
Ground state splitting for the Mn 2+ ion in PbMnTe compounds

A. Łusakowski
Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland

V. K. Dugaev
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany

and Institute for Problems of Materials Science, Ukrainian Academy of Sciences, Vilde 5, 58001 Chernovtsy, Ukraine
sReceived 14 November 2003; revised manuscript received 27 July 2004; published 14 January 2005d

We propose a new mechanism leading to the ground state splitting for the Mn2+ ion in PbMnTe crystals. The
splitting is due to two effects, one of which is the hybridization of 3d electrons with the band states and the
other is the internal spin orbit interaction in Mn1+ and Mn3+ states of the manganese ion. We also study the
effect of a local crystalline distortion on the character and magnitude of the splitting. The theoretical predic-
tions are compared to experimental results.
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I. INTRODUCTION

Manganese is the most frequently used magnetic element
serving as the substitutional ion in semimagnetic semicon-
ductorssSMSCd.1,2 It is commonly believed that its outer-
most 4s2 electrons contribute to the crystal bonds while the
3d5 electrons remain localized and, according to Hund’s rule,
produce the total spin of the Mn2+ ion S=5/2 and itstotal
orbital momentumL=0. Thus, in the absence of an external
magnetic field, the ground state of the Mn ion is sixfold spin
degenerate and due to the vanishing angular momentum
there is no direct influence of the crystal field on it. Such a
picture of the manganese ion in SMSC serves as a starting
point in a number of theoretical models describing many
experiments like, for example, the magnetization or magnetic
susceptibility measurements.

It turns out, however, that the degeneracy of the ground
state is lifted. The nature of the splitting depends on the
symmetry of the crystal. In the case of IV–VI SMSC as
PbMnTe with the octahedral coordination we obtain two en-
ergy levels, which are two- and fourfold degenerate, respec-
tively. If the symmetry is lowered, for example, in the
uniaxial strain case, we obtain three doublets. The existence
of splitting is confirmed in both II–VI and IV–VI SMSC by
electron paramagnetic resonancesEPRd experiments reveal-
ing a characteristic five-line fine structure of the resonance
spectrum frequently superimposed on a six-line hyperfine
structure.3,4

During the last more than four decades a great number of
models and calculations devoted to the origin of this splitting
have been presented in the literature. In most of the papers
devoted to the problem the main reason for the splitting is
related to a certain admixture of higher-energy spin configu-
rations to the manganese ion ground state6S.5–7 The total
orbital momentum in these excited states is no longer equal
to zero, and we obtain a certain influence of the crystal field
on the state of the ion. The ground state6S wave function is
built either from pure atomiclike 3d functions of Mn or con-
tains certain admixturep or s type functions originating from
the anions surrounding the Mn ionscovalency and overlap
effectsd. Note, however, that in all these theories, the virtual,

excited states taken into account contain the same number of
electrons on the 3d orbital as the ground state, it means five.
In other words the excited states are limited to the excited
states of a single manganese ion and the effect of surround-
ing is taken into account by point charge type models, cova-
lency and overlaps effects or, more recently, by the use of the
so-called extended crystal field model.8 The only exception
found by us in the literature is the Pryce9 spin-spin mecha-
nism in which the excited configuration 3d44s 6D has been
considered.

In the present paper we propose another mechanism lead-
ing to the ground state splitting of Mn ion in the crystal field.
Namely, we considersvirtuald electronic transitions in which,
due to hybridization of 3d orbitals with the surroundings or
p orbitals of tellurium, the number of 3d electrons changes
by ±1 leading to virtual Mn+1 s3d6d or Mn+3 s3d4d electron
states of the manganese ion.fNote that in II–VI and IV–VI
SMSCs the ground state of the Mn ion is Mn+2 s3d5dg. It
means that the excited states of our system consist of Mn1+

and the hole in the valence band or Mn3+ and the electron in
the conduction band. This type of virtual electron transitions
was shown to be of primary importance forp-d exchange
coupling andd-d magnetic interactions in SMSC.2,10

The physical mechanism leading to the splitting will be
discussed later, here we only notice that the most important
ingredients of our approach aresp-d hybridization and spin-
orbit coupling on a Mn ion. In Mn+1 and Mn+3 configurations
the total orbital momentum does not vanish what results in
nonzero coupling between orbital and spin degrees of free-
dom. Hybridization elements in our model depend on the
geometry of the manganese surrounding and due to this we
may study the influence of the strain on Mn ground state
splitting.

In the present paper we concentrate on PbMnTe SMSC.
However, the method we propose may be applied to other
semiconductors containing Mn ions as impurities. Our ap-
proach enables one also to study the Fermi enegy depen-
dence of the splitting. What is particularly important is it
automatically takes into accountsvia the semiconductor host
band structure calculationsd the spin-orbit interactions on the
anions.

PHYSICAL REVIEW B 71, 014422s2005d

1098-0121/2005/71s1d/014422s6d/$23.00 ©2005 The American Physical Society014422-1



In our paper we do not discuss quantitatively all the mod-
els known in the literature. Our main aim is to show that for
a reasonable set of parameters, the calculated, within the
present model, splittings are of the same order of magnitude
as observed in experiment and due to this the proposed
mechanism should be considered when analyzing EPR
spectra.

II. THEORETICAL MODEL

In this section we construct the Hamiltonian of our model.
Let us consider a PbTe crystal at temperatureT=0 with one
lead atom replaced by the manganese atom. We assume that
the band structure and the electron distribution around all the
atoms remain the same as in a perfect PbTe crystal, the only
difference is the presence of an additionald orbital with five
electrons on one of the cation sites. This model is really
simplified because it neglects a number of features related to
a large difference between Pb and Mn atoms. However, we
believe that its qualitative predictions should remain valid
for some more sophisticated models, too. Let us for a mo-
ment neglect the hybridization of manganesed electrons
with the band states. The ground state of such a system is
sixfold degenerate, the free electrons fill the band states up to
the Fermi level, and the factor of six comes from the degen-
eracy of manganese spin 5/2. We denote this state byuaMl
where −5/2øM ø5/2 is the projection of spin on the quan-
tization axis directed along thes001d crystallographic direc-
tion. The statesuaMl are the eigenstates of the unperturbed
HamiltonianH0.

As was pointed out in the Introduction, we are also inter-
ested in the states of the system, for which the number of
electrons on thed orbital is different from five. Let us denote
by ubLzSzq0l the state with six electrons on thed orbital of
Mn and one electron less in the Fermi sea. The band state of
the electron transferred to thed shell is characterized by a set
of quantum numbersq0 containing the wave vector from the
first Brillouin zone, the number of the band, and one addi-
tional quantum number necessary to fully characterize the
band state. In the absence of spin-orbit coupling it can be
spin of the state, but we should note that in PbTe crystals the
spin-orbit interaction is strong and cannot be neglected.
From now on we include this quantum number in the band
index n.

According to Hund’s rule, for six electrons on thed shell
the total orbital momentum is equal to 2, and the total spin is
also equal to 2.Lz and Sz ranging between −2øLzø2 and
−2øSzø2 in the stateubLzSzq0l are the projections on the
direction of quantization axis.

Similarly, we denote byugLzSzq0l the state with four elec-
trons on thed shell of manganese and one additional electron
q0 in the band. In the unperturbed HamiltonianH0, we also
include theinternal manganese spin-orbit coupling. Due to
the coupling described bylb,g, the ubLzSzq0l and ugLzSzq0l
states, as the states with well-definedLz andSz, arenot the
eigenstates of the unperturbed Hamiltonian. In order to ob-
tain the eigenstates we must build certain their combinations.
Introducing the statesuRb/gl, which are the eigenstates of the
manganese ion in the presence of internal spin-orbit coupling

uRb/gl = o
LzSz

cLzSz
b/g uLzSzl, s1d

we can write down an unperturbed Hamiltonian of our model
in the following form:

H0 = o
M

EauaMlkaMu + o
Rb,q0

ERb,q0
ubRbq0lkbRbq0u

+ o
Rg,q0

ERg,q0
ugRgq0lkgRgq0u. s2d

In principle, we can add toH0 the effects of the crystal field.
However, as we verified, the effect of the crystal field on the
final results is small. Thus, for simplicity, we neglect it in the
following.

Let us turn back to the perturbation part of the Hamil-
tonian. We consider the perturbation due to the hybridization
between the 3d state of manganese and the band states. One
can obtain the following expressions:

kbLzSzq0uHuaMl = o
s

s− 1d1/2+sÎ3 − 2sSz

5

3dS,M+skfLzsuhuxq0
l, s3d

kgLzSzq0uHuaMl = o
s

s− 1dLzÎ3 + 2sSz

5
dS,M−skxq0

uhuf−Lzsl,

s4d

wheres= ± 1
2, xq0

is the two-dimensional spinor describing
the stateq0, andfLzs is the product of the spatial 3d function
and the spinorusl. Notice thath in the one-electron hybrid-
ization elementkfLzsuhuxq0

l is spin independent.
Using the hybridization matrix elements we can construct

the following effective Hamiltonian fora states:

HM,M8 = o
Rbq0

kaMuHubRbq0lkbRbq0uHuaM8l
Ea − ERbq0

+ o
Rgq0

kaMuHugRgq0lkgRgq0uHuaM8l
Ea − ERgq0

, s5d

where the sums overq0 in the first and second terms on the
right-hand side run over states, energies of which are below
and above Fermi level, respectively. Equations5d is the stan-
dard formula of perturbation theory for degenerate spectra. It
enables one to calculate the influence of higher energy states
on the states we are mainly interested in.

In order to calculate the matrix elementskfLzsuhuxq0
l we

have to know the spinor wave functionsxq0
sr d. We apply the

tight binding model of the electronic structure of PbTe, and
we use the parameters presented in Ref. 11. We take into
accountp and s orbitals of cations and anions. For a given
momentumk belonging to the first Brillouin zone, the tight
binding Hamiltonian is diagonalized in the basis of 16 func-
tions of the form
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ck is
c/a sr d =

1
ÎNc

o
Rc/a

eikRc/awi
c/asr − Rc/adusl, s6d

wherewi
c/asr −Rc/ad with i =px,py,pz,s are the cation or an-

ion atomic orbitals centered on the lattice sitesRc or Ra,
respectively,Nc is the number of cation sites, andusl with
s= ± 1

2 is the two-dimensional spinor. After diagonalizing the
Hamiltonian matrix, for a given k we obtain the band ener-
gies«nk and corresponding eigenfunctions

xnksr d = o
i

o
s

o
p=c,a

ak is
p ck is

p sr d, s7d

where indexn=1, . . . ,16 labels the band number.
The knowledge of the amplitudesak is

p enables us to cal-
culate the hybridization matrix elementskfLsuhuxq0

l. We as-
sume that there is only an overlap of 3d electrons with six
neighboring anions. The necessary values of interatomic ma-
trix elementskfLzuhuwi

al are calculated according to Ref. 12
and can be expressed using three constantsVsds, Vpds, and
Vpdp.

Up to now we considered the manganese atom in a perfect
octahedral surrounding characteristic for the cation sites in
the rocksalt cubic lattice of PbTe. In a real three-dimensional
crystal of PbMnTe, this octahedral symmetry may be as-
sumed to be perfect only in the limit of vanishing manganese
concentration. Due to the large difference between lead and
manganese ionic radii, local deformations of the crystal lat-
tice occur. These deformations are not limited to the nearest
neighborhood, but extends over larger distancessa few lat-
tice constantsd. With the increasing manganese content, the
deformations originating from the different atoms start to
overlap. Due to a random placement of Mn atoms in the
lattice, we expect a random deviation of Mn-Te bond orien-
tations from those in the perfect crystal. It turns out that
these deflections have strong influence on the Mn2+ ground
state splitting. Another example of lowering octahedral sym-
metry around a manganese atom may be found in epitaxial
layers which are usually deformed due to thermal strains
caused by differences between the layer and substrate.

Let us turn now to the method of calculation of the effec-
tive HamiltonianHM,M8 for the manganese ion in the de-
formed crystal. Our basic approximation is that the ampli-
tudes ak is

p in Eq. s7d do not change, but the positions of
tellurium atoms surrounding manganese and, consequently,
the hybridization matrix elementskfLzsuhuxq0

l do. The as-
sumption that the amplitudesak is

p are the same in deformed
and undeformed lattices can be justified by the fact that the
electron wave function extends over the whole crystal and
such local perturbations should not modify it significantly. In
the case of epitaxial films we make the additional assumption
that the band states of the strained film are the same as in
bulk crystal and may be calculated according to the proce-
dure described above. In other words, we are interested in the
ground state splitting as a function of changes of Mn-Te
bondsstheir directions and lengthsd with respect to the per-
fect octahedral enviroment.

III. RESULTS AND DISCUSSION

For the perfect octahedral symmetry of the nearest neigh-
borhood the sixfold degenerate ground state of the Mn2+ ion
splits in two levels—doublet and quartet. If the symmetry is
lowered the state splits into three doublets. Both results are
consistent with general predictions of the group theory and
Kramers theorem.13

The physical cause of the splitting is due to the combined
effect of sp-d hybridization and the spin-orbit interaction on
the d shell of the Mn ion. In order to clarify this point, it is
convenient to consider the spin-orbit interaction in excited
states of the Mn ion,lL ·S, as a perturbation.sIn Sec. II it
was included in a nonperturbed Hamiltonian and it was
treated in an exact way.d Let us analyze the first order term
with respect tol using a picture of virtual states in the per-
turbation theory. For simplicity, we assume that spin is a
good quantum number in the band. We start with the situa-
tion with the Mn2+ ion in the stateM and the Fermi sea of
electrons. In the first step, due to the hybridization, an elec-
tron, for example with spin +12, jumps from the band to the
manganesed shell. Since the spin is conserved, the spin of
the ion becomesM + 1

2. In the absence of spin-orbit interac-
tion on the Mn+1 ion, in the second step the electron with
spin +1

2 comes back to the band leaving the Mn+2 ion in the
stateM. However, between these two steps, the internal spin-
orbit interaction,lL ·S, operates and, correspondingly, the
Mn ion can be found in states with spinM + 3

2, M + 1
2, and

M − 1
2. That is why after the transfer of electron with spin +1

2
back to the band, the Mn ion may be found in statesM +1,
M, or M −1. It results in nonzero off-diagonal matrix ele-
ments in the effective HamiltonianHM,M8, and the degen-
eracy of the ground state is removed. The above picture may
be also extended for higher order terms inl.

Which order of perturbation theory inl is really impor-
tant depends on the symmetry of the manganese neighbor-
hood and on the spin-orbit interaction in the bandssee the
Appendixd. In the case of perfect octahedral symmetry, the
first order terms cancel when all band states from the first
Brillouin zone are taken into account. It turns out that the
first nonvanishing terms are of the order ofl3. If the sym-
metry is lowered the main contribution is due to the first
order terms if the spin-orbit interaction in the band is present.
If the band states are states with well-defined spin, the lowest
order terms are proportional tol2.

Because the effective Hamiltonian results from the second
order perturbation theory with respect to thesp-d hybridiza-
tion, the value of the splitting is quadratic in Slater-Koster
hybridization parametersVsds, Vpds, andVpdp. Thus we con-
clude that the ground state splitting is proportional toV2ln

whereV is thesp-d hybridization strength and the exponent
nù1 depends on the manganese neighborhood symmetry
and the presence of the spin-orbit interaction in the band.
The main contribution to the splitting comes from the va-
lence and conduction bands because for these bands the en-
ergy cost of transfering an electron from or to the 3d orbital
is smallest. Numerical analysis indicates, however, the im-
portance of the integration over theentire first Brillouin
zone. One cannot limit the integration to the nearest neigh-
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borhoods of the main extrema of the bands. This shows that
the model of the semiconductor band structure is an impor-
tant ingredient of the calculations.

Let us summarize now the main steps leading to the cal-
culation of the effective HamiltonianHMM8. First, the eigen-
problems of the Mn1+ and Mn3+ ions are solved. We obtain
eigenenergieseRb/g

and the coefficientscLzSz
b/g which express

the eigenvectors oflb/gL ·S Hamiltonian in theuLzSzl basis,
Eq. s1d. For pure spin-orbit interaction these coefficients are
easily expressible in terms of Wigner 3j symbols. However,
when we add the interaction of Mn1+ or Mn3+ ions with the
crystal field potential then the analytical formulas do not
exist and that is why the diagonalization is performed nu-
merically. The coefficientscLzSz

b/g are necessary to obtain ma-
trix elements in the nominators in the formula in Eq.s5d
from matrix elements from Eqs.s3d and s4d.

The next step is the numerical integration over all states in
the first Brillouin zone and the summation over all bands. It
turns out that if the number of integration points exceeds
5000, the final result practically does not change with further
decreasing of integration steps.

For each stateq;nk from the first Brillouin zonesinte-
gration pointd, by diagonalizing the tight binding
Hamiltonian,11 we calculate the energyeq and the band state
wave functionxnk, Eq. s7d. For a given strain tensor we
calculate the relative positions of six tellurium atoms with
respect to the manganese atom. These positions enter Eq.s6d
as the points around which thep ands orbitals of neighbor-
ing Te atoms are centered. The dependence of the Slater-
Koster interatomic matrix elements on the relative positions
of two atoms is known.12 Thus having the amplitudesak is

a

and the deformation it is possible to calculate matrix ele-
mentskfLzsuhuxql. Using the coefficientscLzSz

b/g we obtain ma-
trix elementskaM ubRbql and kaM ugRgql which appear in
nominators in Eq.s5d. The energies of theuRb/gql states in
the denominators equalERbq

=e0+eRb
−eq and ERgq

=e0+eRg

+eq, respectively, withe0 being the energy necessary to
transfer an electron from the top of the valence band to the
3d shell or from the 3d shell to the top of the valence band.
After performing the sum in Eq.s5d we obtain the matrix
elementsHMM8 of the effective Hamiltonian.

Depending on the deformationssee belowd, the obtained
636 numerical matrix has the form as in Eq.s10d or Eq.
s11d and we may calculate the coefficientsB4,B20,B40 or
C4,C20,C40 which describe the influence of the octahedral
crystal field and the distorsion on the splitting. In particular,
the coefficientsB20 or C20 are proportional to the anisotropy
constantD sD=3B20 or D=3C20, respectivelyd, a quantity
which we compare to the experimental results.

In the literature we have found two reports of EPR mea-
surements for PbTe:Mn epitaxial layers. In the first one the
layer was grown on BaF2 substrate,14 whereas in the second
one it was on KCl substrate.15 That is why in the following
analysis we consider lattice distortions corresponding to
these two cases.

The direction of growth of PbTe on BaF2 is along the
f111g PbTe crystallographic direction. It is usually assumed
that the strain is homogeneous in the plane perpendicular to
the f111g direction and can be characterized by a single pa-

rameterei
f111g sin-plane straind. The components of strain ten-

sor exx=eyy=ezz and exy=eyz=ezx can be expressed byei
f111g

in the form

exx =
4c44

c11 + 2c12 + 4c44
ei

f111g, s8d

exy = −

c11 +
4

3
c12

c11 + 2c12 + 4c44
ei

f111g, s9d

where the values of elastic moduli for PbTe are16 c11
=10.5331010 N/m2, c12=0.7031010 N/m2, and c44=1.32
31010 N/m2. Assuming that the above relations are valid for
the nearest neighborhood of the Mn ion, it is possible to
calculate the positions of six nearest tellurium atoms and,
consequently, the effective HamiltonianHM,M8.

After transforming to the coordinate system with thez
axis along thef111g crystallographic direction, the Hamil-
tonian takes the following form:

HM,M8
f111g = −

2

3
B4sO40 + 20Î2O43d + B20O20 + B40O40,

s10d

where the operatorsO are defined in Ref. 13.
In the case of KCl substrate, the PbTe:Mn layer grows

along thef001g crystallographic direction. The nonvanishing
components of the strain tensor are equal toexx=eyy=ei

f001g

and ezz=−s2c12/c11dei
f001g. In this case the MnuTe bonds

are oriented along crystallographic directions. However, the
MnuTe distances in thex-y plane are different from those
along thef001g direction. This results in the dependence of
the parametersVsds, Vpds, andVpdp on the crystallographic
direction. The effective Hamiltonian in the system of coordi-
nates with the axis parallel to crystallographic directions
takes the form

HM,M8
f001g = C4sO40 + 5O44d + C20O20 + C40O40. s11d

For the values of deformations which are interesting from an
experimental point of view the main contribution to the split-
ting comes from terms proportional toO20. In both cases the
effective Hamiltonian may be approximated byH<DsSz

2

−35/12d where the constantD for small deformations is pro-
portional to ei and Sz is the z’th component of the spin52
operator.

There are four groups of parameters entering the present
theory. The first is related to the band structure of PbTe, the
second to the properties of the Mn ion—the intra-atomic
spin-orbit couplingslb=−lg=−90 cm−1 sRef. 13d and the
energye0 necessary to transfer one additional electron from
the top of the valence band to thed shell of Mn or to transfer
one electron from thed shell to the top of the valence band.
The value ofe0 is not known for PbTe:Mn, we expect, how-
ever, that it should be of the same order as in other semimag-
netic semiconductor compounds—of the order of a few elec-
tron volts.
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The Slater-Koster parametersVsds, Vpds, andVpdp are re-
sponsible for thesp-d hybridization. Their values for
PbTe:Mn are not known also. In order to estimate the Mn2+

ground state splitting we assumeVsds=0.523 eV, Vpds

=−0.518 eV, andVpdp=0.323 eV. These values were used in
Ref. 17 in calculations of the band structure of MnTe and the
functional dependence ofV’s on MnuTe distance was taken
from Refs. 18 and 19.

Finally, we must know deformation of the nearest neigh-
borhood of the Mn atom. In calculations we assume that the
relations for different components of the strain tensor are the
same as for the macroscopic layer. Such an approach may
serve as the first approximation only. Due to smaller ionic
radius, the manganese atom introduced into the PbTe matrix
produces some kind of a “hole” causing the difference be-
tween the deformation near the Mn atom and the one far
from the impurity.

In Table I we present results of calculations for three val-
ues of e0. We see that for physically acceptable values of
parameters the calculated splittings are comparable with ex-
perimental results. For PbTe:Mn grown on KCl substrate the
sign of D agrees with that reported in Ref. 15.sIn Ref. 14
only the absolute value ofD was measured.21d.

IV. CONCLUSIONS

In the present paper we have investigated a mechanism of
the Mn2+ ground state splitting. It is caused by the combined
effect ofsp-d hybridization and the spin-orbit coupling in the
manganese states Mn1+ and Mn3+. The main difference be-
tween the present approach and the mechanisms considered
earlier in the literaturesRefs. 5–7d is that we include into
consideration the excited states of the Mn ion, in which the
number of electrons on thed shell differs from five. Our
method takes into account spin-orbit effects not only on the
Mn ion, but also in the band states. We have shown that the
results of calculations are rather close to experimentally ob-
served values of the ground state splitting, which means that
the presented mechanism can be responsible for the observed
effect. The method can be also applied to other semiconduc-
tor compounds containing manganese as the magnetic ele-
ment.
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APPENDIX

In order to clarify the connection between the symmetry
and the lowest order ofl in which the ground state splitting
occurs, let us take an arbitrary stateq0 from the first Brillouin
zone and consider the following expression:

QM1M2

snd = o
L1

zS1
zs1

o
L2

zS2
zs2

s− 1dL1
z+L2

zÎ5

2
+ 2s1M1

3Î5

2
+ 2s2M2dS1

z,M1−s1
dS2

z,M2−s2

3kL1
zS1

zuslL ·SdnuL2
zS2

zl

3 o
qPhq0j

kf−L1
zs1

uhuxqlkxquhuf−L2
zs2

l, sA1d

where the sum overq runs over all states from the first Bril-
louin zone, which may be obtained fromq0 by symmetry
transformations. The sums of this kind are contained in Eq.
s5d and the difference is that in Eq.sA1d only thenth order
terms with respect to internal manganese spin-orbit coupling
l are extracted. Let us considerOh symmetry first. For this
symmetry the matrix ZL1

zs1,L2
zs2

=oqPhq0jkf−L1
zs1

uhuxql
3kxquhuf−L2

zs2
l is built from four invariants and has the fol-

lowing form:

ZL1
zs1,L2

zs2
= A1I + A2sLx

4 + Ly
4 + Lz

4d + A3L · s

+ A4sLx
3sx + Ly

3sy + Lz
3szd, sA2d

whereA1,A2,A3,A4 are the constants depending onq0, andI
is the identity matrix. If we consider a situation where the
spin of the band states is a good quantum number thenA3
=A4=0. This is easily seen from the definition ofZ because
in this case the band wave functions may be chosen propor-
tional to s 1

0
d or to s 0

1
d, and the matrixZ is diagonal ins1,s2.

Performing direct calculations we find thatQM1M2

snd are diag-
onal for n=1,2,3,and, consequently, the ground state split-
ting is proportional tol4. If the band spin-orbit interaction
cannot be neglectedsthis is the case of PbTed, the splitting is
proportional tol3.

In a similar manner we can analyze the cases of lower
order symmetry. For the tetragonal deformation, the matrix

TABLE I. Comparison of experimental values of anisotropy
constantD with theoretical predictions for three values ofe0. The
values of D are expressed in terms of corresponding magnetic fields
sH=D /2mBd in Gauss.

PbTe:Mn/BaF2 PbTe:Mn/KCl

Strainei
a 0.0003 −0.0048

Dexp ±7b −107c

Dthse0=1.6 eVd −2.9 −109.1

Dthse0=2.5 eVd −1.0 −39.3

Dthse0=3.5 eVd −0.36 −13.7

aReference 20.
bReferences 14 and 21.
cReference 15.
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ZL1
zs1,L2

zs2
contains the term proportional toA5Lz

2+A6Lzsz.
Again, performing direct calculations we get the result that
for nonzero and zero band spin-orbit couplings, the splitting
is proportional tol and tol2, respectively.

The above considerations have been performed for the
case when the excited configuration of manganese is Mn3+.
In an analogous manner, with slight modifications of formula
sA1d, they may be applied to the Mn1+ case.
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