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We develop a classical description of the current-induced torque due to spin transfer in a layered
system consisting of two ferromagnetic films separated by a nonmagnetic layer. The description is
based on the classical equations for time-space evolution of the macroscopic magnetization. It is
assumed that the perpendicular component of the nonequilibrium magnetization relaxes very fast in
ferromagnetic films. Such a fast relaxation is due to a strong exchange field. Accordingly, the

perpendicular component is totally absorbed at the interfaces giving rise to the torque. The

longitudinal component, on the other hand, decays on a much longer distance defined by the spin
diffusion length. ©2005 American Institute of PhysidOIl: 10.1063/1.1836841

I. INTRODUCTION interaction varies monotonously with this thickness. In addi-
tion, it changes sign when the direction of the flowing cur-
Magnetic configuration of a system composed of tworent is changed and vanishes in symmetrical situatimth
ferromagnetic metallic films separated by a nonmagnetic memagnetic films are equivalent
tallic layer has a significant impact on the electric current  The physical origin of the current induced switching is
flowing through the system. When this configuration variesstill under discussion in the relevant literature, and several
from an antiparallel alignment to a parallel one, the electricheoretical models have been proposed to account for the
current increases significantigt a constant bias voltagt?®  phenomenofi™® Roughly speaking, the current driven
It is also quite natural to expect that the electric current flow-switching is a result of a torque which spin polarized current
ing through such a system will have an influence on its magexerts on a particular film. Since electrons of opposite spin
netic state, too. The existence of a torque, which a spin posrientations are reflected ba¢r transmitteg with spin de-
larized current exerts on a magnetic layer was predictegpendent reflectiontransmission coefficients, the angular
theoretically by Bergérand SlonczewsKi.At suitable con- momentum transmitted from the electron system to the mag-
ditions, such a torque may cause rotation of the magnetioetic layer produces a torque which is responsible for the
moment of a certain film. Indeed, current induced switchingmagnetic switching.
between different magnetic configurations was observed re- In a recent paper Zhanet al® used a quasiclassical
cently in a number of experimen?icf For instance, Katine model to study the current induced switching phenomenon.
et al. observed current induced switching in a structure con-They have shown that the key point is the spin accumulation
sisting of two Co films(of different thicknessgsseparated associated with spin dependent transmission/reflection at the
by a Cu layer, and with two Cu leads attached to the systemnterfaces. More specifically, they have shown that it is the
They have shown that the switching occurs when the electritransversal component of the spin accumulation that contrib-
current exceeds a certain critical value. Moreover, they havetes to the torque. This transversal component relaxes very
also shown that the switching depends on the currenfast due to exchange interaction between the conduction
direction—for a certain bias polarization the switching is toelectrons and local moments. On the other hand, the longi-
the parallel configuration whereas for the opposite bias potudinal part of spin accumulation does not influence the
larization the system switches to the antiparallel state. switching mechanism, because it does not exert any torque
The switching phenomenon was described by Heideon the local magnetization. Moreover, the longitudinal spin
et al® in terms of an additional nonequilibrium current- accumulation relaxes much more slowly than the transversal
induced exchange interaction between the magnetic flmsne. Thus, the torque is exerted on a very thin part of a
The basic properties of such nonequilibrium exchange intermagnetic film at its surfacE*’ This was supported by mi-
action are significantly different from those of the usual in-croscopic quantum-mechanical consideratidasd also as-
direct Ruderman-Kittel-Kasuya-YosideRKKY) exchange sumed in other macroscopic theoretical descripti‘8ﬁ§.
coupling. As the sign of the RKKY coupling parameter os- In this paper we develop a classical description of the
cillates with the thickness of the nonmagnetic spacer layeiswitching phenomenon. The stationary macroscopic spin
the relevant parameter describing nonequilibrium exchangdensity and the charge/spin currents are described by the
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classical diffusion equations. We assume that the perpendicspectively,n, is the total concentration of electrons, amts
lar component of the spin current is absorbed at the veryhe electron chargée<0).
interface. This assumption allows us to derive some effective  If we adopt the diffusive approximation for the distribu-
boundary conditions for the drops of the spin density andion of spin-up and spin-down electrons, valid at distances
spin current at the interfaces. The macroscopic equations deauch longer than the electron mean free paths, the longitu-
scribing the charge and spin currents as well as the spidinal spin diffusion coefficient in the ferromagnret can be
density inside the films are presented in Sec. Il. The boundpresented asD,=(D;+D))/2. Here DT:U%TT/S and D,
ary conditions are derived in Sec. Ill. Numerical results for azqu/?a are the diffusion coefficients of spin-up and spin-
structure with two magnetic films are presented and disdown electrons, respectively.
cussed in Sec. IV whereas final conclusions are in Sec. V. For clarity of notation, thex,t) arguments of the elec-
tron spin densitym, ém, and of the spin currend (and
consequently also db) have been omitted and will be re-
Il. CLASSICAL DESCRIPTION storgd iln the following on!y when necessary. Form@gfor
b,, indicates thatl,, vanish when the transversal compo-
Assume a charge curreng flowing along the axisx nentsm, , of the magnetization are equal to zero. This is not
which is normal to the layers of a multilayered structure. Thetrue for J, sinceb, generally does not vanish fon,=0. The
axesy andz of the coordinate system used in the descriptioncorresponding equations for a nonmagnetic metal have simi-
are then in the film plane. With each ferromagnetic layer wéar form, but with 7=7=7, D;=D;=D, 7;=7, =7, andm©®
associate a local coordinate system, whose aisalong the  =0. In the following we will consider only stationary situa-
corresponding equilibrium spin densitjocal quantization tions of the above equations.
axis). Let us consider an interface between nonmagnetic and
In a nonequilibrium state, an inhomogeneous electrorferromagnetic metals labeled @y and(2), respectively. As-
spin density(spin accumulationm(x,t) can build up, which ~ sume that the static equilibrium spin densityin the ferro-
is assumed to be uniform in the film plane and to depend ofmagnet is parallel to the interface, and is along the axis
the coordinatex. The classical equations for the space-timeThe boundary conditions at the interface are related to the
evolution of the electron spin density(x,t) in a magnetic  Properties of contacting materials and to the specific proper-
film can be written in the form ties of the interface. Generally, one can write the boundary

conditions in the following form:
am, N a,  om, g

PR @ m®=m? +Am, (7)

JV =32 +A7, 8

My, Py __ Oy o ®
at X o whereAm andAJ are the drops of the spin density and spin

currents at the interface, respectively. In the absence of spin-

where the spin current densifyx,t) is given by flip scattering at the interface, the longitudinal component of

am the spin currentl, is conserved, and consequenily,=0.
J=-D 2t b, 3) P : quenty;
om, Ill. TRANSMISSION THROUGH THE INTERFACE
Joy=—-D—¥ + b, (4) . .
Yy IX Y To determine the parameters for the boundary conditions

at the interface we need to use a microscopic description of
the transmission through the interface. Let us consider a con-
tact between nonmagnetjg<0, labeled ag1)] and mag-
netic[x>0, labeled ag2)] metals, with no intrinsic spin flip
Yorocesses at the interface. As above, we assume the quanti-
zation axisz along the magnetization vectd of the mag-

Here,D, and D, are the longitudinal and transversal compo-
nents of the spin diffusion tensor, and =, are the corre-
sponding relaxation times, wheream, and om,, are the
longitudinal and transversal deviations of the spin densit
from the equilibrium valuem©@=(0,0,m®). It should be

noted that usually; <7 in ferromagnetic metals, so that the etic metal. The amplitudes of waves corresponding to the
transverse componendsn,, vanish very quickly and can be \4ve vectork and propagating in opposite directions along
neglected. The second terms on the right hand sides of Edg,e 4xisx (labeled with > for k,>0 and “<” for k,<0)

(3) and(4) are the drag components of the spin current in the, .« rajatedsia the following equa);ions: X

presence of a charge currggtwhich can be written as

. b. =t,a; +r,b;, (9)
b :J_OnO(TT_Tl)"'mz(TT"'Tl) (5)
‘e No(7 + 7)) + M7, — 7)) ' aj = t;b; + r;a;, (10)
jom, wherea andb describe the amplitudes of waves propagating
byy="——+, (6)  in metals(1) and(2), respectively, whereas andr, are the

en Y . . .
0 transmission and reflection amplitudes fex 7, |. For sim-

where 7, and 7, are the momentum relaxation times for plicity we assume a perfect interface, when the in-plane com-
spin-up (majority) and spin-down(minority) electrons, re- ponent of the wave vectds is conserved during reflection
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_(transmissiop_] and for clarity of notation we dropped the mP=>[(2+ R, +R)f; + (R, -R)fy + (T, +T)g;
index k labeling the states. K
The distribution functions can be calculated as the quan-

<
tum mechanical averages of the corresponding wave function + (T -T)go . (19
amplitudes(density matrig’) for layer (1), and
* * 2 —

=@ a), g, =0 b)), (11) m =0, (20
and similarly for amplitudes labeled with. The distribution m? = [(2+R, +R)g; + (R ~R)gy + (T, +T)f;
functionsf,,» andg,,. refer to nonmagnetic metgl) and K
ferromagnet(2), respectively. Using Eqg9) and (10), one +(TT—TL)fg], (21)
obtains the following equations for the diagonal in spin com-
ponents of the distribution functions: for the second layer2). . o

Thus, the spin density drop across the interface is given
0= Tof o+ RoGoe (120 by
Am=2>[(1+ReR)f; - ImRf; ], (22)

foo= ToQos + Rofog (13) k
whereR,=|r,|* andT,=[t,|? are the reflection and transmis- Am, =23 [(1 +ReR)f> +ImRf], (23)
sion coefficients, respectively. The off-diagonal in spin com- k Y
ponent of the distribution function is not vanishing only for
the nonmagnetic metal. In the ferromagnet the avetage Am, =22 [(R +R)(f7 = g5) + (R, - R)(f; —g)].
vanishes foro# o’ due to the different periodicity of the ’ k G b S
wave function oscillations for spin-up and spin-down (24)

electrons’*® Thus, foro# o’ one obtains
The spin current components at the interface can be cal-

f=,=Rf_,, g.,=g.,=0, (14)  culated in a similar way, and one finds
~ JD =234 [(1-ReR)f> +ImRF], (25)
whereR=r r .. Equationg12)—<14) have the form of kinetic § . i Y

equations for the distribution functions at the interface.
It is convenient to use the following representation for JD =23 v J(1- Reﬁ)f> _ ImFZf>] (26)
the distribution functions_ , Y Y

> >~ >
f ‘(f} fﬁ)'f“” bt 9 e, (27
and similar ones fof > ,, g, ., andg;,. In Eq.(15) 1 is the I =32

2X 2 unit matrix, whereas,, o, and o, are the Pauli ma-
trices. From Eq.(15) follows that fy =Ref, f,/=Imf,
f,=(f;—f)/2, andfy=(f;, +f)/2. Similar formulae also (28)
hold for the other d|str|but|on funcuons

The spin density near the interface in metal is then  whereu, is the electron velocity along the axis(generally

= 2 0 [(T+T)(f; —g;) + (T, - T)(fg - g5)],
k

given by the formula vy depends on the vave vectky.
L Thus, the drops ok andy components of the spin cur-
m= > Tr{a(f + )} =2D (F~ +f9), (16)  rents are
k k ~ ~
Al =2 v,[(1-ReRf; +ImRf; ], (29)
wheref~=(f,",f;,f,) (similarly for f), and the sum runs k

over all filled states with energies below the Fermi energy B B
ep. Similar formulas also hold for the spin density near the AJ, = 2> v (1- ReR)f; -ImRf;]. (30
interface in the meta(2). k

Taking Eqs(12)~(14) into account one can write The z components of the spin current and of the spin

" ~ ~ density drop include the distribution functiori§ and gg,
m =22 [(1+ReRIf; —ImRf;], (17 which can be eliminated by calculating the charge current on
K both sides of the interface. This current, in turn, has to be the
same as the charge current in the bulk. From calculations
m§,1):22 [(1+ Reﬁ)fy>+ ImRf], (18  similar to those for the spin currents it follows that the
k charge current at the interfaces is
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1_.2 z
=i o

=e>, v (T =T, —g7) + (T + T)(fg —go)]. Co (1) @@ |, | o
k

(31) 'm(o) moﬁ( 24

The drops in spin currents at the interface can be related
to the drops in spin density. However, to get simple analyti- 0 4| |4
cal expressions we need to simplify the formulation. First, in
the above equations we replace the reflection and transmis-
sion coefficients by their average values and take them out of
the summations. Second, we replace the electron velocity
along the axisx by its average value (the average is over

half of the Fermi sphere; >0). This allows us to take these FIG. 1. Schematic structure consisting of a thick ferromagnetic (o),
X ) nonmagnetic metallic laygiCu), a thin ferromagnetic laygiCo) followed

quantities out .qf the. summations as well and write theny a thick nonmagnetic filnfCu). The arrows indicate orientation of the
boundary conditions in the form equilibrium spin density in the ferromagnetic films.

do

(1-RR*)AJ -2 ImRAJ, (1R
1-R

=u[(1 - ReR)2+ (Im R)ZJAm,, (32) Ady=om e Ay (35)
(1-RR*)AJ, + 2 ImRAJ, The general solution of Eqg1)—«4) for the magnetic
y _ _ layer (1), with a nonequilibrium magnetizatioﬁmi(l) decay-
=v[(1-ReR)?+(Im R?JAm,, (33)  ing for x— -, has the following form(we assume that
om,/m9<1 and( L)Jse(é)l corresponding expansion up to the
: 0, h1
J§112)< R+R R EL) linear term,by=b;” +b;” m,)
v mP=0, om=Ce"x, (36)
jofR-R, R R
= Amy(T; +T)) - j’(—b—l At (34 3P=0, IP=(-Dyy+bH)Cre">+ b, (37)
wherev, v, andv, are the average velocities of electrons in Vhere
the nonmagnetic metal and the ferromagnet for spin-up and b ()2 1 \M?
i i M=o\ — 5+t — | , (39)
spin-down electrons, respectively. In planar systems, the av- 27 2D, 4D,2 D7,
erage velocities are equal to half of the corresponding Fermi
velocities, vyherea;_m a one-dimensional case they are equal ©_ Jono(m =) + mO(r, + 7)
to the Fermi velocities. b~ == @) (39
eno(TT+Tl)+m (TT_ Tl)
(1) - J_O 4noTT Tl (40)
IV. FOUR-LAYER STRUCTURE T elng(ry + 1) +mO(r - 1)

Consider now a four-layer structure consisting of a thickandC, is a constant. Although E@36) contains onlyu,, we
magnetic layere.g., Co, thin nonmagnetic layefe.g., Cy  define in Eq(38) both u; and u, (the latter will be used later
followed by a thin magnetic layefCo), and then again a on).
thick nonmagnetic layefCu), as presented schematically in The corresponding solutions of E¢B—(4) for the non-
Fig. 1. For simplicity, we assume the outermost magnetic aneéhagnetic(2) layer is
nonmagnetic layers to be infinitely thick. Apart form this, we () — 01X 4+ Cagh?
assume the local coordinate system of the thick magnetic omy 2 A
layer (labeled with the index Ylas the global one for the
whole structure. In turn, the equilibrium spin density of the
thin magnetic laye(3) is assumed to be rotated by the angle
0 around the axix (see Fig. 1 Accordingly, the magnetiza-
tion vector of the laye(3) is also parallel to the interface.

For the numerical calculations we assuRiis real. Such
an assumption is not far from reality because the imaginaryhere

am? = C,e"* + Cge"?", (41)
J? = (= Dv; + b)Cye"™* + (- Dy + b)Cae?,

J(ZZ) = (_ DVl + b)C4eV1X + (_ DV2 + b)C5eV2X, (42)

part ofRis usually small. Under this assumption theom- b2 1 \v2

ponents of the spin density and current in each layer then v12= D e (E + D_) (43)
. . T

vanishes exactly. Thus, we have to solve the equations only

for the y and z components. The boundary conditiof&2) Equilibrium spin density of the thin magnetic lay@) is

and (33) then reduce to rotated by the angl# around the axix. We find first the
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corresponding solution in the local coordinate system and | — n=02x10"s
then transform it to the global one. Following this one ob- 06 AT ;’f:llg:,’
tains e EAY e 2010
0.4 | [~ ——- 26x10"
am® = - sin 6(Coe* + C,e"2),
02
-2
om? = cosA(Ceet + Ce29), (44) =
5 00
I = = sin (- Dy + b”)Ceetr = 02
+ (- Dypp + B{Y)Cre2 + b0, (45)
04 5
3 = cosél (- Dyuy + bf*) Cee
-0.6 =
+ (= Djup + bY)Cre2* + b(?]. (46)
0.0 025 0.5 0.75 1.0
Finally, the solutions for Cu4) layer, which vanish ak 0/(2m)
—0, are FIG. 2. Transferred torque as a function of the argjter r=1071%s and for

different values ofr;.

am” = - sin6Cqe"?,  om” = cosfCqe"?, (47)
(Dyu1 — bY)Cee#1%2 + (Dyyu, — bi) Crer2%

I == sin (- D, + b)Cge"?",
- (Dv, - b)Cqe"2®2 =1, (55)

(4) — _ VoX
‘]Z = COSG( DV2 + b)Cse 2%, (48) (DVZ —b- pl)CgeVZdZ + p1C6€M1d2 + p1C7e”2d2 =p,, (56)
Here, we explicitly took intc_) accognt the vanishing trans-where we defined
verse components of the spin density and of the spin current
in the thick nonmagnetic layer. 1-R
The boundary conditions at each interface determine P=v
completely the coefficients in the above general solutions for
each layer of the structure. We use the conditions in the form R +R .
of Egs.(34) and(35), and the conservation & at each of p=(T, +Tl)< (LA R; + _L> , (58)
the interfacegfor the local quantization axis determined by v vt U
the magnetization of the adjacent ferromagnéhis reduces
the problem to a system of linear equations for the coeffi- _ j_o(RI -R n R _ &)(RI R + Ry + &)_l
cientsC, to Cg, which can be solved numerically. P2 e v vy U v v U '
The explicit form of the equations determining the coef- (59)
ficientsC, to Cq is

= (57)
1+R

By,

We take the following values of the parameters for the
(Dy;=b+p)C,+ (Dr,—b+p)C3=0, (49 magnetic(Co) and nonmagneti¢Cu) layers:v=3/4v¢ (the
same for all mean velocities, defined aw
(Dyq = B)Cy = (D~ b)Cy = (D1, — b)Cs = b, (500 =S¥ (hk/m)k2dk/ [iFk3dk), ve=3.7x10 cm/s, vg;=3.74
X 10" cm/s, vg=2.9x10" cm/s (corresponding to the
_pD _ _ —p0 Fermi wave vectors kge=1.28x10° cm™, kg =1.3
(Drpg =B+ py)Cy = prCa= p1Cs =07+ 2, (51) 10 oL andks, = 1.0 0 ot in CU and Co,Trespec—
, , tively), electron effective massi=4my, D;c,=15.7 cnts™?,
(D= b+ p)Cpe"1 cosf+ (Dv, ~ b+ p)Cae2™ cosf Dcy,=41 cntst (corresponding to the conductivitye,
+(Dv;— b+ p)Cee% sin 6 =1.8x1C° O tem? and 0¢,=6.45x10° Qtem?, 7
=2.1xX10%s, 7=0.53x 1035, 7,=1.3x 105, m9=2

ol i —
+(Dro=b+p)Ceeising=0, 52 1072 onr?, ny=5.4x 102 3, R,=0.017, andR, =104
o o d;=1.0x107° cm, andd,=1.5X 107> cm.
(Dvy —b)Coe"1" sin 6 + (Dv, — b)Cae"2" sin 6 The transversal component of the transferred spin cur-
- (Dv; — b)C,e"% cosf - (Dv, — b)Cse’2% cos o rent that acts as a torque on the @ layer, has been cal-
culated as
+ (Dyug = b{?)Cee1 + (Dyuy — bV)Cre2 = b, (53)
T=- ﬁ[J§2>(o|1);~~,in 6+ 37 (dy)cosd]. (60)
(Dyug = b{Y = pp)Cee1% + Dy, = b — py) Cre2 2
_ plczevldl sing- plcsevzdl sin 0+ p1C4eV1d1 cosé The angular variation of the torqu_e normalized_ to 'Fhe
absolute values of the charge current is presented in Fig. 2
+piCse’? cos 0= b” +p,, (54 and in Fig. 3 for different values of the spin relaxation times

Downloaded 08 Feb 2005 to 195.37.184.165. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



023902-6 V. K. Dugaev and J. Barnas$ J. Appl. Phys. 97, 023902 (2005)

tively has been included into the boundary conditions. Thus,

—_— r=04x10"7s
04 e 081072 the torque can be calculated from diffusion type equations
" for the charge and spin currents inside the layers and from
—T 2010 the boundary conditions at the interfaces. The numerical re-
0.2 sults obtained within this description are consistent with ex-
= perimental observations.
'<-i"’ 0.0 ACKNOWLEDGMENTS
z The authors thank A. Fert for numerous discussions and
02 Unité Mixte de Physique CNRS/THALES for hospitality.
This work was partly supported by the Polish State Commit-
tee for Scientific Research through the Grant Nos. PBZz/
04 KBN/044/P03/2001 and 2 PO3B 053 25.

M. N. Baibichet al, Phys. Rev. Lett.61, 2472(1988.

%G. Binasch, P. Grinberg, F. Saurenbach, and W. Zinn, Phys. R&8, B
4828(1989.

3. Berger, Phys. Rev. B4, 9353(1996).

43. C. Slonczewski, J. Magn. Magn. Matet59, L1 (1996; 195 L261
(1999.

°E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman,
in the ferromagnetic and nonmagnetic layé@ a positive 6ScienceZBEx 867(1999.

R i H i f J. Z. Sun, J. Magn. Magn. Mate202 157 (1999.
currentjg). The torque is defined as positive when it tends to 7). A Katine, F. J. Albert, R. A. Buhrman. E. B. Myers, and D. C. Ralph,

increase th_e angle and negative therw!se. First of all, spinppys. Rev. Lett84, 3149(2000.
torque vanishes for collinear configurations. However, the?®. Grollieret al, Appl. Phys. Lett.78, 3663(2001).

parallel configuration is unstable, since the torque for smallgcz-ogﬂdg hE Z”Eerma”v a”dg- J-gEgig“'zgg‘ys- Rev.68, 064424
o . . ( 1; C. Heide, Phys. Rev. Leti87, 197201(20019).
deviations from the parallel configurations enhances the dew, Brataas, Yu. V. Nazarov, and G. E. W, Bauer, Phys. Rev. 1812481

viation. The stable configuration is the one with antiparallel (2000 . H. Hernando, Yu. V. Nazarov, A. Brataas, and G. E. W. Bauer,
magnetic moments. An interesting feature of the curves Phys. Rev. B62, 5700(2000.

. . . . . 1, :
shown in Fig. 2 and Fig. 3 is the fast increase of the torque at )é'zvggtg’(z%o% Myers, P. W. Brouwer, and D. C. Ralph, Phys. Rev. B
small angles. In the case shown in Fig. 2, the torque ha&Yu. A. Bazaliy, B. A. Jones, and S. C. Zhang, cond-mat/0009034.

additionally a local minimum at a certain noncollinear con-13; g wegrowe, Phys. Rev. B2, 1067(2000.
figuration. Such a behavior seems to be consistent with som’gl. Z. sun, Phys. Rev. B2, 570(2000.
experimental observations which show that the magnetiza;"- D- Stiles and A. Zangwill, J. Appl. Phys91, 6812(2002.

tion rotation start t rtain rrent val nd then th S. Zhang, P. M. Levy, and A. Fert, Phys. Rev. L&8, 236601(2002.
on rotation starts at a certain current vajue a €n &, shpiro, P. M. Levy, and S. Zhang, Phys. Rev.63, 104430(2003.

0.0 0.25 0.75 1.0

0.5
0/(2m)

FIG. 3. Torque vs the angle for r=10%s, 7=10""s, r=0.53
X 101s, and for different values of;.

current has to be increased to complete the rotdtfon. 1. D. Stiles and A. Zangwill, Phys. Rev. B6, 014407(2002.
19A. Brataas, Yu. V. Nazarov, and G. E. W. Bauer, Eur. Phys. 22399
(2001).
V. CONCLUDING REMARKS 2y Tserkovnyak and A. Brataas, Phys. Rev.68, 094517(2002.

21 H
. P K. Xia, P. J. Kelly, G. E. W. Bauer, A. Brataas, and |. Turek, Phys. Rev. B
We have formulated a classical description of the mag- 45 220401(2002_ Y

netic switching in layered structures consisting of two non-#a. A. Kovalev, A. Brataas, and G. E. W. Bauer, Phys. Rev6& 224424

equivalent magnetic layers separated by a nonmagnetic laygy(2002.
The description assumes that the torque is due to the perpenghyEs' \gévB"’l‘gug' Jgﬁ;{ggggak’ D. Huertas-Hernando, and A. Brataas,
dicular component of spin current, which is totally absorbed4 A rakovsky, Adv. Phys.32, 753(1983.

at the interface when it enters the magnetic film. This effec#°A. Fertet al, J. Magn. Magn. Mater272—-276 1706(2004.

Downloaded 08 Feb 2005 to 195.37.184.165. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



