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We investigate theoretically the influence of the spin-orbit interaction of Rashba type on the magnetoresis-
tance of a semiconducting ferromagnetic nanostructure with a laterally constrained domain wall. The domain
wall is assumed sharpson the scale of the Fermi wavelength of the charge carriersd. It is shown that the
magnetoresistance in such a case can be considerably large, which is in qualitative agreement with recent
experimental observations. It is also shown that spin-orbit interaction may result in an increase of the magne-
toresistance. The role of localization corrections is also briefly discussed.
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I. INTRODUCTION

Rapid progress in fabrication and measurement tech-
niques of artificially sanitized ferromagnetic nanostructures
revealed a variety of new phenomena.1–4 For instance, in
contrast to the bulk case, it has been found that the magne-
toresistance associated with nanosize DWs can be very
large.5–10 A notable example are the experiments on Ni mi-
crojunctions, which show that constrained DW formed at the
contact of ferromagnetic wires results in a large electrical
resistance, leading thus to a huge negative magne-
toresistance.9 Further insight is provided by recent measure-
ments of the magnetoresistancesfound to be,2000%d in
semiconducting magnetic nanoconstrictions.10 This latter ex-
ample is particulary interesting insofar as the extent of DWs
si.e., the widthLd formed in magnetic nanoconstrictions can
be on the atomic scale11 and considerably smaller than the
Fermi wavelength of charge carriers. This situation may have
important consequence as far as the the influence of DW on
the transport properties is concerned.

On the other hand, theoretical descriptions of the transport
properties of DWs are mainly restricted to smooth DWs,
typical for bulk or thin film ferromagnetic materials.12–16Re-
sults of these studies indicate that electron scattering from
smooth DWs is rather weak, and the spin of an electron
propagating across the wall follows magnetization direction
almost adiabatically. The contribution of smooth DWs to
electrical resistance can be then calculated within the semi-
classical approximation, and has been found to be either
positive or negative—but in general it is rather small. We
recall, however, that the condition for the applicability of the
semiclassical approximation iskF↑s↓dL@1, wherekF↑ andkF↓
are the Fermi wavevectors for the majority and minority
electrons, respectively. This condition is fulfilled in bulk fer-
romagnets.

In contrast, forkF↑s↓dLø1, the semiclassical approxima-
tion is no longer valid and the scattering of electrons from
thessharpd DWs has to be considered strong. Therefore, vari-

ous attempts have been put forward to understand the influ-
ence of sharp DWs on transport properties. For instance, Ta-
girov et al.17 considered DWs in magnetic junctions as a
potential barriers independent of the electron spin orienta-
tion. They concluded that the presence of DW results in a
large magnetoresistance. Furthermore, ballistic electron
transport through DWs was investigated numerically.18–21

Recently, the ballistic motion through a nanocontact has been
studied by Zhuravlevet al.,22 who found a large magnetore-
sistance effect due to the presence of a nonmagnetic region
within the constriction considered as a one-channel wire.

The one-dimensional model of a sharp DW has been con-
sidered in Ref. 23 in the limit ofkF↑s↓dL!1. It has been
shown there that the problem can be viewed as transmission
through a spin-dependent barrier. This results in substantial
magnetoresistance that increases when the spin polarization
of electrons is enhanced. The largest magnetoresistance is
thus expected for a fully spin-polarized electron gas.24

A question which is still not yet addressed concerns the
role of spin-orbit interaction in the scattering from a sharp
DW. An analysis of this aspect is highly desirable in view of
the relevance of spin-orbit interaction in spintronic devices,
as evidenced by recent measurements.25 Generally, the spin-
orbit coupling can mix the spin channels, in addition to the
mixing caused by the spin-dependent scattering from the
DW. As demonstrated in this work, the presence of the spin-
orbit interactionsof the Rashba typed results in an increase of
the magnetoresistance due to DW. In the present work we
also address briefly the role of localization corrections.

II. MODEL AND SCATTERING STATES

We consider a ferromagnetic narrow channel with a single
magnetic DW. In the continuous model the spin density
smagnetizationd is a function of the coordinatez salong the
channeld, M szd=fM0 sinwszd ,0 ,M0 coswszdg, where wszd
varies continuously from zero top for z changing from
z=−` to z= +`. Accordingly, the magnetization is oriented

PHYSICAL REVIEW B 71, 024430s2005d

1098-0121/2005/71s2d/024430s5d/$23.00 ©2005 The American Physical Society024430-1



along the axisz for z!−L, and points in the opposite direc-
tion for z@L. In what follows we assume that the DW width
L is less than the Fermi wave lengthlF of the charge carri-
ers. This limiting case is appropriate for DWs formed at
constrained magnetic contacts, in particular for low-density
magnetic semiconductors, wherelF can be quite large. For
the description of the conduction electrons in the semicon-
ductor we assume a parabolic band model. Magnetic polar-
ization of the wire is associated with splitting of the spin-up
and spin-down electron bandsswe take the quantization axis
alongzd.

Due to the spatial variation of the magnetizationM sr d,
spin-flip scattering of electrons may occur within the domain
wall. In addition, for a sharp DW the spin-up electrons
propagating along the axisz are reflected from the effective
potential barrier atz=0. Hence, the strongest effect of DWs
on the electronic transport can be expected in the case of a
full spin polarization of the electron gas, i.e., when there are
no spin-down electrons atz,0, and no spin-up electrons at
z.0. This limit is reached whenJM0.EF, whereJ is the
exchange integral, andEF is the Fermi energy in the absence
of magnetization. We recall thatEF characterizes the total
electron density n of the semiconducting material,
n=s2mEFd3/2/3p2"3, wherem is the electron effective mass.
Hence, the conditionsJM0.EFd of full spin polarization be-
comes particularly satisfied when a depletion region near the
DW exists.

As mentioned above, the condition of sharp DW means
that the wall width is smaller than the electron Fermi wave-
length, i.e.,kFL,1, wherekF is the electron Fermi wave
vector. This condition can be easily fulfilled in semiconduc-
tors, especially in the case of low electron concentration. In
addition, when DW is laterally constrained, the number of
quantum transport channels can be reduced substantially. In
the extreme case only a single conduction channel can be
active. The corresponding condition iskFLc,1, whereLc is
the wire width. This condition can be easily obeyed in semi-
conductors with low density of carriers.

An important element of the model is the presence of
spin-orbit interaction. Under the condition of full spin polar-
ization, the spin-flip scattering provides mixing of different
spin channels, that is responsible for the transfer of electrons
through the domain wall. Thus, one can expect strong influ-
ence of spin-orbit interaction on the total resistance. In the
following we assume the spin-orbit interaction in the form of
Rashba term. Such an interaction is usually associated with
the asymmetric form of the confining potential leading to
size quantization in quantum wells and wires. The model
Hamiltonian we analyze in this work has the form

H = −
"2

2m

d2

dz2 − JMzszdsz − JMxszdsx + iasx
d

dz
, s1d

wherea is the parameter of spin-orbit interaction, whereas
sx andsz are the Pauli matrices. We choose the axisx to be
normal to the wire and assume that the magnetization in the
wall rotates in thex-z plane. The Rashba spin-orbit interac-
tion in Eq. s1d corresponds to the axisy perpendicular to the
substrate plane. The magnetization vector rotates then in the

substrate plane. Although the one-dimensional model de-
scribes only a single-channel quantum wire, it is sufficient to
account qualitatively for some of the recent observations. In
addition, the present model can be generalized straightfor-
wardly to the case of a wire with more conduction channels
slarge width and/or higher carrier concentrationd.

Our treatment is based on the scattering states. For elec-
trons incident from left to right, the asymptotic form of such
statesstaken sufficiently far from DW,uzu@Ld is

ckRszd =
eikz

Dk
SMk

ak
D +

re−ikz

Dk
S Mk

− ak
D +

r fe
kz

Dk
Siak

Mk
D, z! − L,

s2d

ckRszd =
tfe

ikz

Dk
Sak

Mk
D +

te−kz

Dk
S Mk

− iak
D, z@ L. s3d

In Eqs. s2d and s3d k and k are defined ask=f2msE
+Mdg1/2/" and k=f2msM −Edg1/2/", respectively, whereas
the other parameters areMk=M +sM2+a2k2d1/2, Mk=M
+sM2−a2k2d1/2, Dk=sMk

2+a2k2d1/2, and Dk=sMk
2+a2k2d1/2.

Here, M is defined asM =JM0 and E denotes the electron
energy.

Due to spin-orbit interaction, electron states are superpo-
sitions of spin-up and spin-down components. For simplicity,
we call them in the following either spin-up or spin-down
waves, because they reduce to such waves in the limit of
vanishing spin orbit interaction. Thus, the scattering states2d
and s3d describes the spin-up wave incident fromz=−` to
the right, which is partially reflected and partially transmitted
into the spin-up and spin-down channels. The coefficientst
andtf are the transmission amplitudes without and with spin
reversal, respectively, whereasr andr f are the corresponding
reflection amplitudes. Even though there are no minority car-
riers far from the domain wall, the corresponding wavefunc-
tion components exist in the vicinity of the domain wall and
decay exponentially in the bulk. Similar form applies to the
scattering statesckL describing electrons incident from the
right to the left.

WhenkL!1, the reflection and transmission coefficients
can be calculated analytically. Upon integrating the
Schrödinger equationHc=Ec fwith the Hamiltonian given
by Eq. s1dg from z=−d to z= +d, and assumingL!d!k−1,
one obtains

Udckj

dz
U

z=+d

− Udckj

dz
U

z=−d

+
2ml

"
sxckjsz= 0d = 0 s4d

for each scattering states j =R,Ld, where

l .
J

"
E

−`

`

dzMxszd. s5d

Equations4d has the form of a spin-dependent condition for
electron transmission through ad-like potential barrier lo-
cated atz=0 and was obtained assumingkL!1. The magni-
tude of the parameterl defined in Eq.s5d can be estimated as
l.JM0L /"=ML /".

Using the full set of scattering states, together with the
wave function continuity condition, one can find a set of
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equations for the transmission amplitudest and tf. Since the
wavefunction component corresponding to conserved elec-
tron spin decays exponentially away from the wall, only the
spin-flip amplitudetf determines the electric current in the
wire. Let us denote the velocity of the incident electrons by
v, v=k/m, and byn the corresponding quantity for the ex-
ponentially decaying wave component,n=k /m. From the
Schrödinger equation two equations are deduced for the
transmission amplitudest and tf, namely

FivMk − nMk − 2ilak −
a2ksv + indsMkk − iMkkd

ia2kk + MkMk
G 3

t

Dk

+ F2iavk + 2lMk +
aksv − indsa2k2 + Mk

2d
ia2kk + MkMk

G tf

Dk

=
2ivMk

Dk
−

2ia2kksDk + Mkd
Dksia2kk + MkMkd

, s6d

F iavkMk

Mk
+

ansa2k2 + MkMkdsMkk − iMkkd
Mksia2kk + MkMkd

− iank

− 2lMkG t

Dk

+ F iva2k2

Mk
− ivMk − 2alk

+
nsa2k2 + Mk

2d2

Mksia2kk + MkMkdG tf

Dk
=

2aknsa2k2 + MkMkd
Dksia2kk + MkMkd

.

s7d

In the absence of spin-orbit interaction,a=0, one finds

t =
2vsv + ind

sv + ind2 + 4l2, tf =
4ilv

sv + ind2 + 4l2 . s8d

In the limit of n@v and l!n slow density of carriers and
small spin-orbit interactiond another limiting formula is de-
rived

tf = −
4ivl2

n2sl − iank/Md
. s9d

In general, the coefficienttf can be found analytically but the
corresponding formula is rather cumbersome.

In the limit of l→0 svery thin DWd, the transmission
through the wall vanishes, which corresponds to the com-
plete reflection of electrons from the wall. Thus, at first
glance one might expect that a nonzero spin-orbit interaction
mixes the spin channels and leads to nonvanishing transmis-
sion through the wall, even in the limit of very thin domain
wall. This is however not the case since the matching condi-
tion for the wave functions atz,L and z.L requires that
both incident and transmitted waves are certain superposi-
tions of spin-up and spin-down components. On the other
hand, Eq.s9d indicates that transmission through the wall
decreases with increasing strength of the spin-orbit interac-
tion.

III. RESISTANCE OF THE DOMAIN WALL

To calculate the conductance of the system, we use the
Büttiker-Landauer formula, which can be simplified substan-

tially due to the suppression of all channels, but spin-flip
through the wall.sThe derivation of such a formula for trans-
mission through the wall in the case of all nonvanishing
channels has been done in Ref. 23.d Thus one obtains

G =
e2

2p"
utfu2. s10d

Due to the asymptotic current conservation, the conductivity
is determined by the propagatingsnondecayingd component
of the transmitted wave. Using Eq.s8d one finds for vanish-
ing spin-orbit interaction

G =
8e2

p"

l2v2

sv2 − n2 + 4l2d2 + 4v2n2 . s11d

Here, all the velocities are taken at the Fermi level.
Figure 1 shows the calculated dependence of the electrical

conductance on the Fermi-energyEF in the general case. The
calculations were performed assuming the following values
of the relevant parameters:m=0.6m0 swherem0 is the free
electron massd, JM0=0.2 eV, andL=10−8 cm. These param-
eters correspond to GaMnAs semiconductor, and satisfy the
conditionJM0.EF for EF,0.2 eV.

We can estimate the magnitude of parametera by taking
the value of the spin-orbitsSOd splitting DESO.ak, where
the momentumk is related to the density of carriersNs as
k=s2pNsd1/2. AssumingDESO=0.5 meV for Ns=1011 cm−2

as a characteristic value for GaAs-GaAlAs hetero-
structures,26 one obtainsa.6.3310−10 eV cm.

From Fig. 1 it is clear that the conductance increases
monotonically with increasingEF because the barrier is felt
smaller by electrons having higher energy. Furthermore, the
conductance of a magnetic wire with DW diminishes with
increasing strength of the spin-orbit interaction.

FIG. 1. Conductance of a magnetic wire with a single domain
wall vs Fermi energy of electrons. Different curves correspond to
different values of the spin-orbit coupling parametera.
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The dependence of the magnetoresistance on the Fermi
energyEF is presented in Fig. 2 for different values of the
parametera. The magnetoresistance is calculated with re-
spect to the state without DW,MR=RDW/R0−1, whereRDW
is the resistance of the wire with DW andR0=2p" /e2 is its
resistance in the absence of the wallsonly spin-up channel is
actived. For our choice of parameters, the magnetoresistance
is rather high and increases substantially with spin-orbit in-
teraction.

The magnetoresistance measurements on magnetic semi-
conductors are usually performed at low temperatures be-
cause the corresponding Curie temperature is rather low. At
such conditions, one can expect a significant contribution of
the localization corrections to the conductivity. The role of
the localization in the case of smooth DWssfor kL@1d has
been studied before,27,28 and it was shown that the localiza-
tion corrections are suppressed by an effective gauge field of
the wall. This means that the contribution of the wall to
resistance is negative, and the corresponding magnetoresis-
tance is positive.

We have analyzed the role of localization corrections in
the case of sharp DW. Qualitively, it can be described as the
DW induced suppression of the quantum interference in trip-
let Cooperon channel.29 The singlet channel in ferromagnets
is strongly suppressed by the internal magnetization.30 The
suppression of the interference by DWs is related to dephas-
ing of the wave function of electron transmitted through the
barrier.31,32 If the transmission through the wall is small, the
corresponding dephasing length roughly equals to the dis-
tance of electron moving from a pointz swithin the constric-
tiond to the domain wall positionsz=0d, and the dephasing
time is tdwszd,z2/D, whereD is the diffusion coefficient.
After averaging overz of the localization correctiondGszd,

we find that the characteristic dephasing lengthL0 is the
constriction length itself,dGdw.−e2L0/p". In the case of
sharp DWs, the localization correction diminishes the mag-
netoresistance due to the reflection from the wall, since it has
a different sign.

IV. CONCLUSIONS

We have presented a theoretical description of the resis-
tance of a semiconducting magnetic nanojunction with a
constrained DW in the case of a full spin polarization of
electron gas. In the limit ofkL!1, the electron transport
across the wall was treated effectively as electron tunneling
through a spin-dependent potential barrier. For such a narrow
and constrained DW, the electron spin does not follow adia-
batically the magnetization direction, but its orientation is
rather fixed. However, DW produces some mixing of the
spin channels. The spin-orbit interaction essentially enhances
the magnetoresistance, whereas the localization corrections
play the opposite role. However, the localization corrections
can be totally suppressed by the spin-orbit interaction.30 This
indicates that the spin-orbit interaction can play an important
role and can lead to large enhancement of the magnetoresis-
tance effect.

In our calculations we assumed the one-band model with
parabolic energy spectrum and with the spin-orbit interaction
in the form of Rashba Hamiltonian. Such a model can de-
scribe n-type semiconductor films on a substrate or asym-
metric semiconducting quantum wells. Some real III-V mag-
netic semiconductors like GaMnAs are known to be of
p-type and to have rather complex band structure consisting
of several hole subbands with the spin-orbit interaction in-
cluded in the hole Hamiltonian. The parabolic approximation
is still valid for the hole energyE!DSO, whereDSO is the
energy of SO splitting. However, in a general case, the
theory of hole tunneling through a domain wall in
p-GaMnAs needs special consideration.

In the qualitative discussion of the localization effects, we
assumed that DWs suppress the localization corrections via
the gauge field acting on electrons within DWs. This as-
sumption corresponds to 3D or effectively 2D and 1D cases
sthe decoherence length is smaller than the width of the
wired. We can expect a significantly reduced effect of DWs
on the localization corrections in a one-channel ballistic
wire. However, any deviation from one-dimensionality com-
bined with nonideality of the magnetic profile in DWs leads
to an increased effect of DWs on the localization corrections,
whereas the SO interaction suppresses the triplet Couperon
correction as discussed in Sec. III.
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FIG. 2. Magnetoresistance of the wire with a domain wall vs
Fermi energy for different values ofa.
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