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We develop a classical description of the current-induced torque due to spin transfer in a layered
system consisting of two ferromagnetic films separated by a nonmagnetic layer. The description is
based on the classical equations for time-space evolution of the macroscopic magnetization. It is
assumed that the perpendicular component of the nonequilibrium magnetization relaxes very fast in
ferromagnetic films. Such a fast relaxation is due to a strong exchange field. Accordingly, the
perpendicular component is totally absorbed at the interfaces giving rise to the torque. The
longitudinal component, on the other hand, decays on a much longer distance defined by the spin
diffusion length. ©2005 American Institute of Physics. [DOI: 10.1063/1.1836861]

I. INTRODUCTION

Magnetic configuration of a system composed of two
ferromagnetic metallic films separated by a nonmagnetic me-
tallic layer has a significant impact on the electric current
flowing through the system. When this configuration varies
from an antiparallel alignment to a parallel one, the electric
current increases significantly(at a constant bias voltage).1,2

It is also quite natural to expect that the electric current flow-
ing through such a system will have an influence on its mag-
netic state, too. The existence of a torque, which a spin po-
larized current exerts on a magnetic layer was predicted
theoretically by Berger3 and Slonczewski.4 At suitable con-
ditions, such a torque may cause rotation of the magnetic
moment of a certain film. Indeed, current induced switching
between different magnetic configurations was observed re-
cently in a number of experiments.5–8 For instance, Katine
et al.7 observed current induced switching in a structure con-
sisting of two Co films(of different thicknesses) separated
by a Cu layer, and with two Cu leads attached to the system.
They have shown that the switching occurs when the electric
current exceeds a certain critical value. Moreover, they have
also shown that the switching depends on the current
direction—for a certain bias polarization the switching is to
the parallel configuration whereas for the opposite bias po-
larization the system switches to the antiparallel state.

The switching phenomenon was described by Heide
et al.9 in terms of an additional nonequilibrium current-
induced exchange interaction between the magnetic films.
The basic properties of such nonequilibrium exchange inter-
action are significantly different from those of the usual in-
direct Ruderman-Kittel-Kasuya-Yosida(RKKY ) exchange
coupling. As the sign of the RKKY coupling parameter os-
cillates with the thickness of the nonmagnetic spacer layer,
the relevant parameter describing nonequilibrium exchange

interaction varies monotonously with this thickness. In addi-
tion, it changes sign when the direction of the flowing cur-
rent is changed and vanishes in symmetrical situation(both
magnetic films are equivalent).

The physical origin of the current induced switching is
still under discussion in the relevant literature, and several
theoretical models have been proposed to account for the
phenomenon.9–15 Roughly speaking, the current driven
switching is a result of a torque which spin polarized current
exerts on a particular film. Since electrons of opposite spin
orientations are reflected back(or transmitted) with spin de-
pendent reflection(transmission) coefficients, the angular
momentum transmitted from the electron system to the mag-
netic layer produces a torque which is responsible for the
magnetic switching.

In a recent paper Zhanget al.16 used a quasiclassical
model to study the current induced switching phenomenon.
They have shown that the key point is the spin accumulation
associated with spin dependent transmission/reflection at the
interfaces. More specifically, they have shown that it is the
transversal component of the spin accumulation that contrib-
utes to the torque. This transversal component relaxes very
fast due to exchange interaction between the conduction
electrons and local moments. On the other hand, the longi-
tudinal part of spin accumulation does not influence the
switching mechanism, because it does not exert any torque
on the local magnetization. Moreover, the longitudinal spin
accumulation relaxes much more slowly than the transversal
one. Thus, the torque is exerted on a very thin part of a
magnetic film at its surface.16,17 This was supported by mi-
croscopic quantum-mechanical considerations18 and also as-
sumed in other macroscopic theoretical descriptions.19–23

In this paper we develop a classical description of the
switching phenomenon. The stationary macroscopic spin
density and the charge/spin currents are described by the

JOURNAL OF APPLIED PHYSICS97, 023902(2005)

0021-8979/2005/97(2)/023902/6/$22.50 © 2005 American Institute of Physics97, 023902-1

Downloaded 08 Feb 2005 to 195.37.184.165. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp

http://dx.doi.org/10.1063/1.1836861
http://dx.doi.org/10.1063/1.1836861


classical diffusion equations. We assume that the perpendicu-
lar component of the spin current is absorbed at the very
interface. This assumption allows us to derive some effective
boundary conditions for the drops of the spin density and
spin current at the interfaces. The macroscopic equations de-
scribing the charge and spin currents as well as the spin
density inside the films are presented in Sec. II. The bound-
ary conditions are derived in Sec. III. Numerical results for a
structure with two magnetic films are presented and dis-
cussed in Sec. IV whereas final conclusions are in Sec. V.

II. CLASSICAL DESCRIPTION

Assume a charge currentj0 flowing along the axisx
which is normal to the layers of a multilayered structure. The
axesy andz of the coordinate system used in the description
are then in the film plane. With each ferromagnetic layer we
associate a local coordinate system, whose axisz is along the
corresponding equilibrium spin density(local quantization
axis).

In a nonequilibrium state, an inhomogeneous electron
spin density(spin accumulation) msx,td can build up, which
is assumed to be uniform in the film plane and to depend on
the coordinatex. The classical equations for the space-time
evolution of the electron spin densitymsx,td in a magnetic
film can be written in the form

]mz

]t
+

]Jz

]x
= −

dmz

tl
, s1d

]mx,y

]t
+

]Jx,y

]x
= −

dmx,y

tt
, s2d

where the spin current densityJsx,td is given by

Jz = − Dl
]mz

]x
+ bz, s3d

Jx,y = − Dt
]mx,y

]x
+ bx,y. s4d

Here,Dl andDt are the longitudinal and transversal compo-
nents of the spin diffusion tensor,tl and tt are the corre-
sponding relaxation times, whereasdmz and dmx,y are the
longitudinal and transversal deviations of the spin density
from the equilibrium valuems0d=s0,0,ms0dd. It should be
noted that usuallytt!tl in ferromagnetic metals, so that the
transverse componentsdmx,y vanish very quickly and can be
neglected. The second terms on the right hand sides of Eqs.
(3) and(4) are the drag components of the spin current in the
presence of a charge currentj0 which can be written as

bz =
j0
e

n0st↑ − t↓d + mzst↑ + t↓d
n0st↑ + t↓d + mzst↑ − t↓d

, s5d

bx,y =
j0
e

mx,y

n0
, s6d

where t↑ and t↓ are the momentum relaxation times for
spin-up (majority) and spin-down(minority) electrons, re-

spectively,n0 is the total concentration of electrons, ande is
the electron chargese,0d.

If we adopt the diffusive approximation for the distribu-
tion of spin-up and spin-down electrons, valid at distances
much longer than the electron mean free paths, the longitu-
dinal spin diffusion coefficient in the ferromagnetDl can be
presented asDl =sD↑+D↓d /2. Here D↑=v↑

2t↑ /3 and D↓
=v↓

2t↓ /3 are the diffusion coefficients of spin-up and spin-
down electrons, respectively.

For clarity of notation, thesx,td arguments of the elec-
tron spin densitym, dm, and of the spin currentJ (and
consequently also ofb) have been omitted and will be re-
stored in the following only when necessary. Formula(6) for
bx,y indicates thatJx,y vanish when the transversal compo-
nentsmx,y of the magnetization are equal to zero. This is not
true for Jz sincebz generally does not vanish formz=0. The
corresponding equations for a nonmagnetic metal have simi-
lar form, but withtl =tt=t, Dl =Dt=D, t↑=t↓=t0, andms0d

=0. In the following we will consider only stationary situa-
tions of the above equations.

Let us consider an interface between nonmagnetic and
ferromagnetic metals labeled as(1) and(2), respectively. As-
sume that the static equilibrium spin densityM in the ferro-
magnet is parallel to the interface, and is along the axisz.
The boundary conditions at the interface are related to the
properties of contacting materials and to the specific proper-
ties of the interface. Generally, one can write the boundary
conditions in the following form:

ms1d = ms2d + Dm, s7d

Js1d = Js2d + DJ, s8d

whereDm andDJ are the drops of the spin density and spin
currents at the interface, respectively. In the absence of spin-
flip scattering at the interface, the longitudinal component of
the spin currentJz is conserved, and consequentlyDJz=0.

III. TRANSMISSION THROUGH THE INTERFACE

To determine the parameters for the boundary conditions
at the interface we need to use a microscopic description of
the transmission through the interface. Let us consider a con-
tact between nonmagnetic[x,0, labeled as(1)] and mag-
netic [x.0, labeled as(2)] metals, with no intrinsic spin flip
processes at the interface. As above, we assume the quanti-
zation axisz along the magnetization vectorM of the mag-
netic metal. The amplitudes of waves corresponding to the
wave vectork and propagating in opposite directions along
the axisx (labeled with “.” for kx.0 and “,” for kx,0)
are relatedvia the following equations:

bs
. = tsas

. + rsbs
,, s9d

as
, = ts

* bs
, + rs

* as
., s10d

wherea andb describe the amplitudes of waves propagating
in metals(1) and(2), respectively, whereasts andrs are the
transmission and reflection amplitudes fors= ↑ ,↓. For sim-
plicity we assume a perfect interface, when the in-plane com-
ponent of the wave vectork is conserved during reflection

023902-2 V. K. Dugaev and J. Barnaś J. Appl. Phys. 97, 023902 (2005)

Downloaded 08 Feb 2005 to 195.37.184.165. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



(transmission), and for clarity of notation we dropped the
index k labeling the states.

The distribution functions can be calculated as the quan-
tum mechanical averages of the corresponding wave function
amplitudes(density matrix24)

fss8
. = kas

.*as8
. l, gss8

. = kbs
.*bs8

. l, s11d

and similarly for amplitudes labeled with,. The distribution
functions fss8 and gss8 refer to nonmagnetic metal(1) and
ferromagnet(2), respectively. Using Eqs.(9) and (10), one
obtains the following equations for the diagonal in spin com-
ponents of the distribution functions:

gss
. = Tsfss

. + Rsgss
, , s12d

fss
, = Tsgss

, + Rsfss
. , s13d

whereRs= ursu2 andTs= utsu2 are the reflection and transmis-
sion coefficients, respectively. The off-diagonal in spin com-
ponent of the distribution function is not vanishing only for
the nonmagnetic metal. In the ferromagnet the average(11)
vanishes forsÞs8 due to the different periodicity of the
wave function oscillations for spin-up and spin-down
electrons.3,15 Thus, forsÞs8 one obtains

fss8
, = R̃fss8

. , gss8
, = gss8

. = 0, s14d

whereR̃=rs
* rs8. Equations(12)–(14) have the form of kinetic

equations for the distribution functions at the interface.
It is convenient to use the following representation for

the distribution functionsfss8
.

f̌. = S f↑↑
. f↑↓

.

f↓↑
. f↓↓

. D = f0
.1̌ + fx

.šx + fy
.šy + fz

.šz, s15d

and similar ones forfss8
, , gss8

. , andgss8
, . In Eq. (15) 1̌ is the

232 unit matrix, whereasšx, šy, and šz are the Pauli ma-
trices. From Eq.(15) follows that fx

.=Re f↑↓
. , fy

.=Im f↑↓
. ,

fz
.=sf↑↑

. − f↓↓
. d /2, andf0

.=sf↑↑
. + f↓↓

. d /2. Similar formulae also
hold for the other distribution functions.

The spin density near the interface in metal(1) is then
given by the formula

m = o
k

Trhs̆s f̌. + f̌,dj = 2o
k

sf. + f,d, s16d

wheref.;sfx
. , fy

. , fx
.d (similarly for f,), and the sum runs

over all filled states with energies below the Fermi energy
«F. Similar formulas also hold for the spin density near the
interface in the metal(2).

Taking Eqs.(12)–(14) into account one can write

mx
s1d = 2o

k
fs1 + ReR̃dfx

. − Im R̃fy
.g, s17d

my
s1d = 2o

k
fs1 + ReR̃dfy

. + Im R̃fx
.g, s18d

mz
s1d = o

k
fs2 + R↑ + R↓dfz

. + sR↑ − R↓df0
. + sT↑ + T↓dgz

,

+ sT↑ − T↓dg0
,g, s19d

for layer (1), and

mx,y
s2d = 0, s20d

mz
s2d = o

k
fs2 + R↑ + R↓dgz

, + sR↑ − R↓dg0
, + sT↑ + T↓dfz

.

+ sT↑ − T↓df0
.g, s21d

for the second layer(2).
Thus, the spin density drop across the interface is given

by

Dmx = 2o
k

fs1 + ReR̃dfx
. − Im R̃fy

.g, s22d

Dmy = 2o
k

fs1 + ReR̃dfy
. + Im R̃fx

.g, s23d

Dmz = 2o
k

fsR↑ + R↓dsfz
. − gz

,d + sR↑ − R↓dsf0
. − g0

,dg.

s24d

The spin current components at the interface can be cal-
culated in a similar way, and one finds

Jx
s1d = 2o

k
vxfs1 − ReR̃dfx

. + Im R̃fy
.g, s25d

Jy
s1d = 2o

k
vxfs1 − ReR̃dfy

. − Im R̃fx
.g, s26d

and

Jx,y
s2d = 0, s27d

Jz
s1d = Jz

s2d

= o
k

vxfsT↑ + T↓dsfz
. − gz

,d + sT↑ − T↓dsf0
. − g0

,dg,

s28d

wherevx is the electron velocity along the axisx (generally
vx depends on the vave vectork).

Thus, the drops ofx andy components of the spin cur-
rents are

DJx = 2o
k

vxfs1 − ReR̃dfx
. + Im R̃fy

.g, s29d

DJy = 2o
k

vxfs1 − ReR̃dfy
. − Im R̃fx

.g. s30d

The z components of the spin current and of the spin
density drop include the distribution functionsf0

. and g0
,,

which can be eliminated by calculating the charge current on
both sides of the interface. This current, in turn, has to be the
same as the charge current in the bulk. From calculations
similar to those for the spin currents it follows that the
charge current at the interfaces is
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j0
s1d = j0

s2d

= eo
k

vxfsT↑ − T↓dsfz
. − gz

,d + sT↑ + T↓dsf0
. − g0

,dg.

s31d

The drops in spin currents at the interface can be related
to the drops in spin density. However, to get simple analyti-
cal expressions we need to simplify the formulation. First, in
the above equations we replace the reflection and transmis-
sion coefficients by their average values and take them out of
the summations. Second, we replace the electron velocity
along the axisx by its average valuev (the average is over
half of the Fermi sphere,vx.0). This allows us to take these
quantities out of the summations as well and write the
boundary conditions in the form

s1 − R̃R̃* dDJx − 2 Im R̃DJy

= vfs1 − ReR̃d2 + sIm R̃d2gDmx, s32d

s1 − R̃R̃* dDJy + 2 Im R̃DJx

= vfs1 − ReR̃d2 + sIm R̃d2gDmy, s33d

Jz
s1,2dSR↑ + R↓

v
+

R↑
v↑

+
R↓
v↓
D

= DmzsT↑ + T↓d −
j0
e
SR↑ − R↓

v
+

R↑
v↑

−
R↓
v↓
D , s34d

wherev, v↑, andv↓ are the average velocities of electrons in
the nonmagnetic metal and the ferromagnet for spin-up and
spin-down electrons, respectively. In planar systems, the av-
erage velocities are equal to half of the corresponding Fermi
velocities, whereas in a one-dimensional case they are equal
to the Fermi velocities.

IV. FOUR-LAYER STRUCTURE

Consider now a four-layer structure consisting of a thick
magnetic layer(e.g., Co), thin nonmagnetic layer(e.g., Cu)
followed by a thin magnetic layer(Co), and then again a
thick nonmagnetic layer(Cu), as presented schematically in
Fig. 1. For simplicity, we assume the outermost magnetic and
nonmagnetic layers to be infinitely thick. Apart form this, we
assume the local coordinate system of the thick magnetic
layer (labeled with the index 1) as the global one for the
whole structure. In turn, the equilibrium spin density of the
thin magnetic layer(3) is assumed to be rotated by the angle
u around the axisx (see Fig. 1). Accordingly, the magnetiza-
tion vector of the layer(3) is also parallel to the interface.

For the numerical calculations we assumeR̃ is real. Such
an assumption is not far from reality because the imaginary

part of R̃ is usually small. Under this assumption thex com-
ponents of the spin density and current in each layer then
vanishes exactly. Thus, we have to solve the equations only
for the y and z components. The boundary conditions(32)
and (33) then reduce to

DJy = v
s1 − R̃d

1 + R̃
Dmy. s35d

The general solution of Eqs.(1)–(4) for the magnetic
layer (1), with a nonequilibrium magnetizationdmi

s1d decay-
ing for x→−`, has the following form(we assume that
dmz/m

s0d!1 and use a corresponding expansion up to the
linear term,bl .bl

s0d+bl
s1ddmz)

my
s1d = 0, dmz

s1d = C1e
m1x, s36d

Jy
s1d = 0, Jz

s1d = s− Dlm1 + bl
s1ddC1e

m1x + bl
s0d, s37d

where

m1,2=
bl

s1d

2Dl
± S sbl

s1dd2

4Dl
2 +

1

Dltl
D1/2

, s38d

bl
s0d =

j0
e

n0st↑ − t↓d + ms0dst↑ + t↓d
n0st↑ + t↓d + ms0dst↑ − t↓d

s39d

bl
s1d =

j0
e

4n0t↑t↓
fn0st↑ + t↓d + ms0dst↑ − t↓dg2 , s40d

andC1 is a constant. Although Eq.(36) contains onlym1, we
define in Eq.(38) bothm1 andm2 (the latter will be used later
on).

The corresponding solutions of Eqs(1)–(4) for the non-
magnetic(2) layer is

dmy
s2d = C2e

n1x + C3e
n2x,

dmz
s2d = C4e

n1x + C5e
n2x, s41d

Jy
s2d = s− Dn1 + bdC2e

n1x + s− Dn2 + bdC3e
n2x,

Jz
s2d = s− Dn1 + bdC4e

n1x + s− Dn2 + bdC5e
n2x, s42d

where

n1,2=
b

2D
± S b2

4D2 +
1

Dt
D1/2

. s43d

Equilibrium spin density of the thin magnetic layer(3) is
rotated by the angleu around the axisx. We find first the

FIG. 1. Schematic structure consisting of a thick ferromagnetic film(Co),
nonmagnetic metallic layer(Cu), a thin ferromagnetic layer(Co) followed
by a thick nonmagnetic film(Cu). The arrows indicate orientation of the
equilibrium spin density in the ferromagnetic films.
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corresponding solution in the local coordinate system and
then transform it to the global one. Following this one ob-
tains

dmy
s3d = − sinusC6e

m1x + C7e
m2xd,

dmz
s3d = cosusC6e

m1x + C7e
m2xd, s44d

Jy
s3d = − sinufs− Dlm1 + bl

s1ddC6e
m1x

+ s− Dlm2 + bl
s1ddC7e

m2x + bl
s0dg, s45d

Jz
s3d = cosufs− Dlm1 + bl

s1ddC6e
m1x

+ s− Dlm2 + bl
s1ddC7e

m2x + bl
s0dg. s46d

Finally, the solutions for Cu(4) layer, which vanish atx
→0, are

dmy
s4d = − sinuC8e

n2x, dmz
s4d = cosuC8e

n2x, s47d

Jy
s4d = − sinus− Dn2 + bdC8e

n2x,

Jz
s4d = cosus− Dn2 + bdC8e

n2x. s48d

Here, we explicitly took into account the vanishing trans-
verse components of the spin density and of the spin current
in the thick nonmagnetic layer.

The boundary conditions at each interface determine
completely the coefficients in the above general solutions for
each layer of the structure. We use the conditions in the form
of Eqs. (34) and (35), and the conservation ofJz at each of
the interfaces(for the local quantization axis determined by
the magnetization of the adjacent ferromagnet). This reduces
the problem to a system of linear equations for the coeffi-
cientsC1 to C8, which can be solved numerically.

The explicit form of the equations determining the coef-
ficientsC1 to C8 is

sDn1 − b + pdC2 + sDn2 − b + pdC3 = 0, s49d

sDlm1 − bl
s1ddC1 − sDn1 − bdC4 − sDn2 − bdC5 = bl

s0d, s50d

sDlm1 − bl
s1d + p1dC1 − p1C4 − p1C5 = bl

s0d + p2, s51d

sDn1 − b + pdC2e
n1d1 cosu + sDn2 − b + pdC3e

n2d1 cosu

+ sDn1 − b + pdC4e
n1d1 sinu

+ sDn2 − b + pdC5e
n2d1 sinu = 0, s52d

sDn1 − bdC2e
n1d1 sinu + sDn2 − bdC3e

n2d1 sinu

− sDn1 − bdC4e
n1d1 cosu − sDn2 − bdC5e

n2d1 cosu

+ sDlm1 − bl
s1ddC6e

m1d1 + sDlm2 − bl
s1ddC7e

m2d1 = bl
s0d, s53d

sDlm1 − bl
s1d − p1dC6e

m1d1 + sDlm2 − bl
s1d − p1dC7e

m2d1

− p1C2e
n1d1 sinu − p1C3e

n2d1 sinu + p1C4e
n1d1 cosu

+ p1C5e
n2d1 cosu = bl

s0d + p2, s54d

sDlm1 − bl
s1ddC6e

m1d2 + sDlm2 − bl
s1ddC7e

m2d2

− sDn2 − bdC8e
n2d2 = bl

s0d, s55d

sDn2 − b − p1dC8e
n2d2 + p1C6e

m1d2 + p1C7e
m2d2 = p2, s56d

where we defined

p = v
1 − R̃

1 + R̃
, s57d

p1 = sT↑ + T↓dSR↑ + R↓
v

+
R↑
v↑

+
R↓
v↓
D−1

, s58d

p2 =
j0
e
SR↑ − R↓

v
+

R↑
v↑

−
R↓
v↓
DSR↑ + R↓

v
+

R↑
v↑

+
R↓
v↓
D−1

.

s59d

We take the following values of the parameters for the
magnetic(Co) and nonmagnetic(Cu) layers:v=3/4vF (the
same for all mean velocities, defined asv
=e0

kFs"k/mdk2dk/e0
kFk2dk), vF=3.73107 cm/s, vF↑=3.74

3107 cm/s, vF↓=2.93107 cm/s (corresponding to the
Fermi wave vectors kF.1.283108 cm−1, kF↑.1.3
3108 cm−1, andkF↓.1.03108 cm−1 in Cu and Co, respec-
tively), electron effective massm=4m0, DlCo=15.7 cm2 s−1,
DCu=41 cm2 s−1 (corresponding to the conductivitysCo

=1.83105 V−1 cm−1 and sCu=6.453105 V−1 cm−1, t↑
=2.1310−13 s, t↓=0.53310−13 s, t0=1.3310−13 s, ms0d=2
31022 cm−3, n0=5.431022 cm−3, R↓=0.017, andR↑=10−4,
d1=1.0310−5 cm, andd2=1.5310−5 cm.

The transversal component of the transferred spin cur-
rent that acts as a torque on the Co(3) layer, has been cal-
culated as

t = −
"

2
fJz

s2dsd1dsinu + Jy
s2dsd1dcosug. s60d

The angular variation of the torque normalized to the
absolute values of the charge current is presented in Fig. 2
and in Fig. 3 for different values of the spin relaxation times

FIG. 2. Transferred torque as a function of the angleu for t=10−10 s and for
different values oftl.
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in the ferromagnetic and nonmagnetic layers(for a positive
currentj0). The torque is defined as positive when it tends to
increase the angle and negative otherwise. First of all, spin
torque vanishes for collinear configurations. However, the
parallel configuration is unstable, since the torque for small
deviations from the parallel configurations enhances the de-
viation. The stable configuration is the one with antiparallel
magnetic moments. An interesting feature of the curves
shown in Fig. 2 and Fig. 3 is the fast increase of the torque at
small angles. In the case shown in Fig. 2, the torque has
additionally a local minimum at a certain noncollinear con-
figuration. Such a behavior seems to be consistent with some
experimental observations which show that the magnetiza-
tion rotation starts at a certain current value and then the
current has to be increased to complete the rotation.7,25

V. CONCLUDING REMARKS

We have formulated a classical description of the mag-
netic switching in layered structures consisting of two non-
equivalent magnetic layers separated by a nonmagnetic layer.
The description assumes that the torque is due to the perpen-
dicular component of spin current, which is totally absorbed
at the interface when it enters the magnetic film. This effec-

tively has been included into the boundary conditions. Thus,
the torque can be calculated from diffusion type equations
for the charge and spin currents inside the layers and from
the boundary conditions at the interfaces. The numerical re-
sults obtained within this description are consistent with ex-
perimental observations.
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