space. In addition, we study
the cases where the detectors are not sensitive to electron spins, therefore the PDI cross section
is not explicitly spin dependent. Nevertheless, the initial two electron spin state of the target
has a crucial influence in that it determines the symmetry of the spacial part of the electron
wavefunctions. Keeping this in mind we omit the spin variables in the formulae to shorten
notations.
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Similarly to [1] we consider the partial two-electron Fourier amplitude �̃if (q1, q2) of the
many electron wavefunction �J0M0(r1, . . . , rn) projected on a selected state �Jf Mf

(r3, . . . , rn)

of the final doubly charged ion. These amplitudes are given by the formulae

�̃i f(q1, q2) = (2π)−3
∫

dr1 dr2�i f(r1r2) exp(−i(q1 · r1 + q2 · r2)), (20)

where

�i f(r1, r2) =
∫

�J0M0(r1, . . . , rn)�Jf Mf
(r3, . . . , rn)

∗ dr3, . . . , drn. (21)

Within the PWA and employing the length form for the dipole operator, the amplitude f(p1, p2)

can be written as

f(p1, p2) = i∇�̃i f(p1, p2). (22)

Here we introduced the total gradient ∇ = ∇p1 + ∇p2 . In equation (22), the momenta p1

and p2 are determined experimentally. Thus, by measuring the cross section at certain p1

and p2, the modulus square of the wavefunction gradient can be measured (or projected)
at certain momentum–space subregions defined by p1 and p2. If the system under study
consists of a two-electron atom or ion then �̃i f(p1, p2) ≡ ϕ̃i(p1, p2) where ϕ̃i(p1, p2) is the
momentum–space wavefunction of the initial state of the atom.

To elucidate the properties of the circular dichroism in PDI, as calculated within the PWA,
we write at first the modulus square of the transition amplitude as |Tε̂±|2 = (ε̂±· f)(ε̂∗

±· f∗).
The terms in the double product can be rearranged and one obtains that

|Tε̂±|2 = 1
3 |f|2 + 1

2 (ε̂± × ε̂∗
±) · (f × f∗) + T2(ε̂±, ε̂∗

±)T2(f, f∗). (23)

Here T2(x, y) is a spherical tensor of rank 2 constructed from the spherical components of the
vectors x and y [28]. Only the second term on the rhs of equation (23) is odd with respect
to exchange of ε̂+ and ε̂− (or f and f∗). Therefore, the measurable circular dichroism CD,
defined in equation (17), can be rewritten as

CD = c[|Tε̂+ |2 − |Tε̂−|2] = −icn̂γ · (f × f∗), (24)

where n̂γ = ±iε̂± × ε̂∗
± is a real unit vector along the light propagation direction. The

vector product f × f∗ is pure imaginary, because f × f∗ = −(f × f∗)∗. Therefore, no circular
dichroism exists if f is pure real or pure imaginary. It should be stressed that equation (24) and
the related conclusions are generally valid, i.e. they are not restricted to the PWA and apply
without special symmetry requirements on the system under investigation. Introducing the
PWA amplitude (22) and using equations (20) and (24) we get

CD = −icn̂γ · [∇�̃i f(p1, p2) × ∇�̃∗
i f(−p1,−p2)]. (25)

We recall that the spin degrees of freedom are assumed to be decoupled from the spacial
ones. In this case a time-reversal operation � acting on the two-electron wavefunction leads
to the result ��̃i f(p1, p2) = �̃∗

i f(−p1,−p2). Therefore, relation (25) evidences that CD
changes its sign upon time reversing the two-electron bound states and hence CD vanishes
when the initial state is a time-reversal invariant. In this sense a finite CD can be regarded
as an indicator for a broken time-reversal symmetry [43]. This break of symmetry can be
brought about experimentally, e.g. by orbitally polarizing the initial state via laser pumping.
On the other hand there are a variety of examples of naturally occurring (spontaneous) time-
reversal symmetry breaking (see section 6). We note by passing that a sign reversal of
the phase of the position space wavefunction of the bound state �i f(r1, r2) corresponds to
reversing sign of the phase of the momentum–space wavefunction and reversing the direction
of the momenta, i.e. �i f(r1, r2) 
→ �∗

i f(r1, r2) corresponds to �̃i f(p1, p2) 
→ �̃∗
i f(−p1,−p2).
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This is readily concluded from equation (20). Thus, CD changes sign upon the operation
�i f(r1, r2) 
→ �∗

i f(r1, r2). A classical analogue of the phase of the wavefunction is the
circulation direction of the charge carriers with respect to a given axis (direction of orientation).
Changing sign of the phase amounts to reversing the direction of circulation. This is shown
explicitly below (cf equation (32)).

To proceed further we express the momentum–space wavefunction of the electron pair as

�̃i f(p1, p2) = |�̃i f(p1, p2)| eiφ(p1,p2), (26)

where φ(p1, p2) is the phase of the wavefunction. Comparing equations (22), (24) and (26)
we conclude that within the PWA

CD ≡ σ(ε̂+, φ) − σ(ε̂−, φ) = σ(ε̂+, φ) − σ(ε̂+,−φ)

= σ(ε̂−,−φ) − σ(ε̂−, φ). (27)

The following key conclusions are based on the relations (27). The circular dichroism can
be regarded as a measurable change in the PDI cross section (for circularly polarized light of
a fixed helicity) upon a sign reversal of the phase of the initial-state two-electron momentum–
space wavefunction. For non-oriented two-electron atom the initial-state wavefunction may
be chosen to be real φ ≡ 0 and hence CD = 0. This is consistent with the statement that
for isotropic initial state CD vanishes identically within the PWA proved in [9]. In general,
however, CD is nonzero for PDI from unpolarized targets [9] apart from the conditions of
non-chiral kinematics as discussed in section 2.

Within the PWA it is also possible to derive a direct link between the circular dichroism
and the phase difference (gradient) of the electron pair wavefunction: Inserting equation (26)
into equations (22) and (24) yields

CD = c{(∇|�̃i f(p1, p2)|2) × n̂γ } ·∇φ(p1, p2). (28)

In this context we recall that a way to obtain information related to the two-particle probability
density |�̃i f(p1, p2)|2 by means of PDI was, to our knowledge, first discussed in [1] (in
the context of atomic physics). The measurements of CD give access to phase differences
(gradient) of the bound two-particle state [43].

4.2. Beyond PWA

The discussion following equation (25) highlighted the fact that CD changes sign upon
a time reversal of the electron-pair state. Time reversal corresponds to a change of the
phase sign of the position-space bound-state wavefunction of electron pair. Therefore,
CD changes the sign upon the operation �i f(r1, r2) 
→ �∗

i f(r1, r2). This result we
have obtained within the PWA. Now we demonstrate its validity for the general case,
provided a particular kinematical condition of the experiment is chosen. The transformation
�i f(r1, r2) 
→ �∗

i f(r1, r2) implies a complex conjugation of the density operator of the initial
state, i.e. ρi(J0) 
→ ρi∗(J0). The substitution into equation (6) shows that the statistical
tensors transform as ρk0q0(α0J0) 
→ (−1)k0ρk0q0(α0J0). Thus, upon a phase sign change of the
initial state wavefunction (i.e. upon time reversal in the initial state) the orientation (k0 = 1)

changes the sign while the alignment (k0 = 2) does not change. In section 3.1 we have shown
that in an experiment with a non-chiral kinematics when the direction of the photon beam
coincides with the target polarization direction, the alignment does not contribute to the CD.
In this kinematical conditions the CD is proportional to the target orientation ρ̄10 and thus it
changes the sign when the phase of the bound-state function changes its sign.
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5. Example: photo-double ionization of polarized 2P state of He

To illustrate the above findings we consider a simple example, namely PDI from a polarized
He atom. The ground state of He has J0 = 0 and cannot be polarized. However, the excited
states 2 1,3P can be polarized, e.g. by pumping with circularly or linearly polarized laser one
achieves respectively an oriented or an aligned two-electron states. Experimentally, the use
of the excited He as a target is not a major obstacle at least for the comparatively long-living
23P state. The feasibility of excited He target for scattering experiments was demonstrated,
for example, in [44], where superelastic electron scattering was studied from laser excited
23P He state. PDI from excited (but not polarized) He atoms has been recently considered
theoretically in [45, 46]. Below we present the results of calculations for PDI of excited
and polarized He 2P states. To make the presentation and the interpretation of the results
more transparent we choose the laboratory coordinate system such that the z-axis coincides
with the photon beam propagation direction for circularly polarized light or with the photon
polarization for linearly polarized light. The properties of the kinematical dichroism have been
well established previously [37]. Therefore, to focus on the new target-polarization effects we
eliminate the kinematical dichroism by choosing a coplanar geometry: the plane spanned by
the momenta p1 and p2 of the emitted electrons contains the z-axis. Furthermore, we consider
the case in which the He atom is polarized along the z-axis.

We describe the spacial part ϕm(r1, r2) of the He 2P states with the orbital angular
momentum projection m as (anti)symmetrized product of two hydrogen-like single-electron
wavefunctions unl with effective charges considered as variational parameters, i.e.

ϕm(r1, r2) = N±[u1s(r1)u2p(r2)Y1m(r̂2) ± u1s(r2)u2p(r1)Y1m(r̂1)], (29)

where N± is a normalization factor. The + (−) sign refers to the singlet 21P (triplet 23P)
state. For the 21P state the values of the variational parameters are Z1s = 2 and Z2p = 0.97
[47] which gives a binding energy of E(21P) = −2.123 (experimental value is −2.124). For
the 23P state one finds Z1s = 1.99 and Z2p = 1.09 [47] leading to the binding energy of
E(23P) = −2.131 (experimental value is −2.133). Thus, the wavefunctions (29) are simple,
but reasonable starting point for pilot calculations of PDI cross sections and dichroism.

The final state of the two electrons in the continuum is approximated by a product of
two plane waves multiplied by three two-body Coulomb distortion factors describing the
separate interaction of each electron with the residual ion and electron–electron interaction,
the so-called 3C-approximation [9, 48, 49]. The advantages and disadvantages of the 3C
approximation as applied to PDI have been discussed in the review [2] together with other
analytical and numerical approaches. The 3C wavefunction has a number of weak points (a
detailed mathematical analysis of the shortcomings of the 3C model can be found in [50]),
but it is probably fair to say that the 3C approximation captures the main features of the
two-particle continuum and hence is well suited for our purposes here. With these final-state
wavefunctions, calculations of the amplitudes f(p1, p2) and of the cross sections have been
done full-numerically on a six-dimensional grid (for the results shown here, the cut-off for the
radial integration was at about 50 au, where convergence was achieved). For comparison and
for testing the numerics we made also calculations within the PWA.

At first we consider the results of the calculations for circularly polarized light. Figure 1
presents the calculated cross sections for He 21P state for different projections of the angular
momentum m and different photon helicities ε±. The cross sections are shown as a function of
the emission angle of the second electron while the emission direction of the first electron is
fixed along the z-axis (see insets in figure 1). In this case three of four vectors, characterizing
the process â, n̂γ and n̂1 are collinear, and as it was proved in section 3 the CD and CMD should
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Figure 1. m-resolved double ionization cross section of the 21Pm state of atomic helium following
the absorption of a right (left) circularly polarized photon, labelled respectively by ε+ (ε−). The
polar angle θ of the first 10 eV electron is varied. The emission angle of the second, slow electron
with 5 eV energy is fixed along the light propagation direction (which is also the quantization axis
of the atom (thick arrow)). The calculations were done using the 3C model for left (a) and right
(b) circularly polarized light and within PWA for right circularly polarized light (c).

coincide, which means that the inversion of the photon helicity is equivalent to the inversion
of orientation (sign of the projection m). This can easily be proved also from symmetry point
of view. Indeed, in the chosen geometry the angular distribution of the second electron (n̂2)

should be axially symmetrical about the z-axis. A reflection of the system through a plane
containing the z-axis results in the change of the photon helicity ε+ → ε− and of the angular
momentum projection m → −m. On the other hand, due to axial symmetry the cross section
should be invariant under the rotation about the z-axis at 180◦, therefore

σ(ε+,m) = σ(ε−,−m) (30)

Naturally, numerical calculations confirm this relation (cf figures 1(a) and (b)). As seen from
the figure the circular dichroism is very strong for m = ±1 states, the non-chiral m = 0 state
shows no dichroism. The angular distributions differ drastically for different m. It is interesting
to compare the results of the 3C calculations with those made within PWA (cf figures 1(b)
and (c)). One can see that apart from the values of the cross sections, the characters of the
curves are similar in the backward hemisphere. However in the forward hemisphere Coulomb
repulsion of electrons moving in close directions strongly suppresses the cross sections.

The striking difference in the angular distributions for the different projections m can be
qualitatively understood within the single configuration approximation which we use for the
description of He. Consider, for example, PDI of He 2P by right-circularly polarized light ε+.
One of the electrons absorbs the photon and the dipole transitions 1s → Ep or 2p → Es, Ed
can occur. The second electron is ‘shaken’ to the continuum with the same angular momentum:
2p → Ep in the former case and 1s → Es in the latter case. Therefore, in the continuum
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we may have the following electron pairs (channels) (p,p), (s,s) and (s,d). Photoabsorption
of the right-circularly polarized light involves a change of the angular momentum projection
�m = +1. If we consider the ionization of the state m = +1, the final-state projection should
be mf = +2. Since one of the electrons emitted along the z-axis has zero projection, the
second one should have projection +2. The only contributing channel (s,d) gives angular
distribution of the type sin4 θ strongly peaked at 90◦ and 270◦. This is valid for PWA
(non-interacting electrons), see figure 1(c). Final-state interaction shifts the maxima, but the
character of the distribution remains the same (figure 1(b)). If the initial state has m = 0
the final state should have projection mf = +1. In both possible channels (p,p) and (s,d) the
angular wavefunctions have zeros at 0◦ and 180◦. Since the dominant dipole transition is 2p
→ Ed, the main contribution to the angular distribution comes from |Y2±1|2 function that has
additionally zeros at 90◦ and 270◦ which explains the observed angular distribution. Finally,
for the ionization of the m = −1 state, the final state has mf = 0. In all three channels it gives
maxima at 0◦ and 180◦ (see figure 1(c)). Final-state interaction eliminates the 0◦ peak, but the
peak at 180◦ persists (see figure 1(b)).

Using the results of figure 1 we can predict the results of CD and CMD measurements.
First we note that in equation (29) m is the projection of the angular momentum of the two-
electron wavefunction onto the axis of quantization (z-axis). According to the definition (6)
for J0 = 1 the orientation tensor ρ10(1) is expressed as

ρ10(1) = 1√
2
(w+1 − w−1) (31)

where wm is a population of the magnetic substate with projection m. Thus if only one of
the projections m = ±1 is populated, the electron-pair state is maximally oriented along the
±z direction, ρ10(1) = ±√

1/2. If only m = 0 is populated, the state is non-oriented. With
the account of equation (30) the circular dichroism for the maximally oriented target can be
expressed as

CD = CMD = σ(ε+,m) − σ(ε−,m) = σ(ε+,m) − σ(ε+,−m)

= σ(ε−,−m) − σ(ε+,m) = σ(ε−,−m) − σ(ε−,m). (32)

These relations are the counterparts to equations (27) obtained above within PWA; here they
are valid for any correlated final continuum state but only in a special case of non-chiral
kinematics. Figure 2 shows the CD calculated according to (32). The lobe structure of the
CD is explained by the extremal values of the corresponding cross sections.

In figure 3 we show the results similar to those in figure 1(a) but for the triplet initial
state 3P. The large difference between PDI cross sections from triplet and singlet states
demonstrates the high sensitivity of the dichroism in PDI to the electron–electron correlations
(in this case, correlations due to the exchange interaction).

Now let us consider PDI by linearly polarized light. In this case we chose the z-axis
along the light polarization. The geometry of the experiment is shown in the inset in figure 4
where the results of the calculations are shown for He 2P initial state. In the chosen geometry
and for linearly polarized light �m = 0 applies. Therefore, in σ(ε0,m = 0) only substates
of the electron pair with mf = 0 can contribute. Thus according to the above consideration,
if the electron interaction is ignored one can expect maxima of the cross section at 0◦ and
180◦. The maximum in forward direction is completely suppressed by the Coulomb repulsion
of electrons, but the maximum at the ‘back-to-back’ emission persists (see figure 4(a)). In
contrast, for σ(ε0,m = ±1) only the states with mf = ±1 contribute. In this case we can
expect zero at 180◦ as it is obtained by the calculations. In figure 4(b) analogous results but
calculated within the PWA are presented. As in the previous case of circularly polarized light,
the cross-section behaviour in the backward hemisphere is similar for both calculations, while
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Figure 2. The circular dichroism (CD) for the scattering geometry, as depicted in the inset of
figure 1(a). In this case, CD is also equivalent to the CMD as explained in the text.
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Figure 3. The same as in figure 1(a), but for the triplet state 23Pm of He. The results for ε̂+ can be
obtained from those shown in the figure applying equation (32).

in the forward hemisphere the Coulomb repulsion of the emitted electrons suppresses strongly
the cross section in the 3C calculation (as compared to the PWA ones). Figure 4(c) presents
the results of the 3C calculation for the He 23P initial state. Again comparing figures 4(a) and
(c) we see a strong difference between the cross sections of PDI from singlet and triplet initial
states that implies a strong sensitivity of the dichroism to electron correlations in the initial
state.

With linearly polarized light, one can probe the alignment of the electron pair in the target.
The alignment tensor of the He 2P state is defined as (cf equation (6) )

ρ20(1) = 1√
6
(w+1 + w−1 − 2w0). (33)

Thus if m = ±1 substates are equally populated and w0 = 0 the alignment is ρ20(1) = +
√

2/3,
while if only m = 0 is populated the alignment is ρ20(1) = −√

2/3. Note that the rotation
of the quantization axis by 90◦ around the y-axis exchanges the alignment of the above two
states. In section 3.3 we have defined linear alignment dichroism as the difference of the cross
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Figure 4. The fully differential cross section for the double ionization of He with linearly polarized
light. The photon polarization axis is chosen to be along the atom quantization axis. Energies and
scattering angles depicted in the insets are the same as in figure 1. The calculations were done for
the singlet 21Pm initial states using 3C model (a) and PWA (b) and for the triplet 23Pm initial states
using 3C model (c). In (b) the results for the states 21Pm=±1 are multiplied by a factor 8.

sections for two perpendicular axis of alignment. One can show that LAD for L = 1 state
may be expressed in terms of the cross sections σ(ε0,m) as

LAD = σ(ε0,m = ±1) − σ(ε0,m = 0). (34)

Figure 5 presents the calculated LAD for the ionization of the 21,3P states of He in the
geometry shown in the inset. As for the CD, the LAD angular dependence shows lobes which
are determined by the extrema of the cross sections.

6. Possible applications to superconductors and other materials

The above discussion of the PDI and the circular dichroism was mainly concentrated on
atomic targets. However, the main ideas and results outlined here can as well be applied to
other systems. In this section we outline briefly some applications of the theory of circular
dichroism in PDI or better to say in double-photo emission to the study of unconventional
superconductors.

It is established knowledge that the inter-quasiparticle interactions are the driving force
behind spontaneous symmetry breaking and the formation of new states of matter, such as
ferromagnetism and superconductivity (SC) [51–53]. In conventional SC the gauge symmetry



Two-electron photoemission from polarized atoms 39

0 90 180 270 360
θ [deg.]

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

L
A

D 2
1
P

2
3
P

2P

εγ

E
1
=10eV

E
2
=5eVθ

Figure 5. Linear alignment dichroism (LAD) evaluating according to equation (34). The scattering
geometry and the energies of the two escaping electrons are shown in the inset (same as in
figure 4).

is broken at the critical temperature Tc [51] due to the formation of (s-wave) Cooper pairs with
a vanishing total spin. The order parameter �, i.e. the pair wavefunction in momentum–space
is then isotropic � = �0. A recent work [16] demonstrated that PDI is capable of mapping
out some details of the correlation within a Cooper pair in a conventional s-wave SC. With the
findings of the present work we show now that PDI is as well instrumental in unravelling the
interplay between correlation and other type of spontaneous symmetry breaking, in particular
the break of the time-reversal symmetry.

The gauge symmetry is broken for all kind of SCs underpinned by a pairing mechanism.
On the other hand, new states of unconventional SC associated with other kind of spontaneous
symmetry breaking have recently been identified [51]. For instance, in the case of triplet
p-wave SC, which is believed to occur in the layered Sr2 RuO4 compound [51] (the layers are
built out of Ru and O4, similar to the Cu–O2 layers in cuprates), the time-reversal symmetry
is broken. For T � Tc the superconducting ground state is called the chiral or the Anderson–
Brinkmann–Morel (ABM) phase [51, 53]. The pairing state is specified by the so-called d
vector order parameter: d = �0ẑ(kx ± iky) = �0(0, 0, kx ± iky). kx and ky are wave vectors
in the planes. The z direction is pinned along the crystalline c axis, i.e. perpendicular to
the (Ru, O4) plane4. The triplet paired spins are within the two-dimensional (Ru,O4) plane,
while all orbital angular momentum vectors are perpendicular to this plane and parallel to
one another in any domain. The orbital wavefunction is expressible in terms of the spherical
harmonics Y1,±1 = (

3
8π

)1/2
sin θ e±iφ = (

3
8π

)1/2
(kx ± iky). Thus, the relative orbital motion

of the electrons of a Cooper pair is either clockwise or counterclockwise. The fact that all the
Cooper pairs within a given superconducting domain follow the same sense of the (orbital)
rotation underpins the broken time-reversal symmetry. As proved above, generally measuring
CD in PDI in the non-chiral kinematics can be utilized as an indicator of the time-reversal
symmetry breaking. More detailed information can be gained if we assume that the final state
is well approximated by plane waves. As showed in section 4, we can utilize the angular
dependence of the CD to infer information on the angular behaviour of the pair phase gradient.

4 The pinning of the z-direction along the crystalline c-axis of the highly anisotropic Sr2RuO4 crystal is brought
about by a weak spin–orbit coupling (SOC). It should be noted however that SOC in these materials is nevertheless
not as large as to invalidate a decoupling of the spin from the orbital degrees of freedom.
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As for the validity of the PWA in this case we note that the coherence length, i.e. the extent of
the pair state, is estimated to be ∼ 1000 Å. Thus we can argue that due to screening a PWA
for the excited (broken) pairs is well justifiable.

In this context we recall that the signature of a broken time-reversal symmetry is as
well present in a single photoemission measurement (as demonstrated experimentally for the
pseudogap state of high Tc SCs [54]). It should be remarked however that single photoemission
tests for the symmetry of single particle orbitals (integrated over all other degrees of freedom of
the surrounding medium). PDI is related to the properties of electron pairs. This is explicitly
demonstrated in the numerical examples, where a triplet-oriented pair leads to a markedly
different CD than a singlet-paired state. Hence, CD and PDI measurements supersede single
photoemission in that they allow an insight into the interplay between symmetry reduction and
inter-particle correlation. A concrete numerical demonstration of these statements for high Tc

SCs will be presented elsewhere [55].
Another important class of materials that can be potentially investigated by PDI are

systems with a natural orbital ordering [56]. As for unconventional superconductors these
materials are of great practical importance, but the underlying physics is still to be established.
As demonstrated in this paper a measurement of the CD (in the non-chiral kinematics)
may serve as an indicator for the presence of a preferential orientation axis of the orbital
motion. In addition, PDI provides direct information on the short-range correlations (note the
electron–electron interaction which triggers PDI is usually screened on the scale of few tens
of angstroms).

7. Conclusions

We have presented and analysed a general expression for the triple differential cross section
of the photo-double ionization of polarized atoms. The cross section reveals different kinds
of dichroism including magnetic and circular dichroism. It is shown that circular dichroism
is a combination of a polarization dichroism connected with the polarization of the target and
a kinematical dichroism caused by the choice of experimental geometry. For studying the
dichroism caused by the intrinsic chirality of the target, it is necessary to make experiments in
conditions where kinematical dichroism vanishes, for example in coplanar kinematics. Further
analysis of the circular dichroism in PDI has revealed that a finite CD carries information on
the properties of the phase of the bound two-particle wavefunction. The calculations of
the PDI cross sections from polarized helium have demonstrated that PDI in combination
with the dichroism measurements give access to the internal (phase) properties of bound
two-electron states. The realization of the suggested experiments might be an experimental
challenge, however the information attainable is unique in that it reveals the interrelation
between electronic correlation and two-particle phase differences. This has been shown
explicitly in this present work by revealing (theoretically) the marked difference in CD for
a singlet and a triplet two-particle state, demonstrating thus the influence of the exchange
interaction.

A further key conclusion of this study is that a finite CD is an indicator for a broken
time-reversal symmetry. This we have shown without resorting to any special approximate
expressions of the wavefunction and without assuming any particular type of symmetry for the
target. This finding is of special importance for the investigation of systems with spontaneous
time-reversal symmetry breaking, such as p- and d-wave superconductors. In this case the PDI
is particulary suited since the symmetry break is brought about by a quasi-particle interaction
that, at the critical temperature, makes the Fermi seem unstable (Cooper instability) against
pairing and a reduction of symmetry occurs. PDI has then the potential to explore the interplay
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between time-reversal symmetry break and the correlation within an electron pair. Thus, the
PDI capability supersedes that of conventional single photoemission.
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