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A method is developed that treats on equal footing bound states, resonance formation, and scattering prob-
lems in one-dimensional systems. The approach allows one to deal with nonlocal, energy-dependent potentials
and is conceptually analogous to the variable phase method where the role of the scattering phase and the
amplitude functions is played by nonlocal reflection and transmission functions. The formal results are illus-
trated and analyzed by simple examples and the physical significance of these examples is pointed out.
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I. INTRODUCTION

The question of how a quantum particle penetrates, being
trapped or ejected from a potential barrier, has been the sub-
ject of intensive research since the early days of quantum
physics. The interest in this problem is rooted in its ubiqui-
tous occurrence in various physical, chemical, and biological
processesf1–4g. To name just but few examples, the key
ingredient of scanning tunneling spectroscopy of surface-
deposited molecules is the tunneling of the tip electrons to
the conduction band of the surface through the molecular
stunnelingd region where the electrons can be back reflected,
resonantly transmitted or capturedf5g. Furthermore, con-
strictions in a quasi-one-dimensional quantum wire, that act
as tunneling barriers, can nowadays be engineered with an
impressive accuracyf9g. The transmittance through the con-
strictions governs the transport properties of the wire; hence
the central question to be addressed by theory is how the
barrier characteristics affect the transmission and reflection
coefficients. Having this kind of problems in mind we set out
to reconsider the quantum tunneling from nonlocal energy-
dependent potentials. The nonlocality can be brought about
by various factors; perhaps the most widely known case oc-
curs when an electronic system is described within a mean-
field approach such as the Hartree-Fock theory. Due to the
exchangesFockd term the single particle potentials are inher-
ently nonlocal. The aim of the present work is to treat on the
same footing bound, scattering, and resonant states in one-
dimensional systems in the presence of a nonlocal energy-
dependent potential,V. The method is the one-dimensional
s1Dd analogue to the variable phase methodsVPAd f6,7g,
which is well-known in the three-dimensional case. Recently
we have generalized the VPA as to include nonlocal interac-
tions f8g. The method relies on introducing, instead of the
wave function, the so-called transmissionTsxd and reflection
functionsRsxd that depend on the distancex. The asymptotic
sx→`d values of these functions tend to the physical trans-
mission and reflection coefficients for the potentialV. At the
finite distancex the transmission and the reflection functions
can also be interpreted as the transmission and the reflection
coefficientsfor the potentialVxcut

sxd obtained by appropri-
ately cutting-offVsxd at xcut. As demonstrated below, the re-
flection functionRsxd thus contains the essential information
pertinent to bound, scattering, and resonant states for a whole
class of potentialsVxcut

, ∀xcut[ s−` , +`d.

II. GENERAL DEFINITIONS AND OUTLINE

We consider the time-independent, nonrelativistic scatter-
ing of a particle with the energyk2 impinging on a 1D non-
local potential from the left to the right. We use units in
which 2m=1=", Z=1, wherem andZ are the mass and the
charge of the particle. The nonlocal potential is introduced as

an integral operatorV̂ acting along the entirex axis sV̂ may
well have a local componentd, i.e., the particle wave function
c satisfies

F d2

dx2 + k2Gcsxd = V̂c =E
−`

+`

Vsx,x8dcsx8ddx8. s1d

The derivation given below is valid as it stands in case the
potentialVsx,x8d is energy-dependent. To simplify notation
we will suppress however this energy dependence in the
equations. The key idea of the present work, pointed out by
Calogero and Babikovf6,7g for the general case, is to re-
express the wave functionc in terms of observable quanti-
ties. To do that one converts the second-order differential
Schrödinger equation into twoscoupledd first-order differen-
tial equations. This is achieved by castingc as a superposi-
tion of transmitted and reflected plane waves weighted with
the position dependent amplitudesTsxd andRsxd,

csxd = Tsxdfeikx + Rsxde−ikxg . s2d

In addition, for a unique representation we make furthermore
the ansatz

d

dx
csxd = TsxdF d

dx
eikx + Rsxd

d

dx
e−ikxG

= ikTsxdfeikx − Rsxde−ikxg . s3d

Instead of solving forcsxd one determines the amplitudes
Tsxd andRsxd. The advantage of doing this becomes obvious
by inspecting the properties of these functions, in particular
those of the functionR. To this end we derive at first the
differential equations governingTsxd and Rsxd and inspect
the mathematical structure and the symmetry properties of
these equations. We then illustrate the various features of the
reflection and transmission amplitudes,R and T, by some
numerical examples. We start our analysis by an interpreta-
tion of the physical sense ofRsxd and Tsxd and show how
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these functions are connected to the reflection and transmis-
sion coefficients. As shown below, the knowledge of the spa-
tial behavior ofRsxd and Tsxd may be exploited as a guide
for the construction of one-dimensional structures with de-
sired reflection properties. We will also explore the para-
metrical dependence ofRsx;kd on the complex wave vector
k with the following results: the dependence on areal posi-
tive wave vector Reskd=k.0 allows one to address ques-
tions arising in scattering problems such as the energetic
conditions for the resonant penetration of a particle through a
potential barrier. These conditions are extracted from the ze-
ros of Rskd. The eigenvalue problem is formulated and re-
solved by considering the reflection functionRsx;kd that de-
pends on apure imaginary wave vector k = ik. Finally,
operating in the whole complexk plane we utilize the reflec-
tion amplitude for the description of quantum decay or fu-
sion of compound systems via quasibound states with a finite
lifetime.

III. DETERMINING EQUATIONS FOR THE REFLECTION
TRANSMISSION FUNCTIONS

To illustrate the physical properties of the complex func-
tionsTsxd andRsxd we consider a particle that impinges from
x→−` to x→ +` onto a localized potential. Atx→−` the
function Tsxd is determined by the normalization of the flux
of the incident particles and can thus be normalized to unity
Tsx→−`d=1 f16g. The absence of the reflection behind the
potential atx→ +` is signaled by the conditionRsx→ +`d
=0.

To obtain the determining equations forTsxd andRsxd we
transform by means of Eqs.s2d and s3d the second-order
Schrödinger equations1d for the wave function to an equiva-
lent set of two coupled first-order differential equations for
the functionsTsxd and Rsxd sdetails of the derivation are
given in the Appendixd. The results are

d

dx
Rsxd = −

1

ik
F2sxdVsxd, s4d

1

Tsxd
dT

dx
= +

1

ik
Fsxde−ikxVsxd. s5d

The functionVsxd is given by

Vsxd =E
x

+`

Vsx,x8dcoshHikE
x

x8 Gsx9d
Fsx9d

dx9Jdx8. s6d

As stated above the initial integration conditions areRsx→
+`d=0, Tsx→−`d=1. Here we introduced the auxiliary
functions

Fsxd = eikx + Rsxde−ikx, Gsxd = eikx − Rsxde−ikx.

A key element of the above relations is the independence
of the determining equation forRsxd on the transmission
functionT. This property is important insofar as a number of
physical quantities follow solely fromR sfor example,
eigenenergiesd, without the need to calculateT. This reduces
substantially the computational efforts.

In caseTsxd sor the wave functioncd is required, one
evaluates at first the functionRsxd, inserts it into Eq.s5d and
then performs the integration

Tsxd = expS 1

ik
E

−`

x

dx8f1 + Rsx8de−2ikx8gVsx8dD . s7d

The case of a local potential can be retrieved from the
above equations upon the assumptionVsx,x8d=Vsx8ddsx
−x8d which leads to the following relations:

d

dx
Rsxd = −

Vsxd
2ik

feikx + Rsxde−ikxg2, s8d

1

Tsxd
dT

dx
= +

Vsxd
2ik

f1 + Rsxde−2ikxg . s9d

We note that fornonlocal potentials the equations forR
andT fulfill the particle conservation law at the asymptotical
spatial pointsx→ ±` only. In contrast, for local potentials
the probability flux density

jsxd = 2kuTsxdu2f1 − uRsxdu2g s10d

is conserved at each pointx becausesd/dxd jsxd=0 provided
the potential is real. In the case of a complex potential
Usxd=Vsxd+ iWsxd the change of the flux is determined by
the imaginary partWsxd only. A positive snegatived sign of
this part describes the gainslossd of particles when scattering
off the potential. This is evident by casting the gradient of
the flux density in the form

d

dx
jsxd =

Wsxd
k

h1 + uRsxdu2 + 2RefRsxde−2ikxgj s11d

and noting that the expression in the curly braces is non-
negativef17g.

In the derivation of the reflection-transmission equations
we introduced the wave vectork as an arbitrary free param-
eter. For dealing with continuum state problems the wave
vector is real. For the description of bound systems such as
the solution of eigenvalue problems and the treatment of the
decay or fusion of composite systems, we analytically con-
tinue the reflection amplitude to the complex plane of the
wave vectork =k+ ik; k,k[R. To do that we consider at
first the symmetry properties of the functionR, as dictated by
Eq. s4d for complex wave vectors. The general solution of
this equation possesses two symmetry properties: First, the
replacement of the parameterk by −k leads to the following
relation for the inverse reflection function 1/Rsxd, i.e.,

d

dx
Rsx,− kd = −

1

− ik
fe−ikx + Rsxdeikxg2Vsxd =

d

dx
S 1

Rsx,kdD .

s12d

Therefore, we conclude that

Rsx,− kd = R−1sx,kd. s13d

The origin of this property is the quadratic dependence of the
Schrödinger equation on the wave vector. The second prop-
erty of the general solution is
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R*sx,k*d = R−1sx,kd s14d

and it follows from the Hermiticity of the potentialV+=V
which dictates that

d

dx
R*sx,k*d = S d

dx
Rsx,k*dD*

= −
1

− isk*d* fe−isk* d*x + Rsxdeisk* d*xg2
V̂sxd

=
d

dx
S 1

Rsx,kdD .

The initial conditionRs+` ,kd=0 for the integration and
the two properties stated by Eqs.s13d and s14d require a
mirror symmetry of the amplitudeRsx,kd with respect to the
imaginary axis in the complex wave vector plane, i.e.,

Rsx,k + ikd = Rsx,− k + ikd. s15d

It is important to note that these arguments are valid for any
value of the spacial variablex. Furthermore, the mirror sym-
metry restricts the calculations to only one half of thek
plane.

IV. PHYSICAL SIGNIFICANCE OF THE REFLECTION
AMPLITUDE AND SPATIALLY MANIPULATED

RESONANT TUNNELING

To elucidate the physical meaning of the amplitudesR
and T we discuss numerical results for some simple ex-
amples; we note however that the interpretation given below
does not depend on the shape of the barrier or whether the
potential is local or not. The results depicted in Fig. 1 are for
a particle with apositive realwave vector which impinges

from the left onto a Gaussian potential barrierVsxd=e−x2

localized atx=0. We assume that at some pointsa andb the
potential becomes negligible and its tails play no role. The
complex functionRsxd is to be calculated opposite to the
direction of incidence, i.e., from the right side of thex axis to
the left side. In the spatial regions where the potential van-
ishes the particle is not reflected and henceRsxd is zero or
constant, i.e., Rsxd=0, x[ fb, +`d and Rsxd=const, x
[ s−` ,ag. In the region where the potential is localized the
influence on the impinging particle can be viewed as the
cumulative action of a set of infinitely thin slices of the po-
tential. Each slicesthe black area on Fig. 1d is defined by the
domainsfxi ,xi +dxg. The potential partVsxid contributes to
the reflection by the amountdR,Vsxddx fcf. Eqs. s4d and
s9dg. Thus, the reflection amplitude at a given pointx0 is an
integral sum over these slices lying to the right side fromx0
sshaded aread. At the very left pointa, when the potential
becomes negligible, or where its influence is marginal, the
reflection functionRsad and the amplitude of the outgoing
wave coincide, i.e.,ucsadu2= uRsadu2 sand from Eq.s2d fol-
lows Tsad=1d. Thus,uRsadu2 is the physically observable re-
flection coefficient Rc. For a potential with infinitely ex-
tended tails the pointsa andb tend to −̀ and +̀ . We find
then that

uRs− `du2 = Rc; Rs+ `d = 0.

The transmission coefficientTc can be found from the con-
servation condition:Tc=1−Rc.

Figure 1 represents the spatial behavior of the function
uRsxdu, which characterizes the reflection of a particle inci-
dent with a wave vectork=0.3 a.u.. For real wave vector
values k[R the modulus of the reflection amplitude is
bound to the intervaluRu[ f0,1g and is a measure for the
potential reflectivitysor opacityd. When it is about unity the
potential reflects the incident particle almost completely. If
uRu,0, the wave is fully transmitted through the barrier. We
remark that in Fig. 1 the potential is symmetrically located at
x=0. Due to the specific initial conditions, this symmetry is
however not reflected in the potential influence on the func-
tion Rsxd: half of the reflection function magnitude is deter-
mined by the small right-side part of the potential, whereas
the second half is due to the large left-side.

The above analysis makes clear that the present method
for dealing with tunneling problems allows an insight into
the influence of various parts of the potential on the reflec-
tion coefficients. Such a knowledge is valuable when dealing
with more complex potentials in which caseRsxd is not a
uniform function ofx. An example is shown in Fig. 2 where
the function uRsxdu sdashed curvesd has been calculated for
four different potentials, as shown in the figures. From the
right to the left we add successivelyn=1,2,3,4Gaussian
barriersssolid curvesd located at the positions inferred from
the figures. The physical situation we have in mind is the
following. The situation depicted in Fig. 2sad corresponds to
a system of independent electrons a 1D wire with one con-
striction scf. Ref. f9g for an experimental realizationd,
whereas insbd, scd, and sdd the wire contains, respectively,
two, three, or four constrictions. These act as tunneling bar-

FIG. 1. The spatial variation of the modulus of the reflection
function Rsxd sdashed curved describing the scattering of a particle
impinging on the Gaussian barrierVsxd=e−x2

sblack curved. The
particle has the positive real wave vectork=0.3 a.u. The zeros
value uRsbdu=0 indicates the absence of reflection of the incident
wave “behind” the barrier. The squared value ofRsxd at the pointa
“before” potential hill coincides with the reflection coefficient
uRsadu2=Rc for the whole barrier. The valueuRsx0du2 yields the co-
efficient of the reflection from the cut-off potential partsdashed
area, see the text for detailsd. Note thatRsxd is a dimensionless
quantity, whereas the potential is plotted in atomic hartree units.
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riers and are located at the positions of the peak value of the
potentials. Furthermore, we assume that a small voltage bias
is applied to the wiressmall with respect to the Fermi en-
ergyd which drives the electrons from the left to the right. In
the regime of a linear responseslinear with respect to the
applied biasd the conductance of the wire is governed by the
transmission functionswhich can be retrieved from the re-
flection functiond ssee, e.g., Refs.f10,11g, and references
thereind. The black dots on the vertical axis of each of the
plots in Fig. 2 mark the asymptotic values ofuRsx→−`du. It
is interesting to note that, in fact, the reflection coefficient
Rc= uRsx→−`du2 oscillates with the number of constrictions
in the system. In particular, the reflection from the fourfold
barrier potential is several times smaller than the reflection
even from the single Gaussian. Furthermore, the physical
interpretation ofRsxd is readily observed when comparing
Figs. 2sad–2sdd. The reflection coefficient insad is 0.8. There-
fore, in sbd the reflection function rise to the value 0.8 atx
<5 a.u., i.e., after passing the first Gaussian; meaning that
Rsx=0.5 a.u.d in sbd is equal toRsx=−` a.u.d in sad. The
same observation is also made by considering analogously
scd andsdd. From Fig. 2 it is also clear that any value of the
reflection coefficients which is between approximately 0.8
and 0.1 can be realized by designing one of the cut potentials
Vxcut

.
A further interesting issue concerns the question of how

the conductance of the wire is modified when the distance
between the constrictions is varied. This situation is shown in
Fig. 3. At a certain separationsfor a fixed particle energyd the
reflection drops to zero and the constrictions become trans-
parent to the traversing particle. The oscillations occurring in
the reflection coefficients in Figs. 2 and 3 are of a ubiquitous
nature and appear due to the formation of resonant states in
the tunneling structure, a fact which is well documented in
the literature f12g. The useful aspect about the present
method is that it provides direct information on which part of
the potential yields a desired reflectionsor transmissiond co-
efficients. Such information is highly useful for controlling
the conductance of the quantum wire. We note in this context
that tunneling barrier can nowadays be engineered accurately
f9,13g.

V. BOUND STATES

The dependence on thereal positivewave vectork allows
one to address questions arising in scattering problemsf14g,

such as the energetic conditions for the resonant penetration
of the particles through the potential barriers. These condi-
tions are set by the zeros ofR. Now we turn to the analytical
continuation ofR to the complex plane of wave vectork. In
the three-dimensionals3Dd case the scattering amplitude as a
function of the complex wave vector gives not only the mag-
nitude of the cross section but also describes the stationary or
quasistationarysquasiboundd states. In particular, the posi-
tions of the poles of the scattering amplitude on the imagi-
nary wave vector axis mark the values of the eigenenergies
of the Hamiltonianf1g.

In the 1D case the asymptotic value of the reflection func-
tion Rsx→−` ,kd is the analogue of the 3D-scattering ampli-
tudef6g. Therefore, the transmission-reflection equations can
also be utilized for solving the eigenvalue problem, when the
particle energy is negative and the wave vector is pure imagi-
naryk = ik, k[R+. While for real wave vectors the modulus
of the reflection functionuRskdu never exceeds unity, for cer-
tain complex wave vector values it can be arbitrary large. In
fact, at eachscomplexd wave vector that corresponds to a
bound state of the systemRsx→−` ,kd has a simple pole,
i.e., the modulus ofR tends to infinity. From these imaginary
wave vectorsk = ik we infer the energies of the bound states.
For complexk the determining equation forRsx,k→ ikd has
the form

FIG. 2. The behavior of the reflection functionsdashed curvesd plotted for a series ofn spatially separated Gaussian potential barriers.
The solid curve on each plot shows the potentials. The dashed curve stands for the modulus of the reflection functionuRsxdu for the respective
potential. The full dots at the left side of each graph indicate the asymptotic values ofuRs−`du which also dictate the reflection coefficients
valuesRc= uRs−`du2. The particle energy ofE=0.34 a.u.shartreed is chosen to be below the top of the GaussianssVmax=1 a.u.d.

FIG. 3. The dependence of the reflection coefficientRc on the
separation distancexs between two Gaussian barriers. The solid
curve shows the fixed potential part whereas the dashed curve
stands for the “variable” part of the potential. The coordinatexs

refers to the relative distance between the positions of the peak
values of the Gaussian potentials. The dotted curve shows to reflec-
tion coefficientuRcu calculated as a function of the separation dis-
tancexs. The particle energy is smallsE=0.17 a.u.!Vmax=1 a.u.d.
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d

dx
Rsx,kd =

1

2k
fe−kx + Rsx,kdekxg2Vsxd. s16d

The potential functionVsxd possesses the structure

Vsxd =E
x

+`

Vsx,x8dcoshH− kE
x

x8 e−kx9 − Rsx9de+kx9

e−kx9 + Rsx9de+kx9
dx9Jdx8.

The initial condition for the integration areRs` ,kd=0,
whereas the condition for the occurrence of the eigenvalues
En is for En=siknd2,0 the relation uRsx→−` ,kndu→`
holds. Each pole ofRsx→−`d on the positive semiaxis ofk
marks the existence of bound states. It is interesting to note
that, althoughR is generally a complex function, the real
right-hand side of Eq.s16d together with the initial integra-
tion condition require that the solution is real for any nega-
tive energy of the particle. Moreover, for a strictly attractive
srepulsived potential the solution is monotonously decreasing
sincreasingd with x.

In case the eigenfunctions need to be determined, in ad-
dition to the eigenenergies one has to solve forTsxd by car-
rying out the integral

Tsx,knd = expH−E
−`

x

dx8
1

2kn
f1 + Rsx8,knde−2knx8gV̂sx8dJ .

s17d

Having calculated both amplitudesRsx,knd andTsx,knd one
substitutes in Eq.s2d and obtains the wave function.

For a numerical realization, the equation forRsxd has to
be regularized. This can be done, for example, by introduc-
ing the tangent of the reflection function, i.e.,

Rsx,kd = tanrsx,kd,

d

dx
rsx,kd =

1

2k
fe−kx cosrsx,kd + ekx sinrsx,kdg2Vsxd,

rs+ `,kd = 0. s18d

The eigenvalue conditions and the potential functionVsxd
attain then the form

rs− `,knd = sn + 1
2dp, n = 0,1,…,

Vsxd =E
x

+`

Vsx,x8d

3coshH− kE
x

x8 e−kx cosrsx,kd − ekx sinrsx,kd
e−kx cosrsx,kd + ekx sinrsx,kd

dx9J
3dx8. s19d

Note that according to the Levinson theorem the differ-
ence between the tangent values calculated fork=0 andk
→` can be used to evaluate the total numberN of bound
states in the system, i.e.,

tanrsk → `d − tanrsk = 0d = psN − 1/2d.

An example of the behavior of the amplitude of the reflection
functionRs−` ,kd in the complexk-plane is shown in Fig. 4.
The function is evaluated numerically for the symmetric
Morse potentialVsxd=−V0/cosh2saxd. The logarithm of the
modulus ofRs−` ,kd is depicted in Fig. 4. The finite ex-
tremal values ofuRu at the eigenenergies are due to the finite
difference smoothing. We recall that the energiesEn of the
states associated with the Morse potential are known in
closed analytical form, namely

En = −
a2

4
FÎ1 +

4V0

a2 − s1 + 2ndG2

f15g. For the parameter valuesV0=3 a.u. anda=2 a.u. there
is a single eigenenergyE0=−1 a.u. The wave vector is then
imaginary positive and has the valuek0=1 a.u.d The pole on
the negative imaginary axis appears due to the so-called an-
tibound state; it is not permitted physically but it may change
the observable spectraf1g.

VI. QUASIBOUND STATES

As previously mentioned, the poles of the amplitudeRsx
→−` ,k =k+ ikd; k,k[R for wave vectorssor energiesd cor-
respond to the stationary or quasistationary states of the sys-
tem. The conventional understanding of such a stateck is
that the real part of the energyEk =«k + iGk /2=k2−k2+2ikk
describes the position of the resonance in the spectrasthe
observable energy of the stated whereas the imaginary part is
related to the resonance half-widthGk /2 or to the lifetime

FIG. 4. The logarithm of the modulus of the reflection function
loguRsk+ ikdu as a function of the real and the imaginary part of the
wave vector. The calculations are done for a Morse potential. The
maxima on the imaginary wave vector axis indicate the positions of
the boundson the positive imaginary semiaxisk.0d and antibound
statesson the negative imaginary semiaxisd. Other peaksspolesd
mark the positions of the quasibound states that have a finite life-
time. The zerossminimad located symmetrically with respect to real
k axisd are the signature of resonant transmission through the
potential.
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tk =2/Gk of the state. A vanishing value of the imaginary
energyGk =0 occurs for bound states and corresponds to an
infinite lifetime of the states. We note that in the literature the
term “quasibound” is used to refer only to those states which
satisfy the conditionGk /2!«k, i.e., for states with a lifetime
large enough for a unique experimental identification of the
resonance. The example shown in Fig. 4 illustrates how qua-
sibound states appear as peaks located in the complexk
plane. There are no poles on the real axis which indicates the
absence of bound, square integrable states embedded in the
continuum. There are poles on the lower half ofk plane. The
positions of these poles mark the resonance energies«q with
«q=kq

2−kq
2. The inverse lifetimes of the states areGq/2

=kqkq. The zeros of the reflection functionRskd are posi-
tioned symmetrically with respect to the real wave-vector
axis, which is consistent with the spatial symmetry of the
Morse potential. With increasing values of the real part of the
wave vector the positions of the zeros approach the realk
axis. Note that both the poles and the zeros have to be lo-
cated symmetrically with respect to imaginary axisk.

VII. CONCLUSIONS

In this work we presented a method capable of dealing
with scattering, bound and resonant problems in one-
dimensional systems involving energy-dependent, nonlocal
potentials. We illustrated how the contributions to reflection
coefficient of various parts of the potentials can be visualized
and how bound and quasibound states are manifested in the
present approach.

APPENDIX

This appendix provides a detailed account on the deriva-
tion of the determining equations forRsxd and Tsxd. The
method relies on converting the second-order differential
Schrödinger equation

F d2

dx2 + k2Gcsxd =E
−`

+`

Vsx,x8dcsx8ddx8 sA1d

into two scoupledd first-order differential equations. This is
achieved by making the ansatz

c = Tsxdfe+ikx + Rsxde−ikxg , sA2d

dc

dxF
= ikTsxdfe+ikx − Rsxde−ikxg . sA3d

The aim is then to determine the functionsTsxd and Rsxd
chosen appropriate for the problems under study. From the
condition sA3d it follows that

d2c

dx2 = ik
dT

dx
fe+ikx − Re−ikxg + sikd2Tfe+ikx + Re−ikxg

− ikT
dR

dx
e−ikx. sA4d

Noting thatk2c=k2Tfe+ikx+Re−ikxg we can recast the kinetic

part of the Schrödinger equation into the form

d2c

dx2 + k2c = ik
dT

dx
fe+ikx − Re−ikxg − ikT

dR

dx
e−ikx. sA5d

Now we evaluate the derivative of the wave functionfEq.
sA2dg and compare with Eq.sA3d. By doing so we conclude
that the quantitydT/dx is expressible as

dT

dx
= − T

dR

dx

e−ikx

e+ikx + Re−ikx . sA6d

Upon substitution into the kinetic energy termsA5d we con-
clude that

d2c

dx2 + k2c = − ikT
dR

dx
e−ikxfe+ikx − Re−ikxg

fe+ikx + Re−ikxg
− ikT

dR

dx
e−ikx

=−
2ik

fe+ikx + Re−ikxg
T

dR

dx
. sA7d

The potential part of the Schrödinger equation possesses
the form

E
−`

+`

Vsx,x8dcsx8ddx8 =E
−`

+`

Vsx,x8dTsx8d

3fe+ikx8 + Rsx8de−ikx8gdx8.

sA8d

Combining the potential and the kinetic energy partssA5d
and sA8d leads to the desired determining equation for the
reflection function which reads

d

dx
Rsxd = −

1

2ik
fe+ikx + Rsxde−ikxg

3E
−`

+`

Vsx,x8dfe+ikx8 + Rsx8de−ikx8g

3expH−E
x

x8 e−ikx9

e+ikx9 + Rsx9de−ikx9

dRsx9d
dx9

dx9Jdx8.

sA9d

An important point is thatTsxd does not depend onRsxd, i.e.,
for the calculations of the reflection coefficients and the re-
lated physical quantities only the integration of a first-order
differential equation is required. Using the identitye−ikxdR
=dse+ikx+e−ikxRsxdd− ikse+ikx−e−ikxRsxdddx, Eq. sA9d can be
recast in the form

d

dx
Rsxd = −

1

2ik
fe+ikx + Rsxde−ikxg2E

−`

+`

Vsx,x8d

3expHikE
x

x8 eikx9 − Rsx9de−ikx9

eikx9 + Rsx9de−ikx9
dx9Jdx8.

sA10d

Finally we recall that the transmission-reflection problem
is formulated as a Cauchy problem on the differential equa-
tions with the initial conditions in the spatial regions ±`.
This means that the numerical integration of the equation for
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the reflection functionRsxd has to be performed starting from
the right side of thex axis and propagating to the left side.
The opposite applies for the transmission functionTsxd. Now
we assume for simplicity that the nonlocal potential is Her-
mitian f18g. Upon symmetrizing the exponential term in the
integrand occurring in Eq.sA10d the integration region can
be restricted tofx, +`d finstead ofs−` , +`dg. This is be-
cause, for an arbitrary symmetric functionSsx,x8d=Ssx8 ,xd
the rule ea

bSsx,x8ddx8=2ex
bSsx,x8ddx8=2ea

xSsx,x8ddx8 ap-
plies. Thus, for a Hermitian potential the equation forRsxd
can be recast as

d

dx
Rsxd = −

1

ik
fe+ikx + Rsxde−ikxg2E

x

+`

Vsx,x8d

3coshHikE
x

x8 eikx9 − Rsx9de−ikx9

eikx9 + Rsx9de−ikx9
dx9Jdx8

sA11d

with the initial conditionRsk; +`d=0.

If we are dealing with an eigenvalue problem we replace
the real wave vectork.0 by a pure imaginary onek = ik.
Then, the equation for the eigenvalues follows as

d

dx
Rsxd =

1

k
fe−kx + Rsxde+kxg2E

x

+`

Vsx,x8d

3coshH− kE
x

x8 e−kx9 − Rsx9de+kx9

e−kx9 + Rsx9de+kx9
dx9Jdx8

sA12d

with the same initial condition as in Eq.sA11d.
The differential equation for the functionTsxd is retrieved

upon substitution of the derivativedR/dx, as given by Eq.
sA11d or sA12d into Eq. sA6d.
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