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PACS. 78.67.-n – Optical properties of low-dimensional, mesoscopic, and nanoscale materials
and structures.

PACS. 73.23.-b – Electronic transport in mesoscopic systems.
PACS. 73.23.Ad – Ballistic transport.

Abstract. – Subjecting a non-interacting mesoscopic ring (MR) to a linearly polarized half-
cycle electromagnetic pulse results in a non-uniform, non-equilibrium coherent population of
electronic states. A post-pulse charge polarization of the ring is then created within few picosec-
onds and sustains for times determined by the relaxation time scale. These conclusions are the
results of a theoretical analysis of the electronic quantum dynamics of a MR subjected to unipo-
lar pulses. Methods to trace experimentally the charge polarization build-up are suggested.

Introduction. – In mesoscopic systems the phase coherence length of the electrons can
be considerably large compared to the system size. Hence, the physical properties of such
systems are strongly influenced by the quantum interference of electronic states [1]. Prominent
examples are the universal fluctuation of conductance, Anderson localization of electrons and
the magnetic-field dependence of the thermodynamical and transport properties of multiple
connected devices, e.g. mesoscopic rings (MRs) [1–5].

Extensive theoretical and experimental investigations (e.g. [1–9] and references therein)
have established a common understanding of the equilibrium thermodynamics [1–4] as well as
of the linear response of MRs to static or periodically time-dependent electric and magnetic
fields [5, 6]. In contrast, the non-linear response of MRs is much less studied: e.g., it has
been shown [10–12] that a periodically time-dependent magnetic flux with a static component
threading a MR generates a direct non-equilibrium current which is an odd function of the
static magnetic-flux component (as is the case for persistent currents). Thus, the current
vanishes in the absence of a static magnetic flux [11,12]. The dynamics and the ac transport
of MRs subject to an external cw laser have been studied in refs. [13, 14]. In this case, the
charge polarization of an isolated MR, averaged over the period of the harmonic driving field,
vanishes due to symmetry. The present paper provides a theoretical study of the dynamics of
MRs under the action of short (on the typical electronic time scale of the ring) electromagnetic
pulses. Such an investigation is most desirable for basically two reasons. On the one hand,
as shown below, short unipolar or strongly asymmetric pulses have a qualitatively different
influence on the dynamical properties of MRs than time-symmetric driving fields. Hence,
truly new phenomena (e.g., field-free charge polarization), occur when subjecting MRs to
short, appropriately designed pulses. On the other hand, recently an enormous progress has
been made in generating and shaping laser pulses [15]. It is conceivable that the use of the
versatile possibilities of modern laser techniques to control and manipulate the dynamical
properties of MRs will unveil a wealth of new phenomena. The present work is a first step
c© EDP Sciences
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in this direction. Here we investigate the dynamics of a MR with non-interacting electrons
subjected to a linearly polarized half-cycle pulse (HCP). An HCP is a strongly asymmetric
mono-cycle pulse consisting of a very short, strong half-cycle (we refer to this part as an
HCP), followed by a second half-cycle of an opposite polarity (the tail of the HCP) that
can be substantially attenuated and stretched in time using optical gating techniques [16].
Since this tail is very weak and very long (compared to the relaxation time of MR) it hardly
influences the electron dynamics. Nowadays, picosecond and subpicosecond HCPs with a
peak field up to several hundred kV/cm [17] as well as trains of HCPs are experimentally
available [18,19].

The behavior of the electron dynamics in a MR when applying a cw laser or HCPs is
markedly different. For a monochromatic cw laser no direct transfer of momentum to the
electron takes place. In contrast, a short HCP acts on the electron as a directed impulsive
kick (momentum change) given by p = − ∫

F (t)dt, where F (t) is the time-dependent field of
the HCP [16,19,20]. Therefore, the irradiation of the electronic system with HCPs may lead
to qualitatively new phenomena. As an example, we demonstrate in the present work the
existence of a field-free polarization of a MR following the application of a short HCP. More
explicitly, an applied HCP with 1 ps duration delivers a directional momentum transfer to
the electrons which results in post-pulse time-dependent charge density oscillations that last
as long as the coherence is preserved. No current is induced in the ring because the applied
HCP does not destroy the clockwise-anticlockwise symmetry of the charge carrier momenta
in the ring. A further key difference between applying a cw laser and applying an HCP is
that in case of a cw the fundamental laser frequency is the determining factor whereas a short
HCP contains a multitude of frequencies. Hence, at first glance it may appear that an HCP
contains a wide range of frequencies and can thus drive the system far from equilibrium. We
remark however that in dependence of its initial state the system will respond only to certain
frequencies of those offered by the pulse. Besides, the amplitudes of the HCP fields of interest
here are small (less than 1 kV/cm) and the HCPs disturb the system only gently.

Theory. – We consider a two-dimensional, non-interacting MR at zero temperature ex-
posed (at t = t1 = 0) to an HCP which is linearly polarized along the x-direction. The applied
pulses have a duration τd much shorter than the ballistic time τF which is the time lag a par-
ticle at the Fermi level (EF) needs for completing one turn around the ring. This condition
τd � τF is currently feasible experimentally: for a typical ballistic ring τF is several tens of
picoseconds [6, 9] and HCPs with τd = 1 ps are readily available [17]. The condition τd � τF
is important in that the interaction of the system with the HCP is then describable within
the so-called impulsive (or sudden) approximation (IA) [19–21]. Physically, the IA means
that an electron interacting with an HCP receives at the moment of irradiation an instanta-
neous directed momentum kick of the magnitude p (i.e. the time envelope ε(t) of the pulse
is approximated by a delta-function). For the results obtained below the IA is convincingly
satisfied (τF � τd). The validity of the IA has been demonstrated numerically for a number
of situations [20,22] similar to the case considered here. Therefore, we present and analyze in
this study the analytical predictions of the IA and illustrate them with some typical numerical
examples. As mentioned above, we are concerned with clean ballistic rings. Hence the basic
quantity which governs the quantum dynamics of the complete system is the single-particle,
time-dependent wave function Ψ. The function Ψ is determined by solving for the time-
dependent Schrödinger equation in the presence of the HCP, which in polar coordinates reads

ih̄
∂Ψ
∂t

=
[
− h̄2

2m∗

(
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

1
ρ2
∂2

∂θ2

)
+ Vc(ρ) − qρε(t) cos θ

]
Ψ. (1)
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Here, the electron coordinate is specified by the radial position ρ and its angle θ measured with
respect to the polarization vector of the HCP. The confining potential Vc(ρ) vanishes inside
the ring and is infinitely large otherwise. The effective mass and the charge of the carriers are,
respectively, m∗ and q. The ring of interest for this study is such that d� ρ0 where d and ρ0
are, respectively, the ring’s width and mean radius. The condition d� ρ0 is well fulfilled for
currently realized ballistic rings, e.g., ref. [9] reported on ring fabrications with d = 160 nm and
ρ0 = 1350 nm. In these thin rings the radial motion is much faster than the angular motion
and, hence, the radial channels can be adiabatically decoupled from the angular motion. The
stationary eigenstates of the system in the absence of the external field can then be written
as Φlm(ρ, θ) ≈ Rl(ρ)Θm(θ), where the radial and angular components are given by

Rl(ρ) =
√

2
ρ0d

sin
[
lπ

d
(ρ− ρ0 + d/2)

]
, Θm(θ) =

1√
2π
eimθ. (2)

The corresponding eigenenergies read Elm = h̄2(π2l2 +m2d2〈ρ−2〉l)/(2m∗d2), where 〈ρ−2〉l =
〈Φlm(ρ, θ)|ρ−2|Φlm(ρ, θ)〉, l = 1, 2, 3, . . . , and m = 0,±1,±2, . . . . The radial solution, given
by eq. (2) is obtained upon neglecting the term ∝ (1/ρ)∂/∂ρ in the radial part of the Laplace
operator. The validity of doing this for thin rings with d� ρ0 has been discussed in ref. [23].

In what follows the wave function Ψl0 ,m0
(ρ, θ, t) stands for the solution of eq. (1) with the

initial (before applying the field) condition that the particle was residing in the electronic state
characterized by the quantum numbers l0 and m0 . For deriving Ψl0 ,m0

(ρ, θ, t) we expand it
in terms of the stationary eigenstates, i.e.

Ψ
l0 ,m0

(ρ, θ, t) =
∞∑

l=1

∞∑
m=−∞

Clm(l0 ,m0 , t)Φlm(ρ, θ)e−i
Elmt

h̄ . (3)

Inserting into eq. (1) we arrive, after some algebraic manipulation, at the following approxi-
mate expression for the expansion coefficients Clm(l0 ,m0 , t):

Clm(l0 ,m0 , t) =

{
δl,l0 δm,m0

, for t ≤ 0,

im0−mJm−m0

(
α

l0

)
δl,l0 , for t > 0,

(4)

where α
l0

= q〈ρ〉
l0
p/h̄, 〈ρ〉

l0
= 〈Φl0m(ρ, θ)|ρ|Φl0m(ρ, θ)〉, and Jl(x) are Bessel functions.

Upon applying the pulse the energy spectrum of the charge carriers is rearranged in a
time-dependent manner. An analytical inspection of the time-dependent expectation value
E

l0m0
(t) of the Hamiltonian in the presence of the external field has led us to the following

conclusion: within the IA the time-dependent energy of a particle occupying initially the
{l0 ,m0} state is given by

E
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0
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l0
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(5)

This relation evidences that an HCP shifts the unperturbed energy spectrum by an amount
that scales quadratically with the kick strength p. p is finite and depends linearly on the
HCP electric field amplitude. Hence, there is an upper bound for the energy an electron can
achieve upon applying the pulse. The ±m0 initial state degeneracy is preserved after the
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pulse is applied. Using eqs. (3)-(4) we deduce that Ψ
l0 ,m0

(ρ, θ, t) = Ψ
l0 ,−m0

(ρ,−θ, t), i.e., the
clockwise-anticlockwise symmetry is preserved when applying an HCP. Therefore, currents
carried by particles initially in the m0 states are compensated for by the currents associated
with the −m0 states. From this fact and due to the degeneracy of the states (see eq. (5)), we
conclude that no total current will circulate around the ring.

The expectation value of the induced dipole moment along the x-axis corresponding to the
state {l0 ,m0} is given by

µ
l0 ,m0

(t) = q
〈
Ψ

l0 ,m0
(ρ, θ, t)

∣∣ρ cos θ
∣∣Ψ

l0 ,m0
(ρ, θ, t)

〉
. (6)

From eqs. (3), (4), (6) an analytical expression for µ
l0 ,m0

(t) can be derived, namely

µ
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(t) = qα
l0
〈ρ〉

l0
Y (t) h

(
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4πm0t

τ
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]
, (7)

where Ω
l0

= α
l0

√
2 − 2 cos[4πt/τ

l0
], τ

l0
= 4πm∗/(h̄〈ρ−2〉

l0
), and Y (x) is the Heaviside step

function. Furthermore, we introduced h(Ω
l0

) = J0(Ω
l0

) + J2(Ω
l0

). From eq. (7) it is clear
that µ

l0 ,m0
(t) = µ

l0 ,−m0
(t). Thus, the contributions of electrons initially in the {l0 ,m0}

and {l0 ,−m0} states to the polarization interfere constructively and a non-vanishing total
polarization is generated.

The total HCP-induced dipole moment of the MR along the x-direction is then

µ(t) =
∑

l0 ,m0 ,σ

f
(
l0 ,m0 , σ,N, T, t

)
µ

l0 ,m0
(t), (8)

where σ refers to the charge carrier spin, N is the number of particles (which is assumed to be
constant), T is the temperature and µ

l0 ,m0
(t) is given by eq. (7). In eq. (8), the various µ

l0 ,m0

have to be weighted with the non-equilibrium distribution function f . Under the present
conditions f can be calculated within the relaxation time approximation [24] and eq. (8) takes
on the form

µ(t) = e−
t

τrel

∑
l0 ,m0 ,σ

nF

(
l0 ,m0 , σ,N, T, t

)
µ

l0 ,m0
(t), (9)

where τrel is the relaxation time and

nF =

[
1 + exp

[
E

l0m0
(t > 0) − η
kBT

]]−1

, (10)

with kB and T representing the Boltzmann constant and the temperature, respectively. The
value of the chemical potential η is calculated by requiring the number of particles in the ring
to be a constant (recall we are considering an isolated ring). As shown by numerous investi-
gations (e.g. [25] and references therein), the electron-electron interaction plays a minor role
in determining the equilibrium properties of quasi–one-dimensional ballistic MRs containing
a large number of carriers (as is the case in the present study). Therefore, the non-interacting
electron model appropriately describes the equilibrium properties of such systems. Upon ap-
plying an HCP, however, the system is promoted to an excited non-equilibrium state and a
polarization is induced in the ring. This polarization breaks the rotational symmetry and
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leads to a violation of the momentum conservation. The situation is in close resemblance
to what happened when the ring becomes “dirty”, in which case the presence of disorder is
responsible for breaking the rotational symmetry. Hence, the electron-electron scattering may
become important for the relaxation process (to the equilibrium) of the HCP pumped system.
Other relaxation mechanisms that can be relevant are the electron-phonon scattering, the
simultaneous scattering by impurities and phonons, etc. A detailed study of these individual
processes is interesting and probably feasible experimentally because, as will be shown below,
the build-up time of the polarization can be varied by tuning the parameters of the exciting
HCP. In the present work we focus on the presence of the polarization effect as such and
hence account for the various relaxation processes by means of a single (averaged) quantity,
namely the relaxation time τrel. It is worth remarking that as far as the ring is subject to a
weak enough external field such that the system remains close to its equilibrium state, the
non-interacting electron model is still expected to be a reasonable approximation. In this
context we note that the ring here considered is only slightly disturbed by the HCP. E.g. for
an electron with EF = 4.228 meV, eq. (5) allows a maximum electron energy of 4.378 meV
following the irradiation with the 1 ps HCP with a peak amplitude of F = 0.3 kV/cm (cf. fig. 1
and the discussion below). Hence we do not expect a complete breakdown of the independent
electron picture, valid for the initial state.

Numerical illustrations. – Explicit calculations were performed for a ballistic GaAs-
AlGaAs–based MR of the type utilized in the experiment of ref. [9]. In such experimental ring
the disorder was found to be very weak [9] and the “clean” ballistic ring model is evidently
a good approximation. The relevant characteristics of the employed ring are ρ0 = 1350 nm,
d = 160 nm, the electron effective mass is m∗ = 0.067me, and N = 1400. A typical HCP with
a sine-square shape and a time duration of 1 ps has been used. At T = 0 K, only the lowest-
lying states are occupied and the total polarization is obtained by summing the contributions
of all the radial channels. In case all the levels up to EF are fully occupied (i.e., if the number
of particles in the ring obeys the relation N = 2L+ 4

∑L
l0=1Ml0

) eq. (9) reads

µ(t) = 2e−
t

τrel

L∑
l0=1

M
l0∑

m0=−M
l0

µ
l0 ,m0

(t). (11)

The number of channels L is defined as the largest integer ≤ kFd/π (i.e., the largest channel
index inside the Fermi surface) and M

l0
is the largest integer ≤

√
(k2

F − (l2
0
π2/d2))/〈ρ−2〉

l0

(i.e., the largest occupied angular momentum in the l0-th channel). The factor 2 in (11)
accounts for the spin degeneracy. In the case of rings containing a large number of particles
relation (11) is accurate, even when the highest occupied levels are not full.

Figures 1 (a) and (b) show the time dependence of the total dipole moment µ for different
values of τrel and for varying pulse amplitudes. We notice that a field-free mesoscopic po-
larization is generated within 30 ps after the application of the pulse (µ is shown in units of
106 debyes). The maximum absolute value of the post-pulse dipole moment decreases when
shortening the relaxation time (see fig. 1 (a)). The post-pulse polarization, however, is still
appreciable within a typical range of values of τrel in ballistic semiconductor MRs as shown
in fig. 1 (a). On the other hand, the dipole moment increases with the pulse strength but
the time within which it is created decreases with stronger fields (see fig. 1 (b)). Thus, the
amount and duration of the induced dipole moment can, to a certain extent, be tuned by
applying an appropriately designed HCP. In principle, the post-pulse polarization and dipole
moment can be enhanced considerably by increasing the field amplitude beyond the values
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Fig. 1 – Time dependence of the total dipole moment µ(t) in units of 106 debyes as a function of the
pulse field amplitude F . The pulse duration is 1 ps. In (b) the relaxation time τrel is 20 ps. Inset (a)
shows µ(t) at F = 0.3 kV/cm and for different τrel. The calculations are at zero temperature.

shown in fig. 1. Stronger excitations result in shorter relaxation times and hence the post-
pulses polarization and dipole moment will decay faster. In this context we emphasize that
the charge polarization effect depicted in fig. 1 emerges after the HCP has passed by and hence
it occurs in a nearly field-free environment. This fact offers a unique opportunity for studying
relaxation processes in the absence of external perturbations and differs, qualitatively, from
the case when a stationary polarization is induced by a dc electric field. It is worth noting
that the polarization of the MR can be sustained for longer times if it is subject to a train
of HCPs. For example, by applying a periodic train of HCPs (with a period longer than the
relaxation time) the behavior of the polarization shown in fig. 1 can be periodically repeated
as many times as the number of applied pulses. Due to the periodic charge oscillations, the
driven MR (or arrays of MRs [8]) can result in a source of electromagnetic radiation whose
characteristics can be controlled (to a certain extent) by appropriately designing the sequence
of HCPs. In particular, the creation of a planar array of isolated MRs (similar arrays of con-
nected MRs have already been experimentally realized [8]) is expected to resonantly increase
the emission intensity [26].

In view of the size of the predicted effect and considering that all the parameters utilized
in our investigation are in a range experimentally feasible with nowadays technology, it is
of interest to point out ways to investigate experimentally the field-free charge polarization
in MRs: Since the optical absorption properties depend strongly on the charge polarization
state, the post-pulse charge polarization of the ring could be monitored by performing a
pump-probe experiment analogous to that reported in ref. [27]. In our case, the HCP plays
the role of the pumping beam that generates the ring charge polarization. A second delayed
probe femtosecond pulse is then applied to monitor in time the absorption properties of the
system (by varying the time delay between the pump and the probe fields). It is worth noting,
however, that in contrast to ref. [27], in our case an HCP should serve as the pumping pulse.
The predicted post-pulse charge polarization depends crucially on the amount of momentum
transferred to the system by the pumping pulse. A time-symmetric, finite femtosecond pulse,
as the one used in ref. [27], imparts no momentum change to the electrons and does not
polarize the charge of the MR in the way described above. Another possibility for detecting
the field-free polarization relies on inducing a current in the ring with a second HCP. If
after a time delay ∆t, a second HCP is applied (in a direction different from x breaking
thus the clockwise-anticlockwise symmetry), a non-vanishing charge current is expected to be
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induced in the ring. By monitoring the ∆t-dependence of the current (or the induced ring
magnetization) the dynamics of the post-pulse polarization can be revealed.

Conclusions. – In summary, we showed that the application of a linearly polarized HCP
to a ballistic mesoscopic ring induces a post-pulse (and therefore field-free) time-dependent
polarization. The time-dependent post-pulse polarization is expected to exist as long as the
coherence is preserved and to decay in a time of the order of the relaxation time. Consequently,
the field-free polarization effect could be useful for measuring relaxation times.

REFERENCES

[1] Imry Y., Introduction to Mesoscopic Physics (University Press, Oxford) 2002.
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