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Abstract. This work offers a theoretical framework for the
treatment of the simultaneous many-electron excitation in
solids and surfaces. Starting from the transition operator, an
expansion is presented that treats all involved interactions
on equal footing. The method is applied to the simultaneous
two-orbital excitation and the results are compared with re-
cent experimental findings. It is concluded that such studies
provide a useful tool for the investigation of inter-electronic
coupling.

PACS: 79.20.Kz

One of the outstanding problems of theoretical physics is
the treatment of correlated many-body electronic systems.
In addition to the inherent non-separability of many-body
Coulombic systems, the fermionic nature of the electrons
and the infinite range of the Coulomb potentials are major
obstacles for such a treatment. The theoretical models put
forward to deal with this problem can be roughly divided
into two categories: (a) first-principles methods and (b) model
Hamiltonian approaches. In the first case a “large-molecule
approach” is adopted by restricting the number of interacting
particles [1] or the inter-electronic coupling is expressed in
terms of an effective self-consistent potential, as done in the
density functional theory (DFT) [2]. The model Hamiltonian
methods, for example the Hubbard and Anderson models [3,
4], proved very useful for the understanding of the physical
phenomena that are influenced by the electronic correlation,
for example the correlation gap, magnetic exchange and su-
perexchange. The values for the model-dependent key param-
eters, such as the correlation energy and the charge-transfer
energy, can be estimated from spectroscopic data as deduced
from Auger and photoemission measurements [5–8]. On the
other hand it is well established that the major structure of
the output of these experiments can be explained within a sin-
gle “quasi-particle” picture (see [9] and references therein).
Experimental evidence for inter-electronic coupling shows up
as subsidiary features in the spectra. Thus, it seems desirable
to develop experimental and theoretical techniques whose
output can be directly linked to the inter-electronic coup-

ling. Here we suggest the use of the two-electron coincidence
spectroscopy.

In this method the energy and angular distributions of
two emitted electrons are simultaneously recorded after the
absorption of a VUV [10] photon or after a definite en-
ergy and momentum loss of an impinging electron [11–17].
The mechanisms leading to the double-electron emission are
heavily dependent on the internal coupling between these
two electrons. In fact, the simultaneous two-orbital excitation
following the absorption of one VUV photon is exclusively
caused by the interelectronic interaction. This is due to the
single-particle nature of the electric dipole transitions which
implies that the photon can only interact with one electron
at a time. The second electron is emitted by means of corre-
lation with the first one [18]. Obviously, the probability for
the double photoemission (DPE) is much lower than that for
the direct single-photoemission which makes the DPE experi-
ment particularly challenging. In fact, it is only very recently
that the DPE signal can be experimentally extracted [10] from
the large background of uncorrelated secondary electrons. As
will be shown below, the two-electron emission upon electron
impact is also highly sensitive to the details of the electron–
electron coupling.

For the theoretical treatment of the two-electron excita-
tion process the description of the propagation of correlated
systems in a multi-center potential (the crystal potential) is in-
dispensable. In the first section of this work we develop there-
fore a systematic framework for the propagation of correlated
compounds under the action of a non-overlapping muffin-
tin crystal potential. This provides a calculational scheme for
the amplitudes of the correlated electron-pair scattering from
a crystal potential. Numerical results are compared with re-
cent experimental data and manifestations of the electronic
correlation in the two-electron spectra are pointed out. Unless
otherwise stated, atomic units are used throughout.

1 Formal developments

To introduce the notation and the mathematical tools, it is
useful to recall briefly the theoretical treatment of the single-
particle scattering from a multi-center potential. This for-
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mulation is then generalized to the scattering of correlated
compounds from a multi-center pontential.

We consider a system, characterized by a Hamiltonianh0,
to be prepared in a well-defined state|ϕ〉. Under the action of
an external perturbationW, the system goes over into the state
|ψ±〉 where

|ψ±〉 = [1+ g±0 T±
] |ϕ〉 . (1)

Hereg+0 (g−0 ) is the advanced (retarded) Green function of the
reference Hamiltonianh0. The dynamic response of the sys-
tem upon the action ofW is described by the transition matrix
T that satisfies the integral equation

T± =W+Wg±0 T± . (2)

The prime focus of this work is to find tractable and reason-
able solutions of (2) for interacting many-body systems. As
we are concerned with the propagation of correlated systems
in ordered materials we analyze the case whereW is a crystal
potential consisting of a superposition ofM individual non-
overlapping (ionic core) potentials,wi , centered at sitesRi
with domainsΩi (in configuration space), i.e.

W=
M∑
i

wi , Ωi ∩Ωj = 0, ∀ j 6= i . (3)

According to the superposition (3), theT operator is decom-
posed into (for brevity we omit the superscripts)

T =
M∑
i

Qi , (4)

where

Qi = wi +wi g0T =wi +wi g0Qi +
M∑

j 6=i

wi g0Qj . (5)

Introducing the single-site transition operatorti = wi +
wi g0ti , (5) can be rewritten as

Qi = ti +
M∑

j 6=i

ti g0Qj . (6)

TheT matrix can then be expressed in terms ofti :

T =
M∑
i

ti +
M∑

j 6=i

ti g0(tj +wj g0T ) . (7)

Now we use thescattering path operators, τ ij , as introduce by
Gyorffy [19, 20],

τ ij = ti δij +
M∑

k6=i

tj g0τ
ik = ti δij +

M∑
k6= j

τ ikg0tj , (8)

and sum overj . Comparison with (6) leads to

Qi =
∑

j

τ ij , (9)

T =
∑

i

Qi =
∑

ij

τ ij . (10)

The operatorQi describes the transition of the state|ϕ〉 under
the action of the potentialwi that is localized at the siteRi in
the presence of all the scattering centerswj , j 6= i . The op-
eratorsτkl , first introduced by Gyorffy [19, 20], describe the
transition of a state|ϕ′〉 under the action ofwk, where|ϕ′〉
evolves from|ϕ〉 after being subjected towl . Hence, in (10)
the transition of|ϕ〉 due to the perturbationW is broken down
into successive single-site transitions that are computationally
more accessible.

For the scattering of correlated systems from the muffin-
tin potentialW we follow the above ideas by assuming that in
absence ofW the systemS, consisting ofN interacting parti-
cles, is in a state|φ〉. We assume further that in absence of any
internal interactions withinS, the system is fully described by
the state|φ0〉. Usually, this state is given in an explicit form.

Our strategy is to decouple effects due to internal cor-
relation ofS from those arising due the scattering fromW.
To this end we write the Hamiltonian of the total system,
consisting ofS and W, in the form H = K +∑N

j>i uij +∑M
k

∑N
l wkl = K +Uint+Wext whereuij describes the inter-

action of particlei with particle j within the compoundS,
wkl is the interaction potential of particlel with the potential
centered at the siteRk and K is the kinetic energy operator.
The idea now is to decouple dynamical properties due toWext
from those due toUint. To do that we definewk :=∑l wkl (the
interaction of allN particles with the siteRk). The state|φ〉
is thus an eigenfunction ofK +Uint. The systemS goes over
into the state|Ψ 〉 when subjected toWext. This state can be
written as

|Ψ 〉 = [1+GintText] |φ〉
= [1+GintText] [1+GintUint] |φ0〉 . (11)

Following the procedure for single-particle scattering we can
derive an expansion forText by noting that (cf. (5))

qk
ext=wk+wkGintq

k
ext+

M∑
l 6=k

wkGintq
l
ext , (12)

with Text=∑M
k qk

ext. Furthermore, we can define the scat-
tering path operator,̄τ ij , of the systemS (for the scattering
from Wext) as

τ̄ ij = t̄i δij +
M∑

k6=i

t̄i Gτ̄
ik
ext , (13)

wheret̄k =wk+wkGint t̄k is the scattering of the system from
the single sitek. Equtation 13 describes the scattering of the
systemS, as a whole, from the multi-center potentialWext.
The physical meaning of the operatorτ̄ ij , qk

ext andt̄k is just the
same as discussed for the single-particle case where the sys-
temS as whole is considered as a “quasi” single particle. The
internal response of the system due to the interactionUint is
described by|φ〉 = [1+GintUint]|φ0〉 that appears in the ex-
pression (11) for the total state vector. We note however, that
the internal and the external motions are not separable due to
the presence of the Green functionGint in (12). Till this point
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the above exact treatment is just a reformulation of the many-
body problem in an integral form. Approximate solutions are
deduced from (11) and (13). In the extreme case of weak in-
ternal coupling we can neglectUint and arrive at the scattering
of independent particles from multi-center potential or we can
use in (11) the Dyson expansion ofGint for a perturbative
approach with regard toUint. The first-order expression that
contains the involved interactions on equal footing has the
form [21]

|Ψ 〉 ≈
[
1+G0T̄ext

] N∏
j>i

(1+uij gij )|φ0〉 . (14)

The transition matrixT̄ext =Wext+WextG0T̄ext can be ex-
pressed in terms of the single-site scattering as done in (11).
The pair operatorgij is the propagator within the two-body
potentialuij . Recent treatments [22, 23] of the two-electron
emission from ordered materials following the electron im-
pact can be formally derived from (14).

2 Application to the two-electron emission

In this section we apply the preceding theoretical model to
the two-electron emission from a clean perfect surface. For
this purpose, further inspection and simplification of (14) is
needed.

2.1 One-photon, two-electron transitions

The simplest application of (14) is the emission of two corre-
lated electrons. In this case the product in (14) reduces to only
one term corresponding to the inter-electronic potentialu12.
For a DPE reaction with linear polarized photon, the differ-
ential cross section dσ (the transition rate normalized to the
incoming photon-flux density) for the emission of two elec-
trons with momentak1 andk2 is given by [18]

dσ = 4π2αω
∑
αi

|〈Ψ |ε ·D|i(αi )〉|2 δ(Ef − Ei )dk1dk2 . (15)

Hereα is the fine-structure constant,ω is the frequency of the
photon with polarization vectorε, D is the dipole operator (in
length form),|i(αi )〉 is the many-body ground state and|Ψ 〉
is given by (14). Equtation 15 sums over unresolved initial-
state quantum numbersαi . In principle the correlated initial
state|i 〉 can be derived in an analogous way from (14) starting
from uncorrelated states|φ0〉.

To get an insight into the effects of electronic correlation
let us look at the case where|i 〉 describes a many-body local-
ized state, for example a core-level state, from which two fast
electrons are emitted (the energies of the vacuum electrons
E1 andE2 have to be much larger than the binding energies).
We assume a frozen-core approximation, i.e., only the de-
grees of freedom of the two emitted electrons are affected by
the photo-absorption process. Furthermore, we inspect cases
where the on-site potentialswi and the final-state internal po-
tentialsu12 are weak (the electrons are very fast). Under these
circumstances the cross section for the DPE can be written
as [18]

dσ ∝ |ε · (k1+k2)|2|φ̃i (k1, k2)|2δ(3)(qi−qf ,G)
, (16)

whereqi = k′1+k′2, qf = k1+k2 are the wave vectors of the
pair’s center-of-mass in the initial and final state, respectively,
i.e.k′1 andk′2 are the initial Bloch wave vectors of the individ-
ual electrons. The bulk reciprocal lattice vector is referred to
by G. φ̃i (k1, k2) is the double Fourier transform of the corre-
lated two-electronWannierinitial state.

From (16) one can conclude

(a) The delta function in (16) expresses a von Laue-like
diffraction condition for the two electronswhen the
center-of-mass momentum of thepair changes by a re-
ciprocal bulk lattice vector during the emission process.
This (and the selection rules stated below) is equivalent
to assuming the pair as a quasi particle with momentum
k1+k2 (the pair’s center-of-mass momentum) and per-
forming a single photoemission of this quasi particle.

(b) The selection rules can be summarized in the equation
ε · (k1+k2)= 0, i.e. double-photoemission is forbidden if
the momentum of the two-electron center-of-mass is per-
pendicular to the polarization vector or ifk1 = −k2. In
addition, the structure of̃φi (k1, k2), which is very much
dependent on the symmetry of the investigated core level,
imposes additional restrictions on the PDE spectra. In
fact, as clear from (16), the structure of|φ̃i (k1, k2)| can
be probed by a DPE experiment. These conclusions re-
main valid if we allow for mutual repulsion of the outgo-
ing electrons, but disregard the final-state coupling to the
cores [18].

For delocalized states similar conclusions are drawn (see [18]
for more details).

2.2 Double electron emission upon electron impact

In this section we consider the simultaneous two-electron
emission from delocalized states upon the impact of an elec-
tron with momentumk0. The initial state, consisting of an
excited electronic vacuum state with wave vectork0 and
a bound state|χε(k)〉 with energyε and wave vectork has
the asymptotic (long before the collision) form|k0, χε(k)〉. To
calculate the state (14) of the system during the excitation
process we assume a screened (renormalized) Coulomb in-
teractionu12 for the inter-electronic coupling. Furthermore
the explicit shape of the external potentialWext is needed.
Here we employ an approximate non-overlapping muffin-tin
ionic potentialswion

i (Wext=∑i w
ion
i ) (see [24] for more de-

tails). The form factorW̃ext := 〈p|Wext|k0〉 corresponding to
this scattering potential can then be reduced to

W̃ext= N
√

2π f

Auc

∑
`

e−iKzr⊥,`
∑
g‖
δ(2)(g‖ − K‖)w̃ion(K) ,

(17)

wherew̃ion(K) is the Fourier transform ofwion, N is the num-
ber of ionic cores illuminated by the electron beam,Auc is
the volume of the two-dimensional unit cell,g‖ is the surface
reciprocal lattice vector,̀ enumerates the atomic layers with
shortest distancer⊥,` with respect to the origin,K = p−k0,
and f = exp(i p · r2) with r2 refering to the coordinate of the
bound electron. With this external potential and the renormal-
ized inter-electronic interaction, the application of (14) yields
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for the scattering amplitude [17, 22]

T = T12+Text. (18)

HereT12 is a direct electron pair excitation amplitude without
any interaction with the crystal whereasText involves the scat-
tering of the correlated pair from the crystal potentialWext.
The amplitude (18) can be written in the explicit form

T = δ(2)(K+0,‖ − K+‖ )L
′ +C

∑
`,g‖

δ(2)
[
g‖ − (K+‖ − K+0,‖)

]
×L(g‖, `, K+, K−, k) .

(19)

In (19) K+0 = k0+k andK+ = k1+k2 are the initial and the
final-state wave vector of the pair, respectively.K− = k1−k2
is the inter-electronic wave vectors of the pair. The functions
C,L,L′ depend on the description of the momentum-space
wave function〈q|χε(k)〉 of the bound electron. For a jellium-
state momentum distribution and free inter-electronic propa-
gation, (19) can be evaluated in closed form [22].

As in the case of DPE, presented in the preceding sec-
tion, only the pair’s center-of-mass wave vector enters in the
von Laue-like diffraction condition, i.e. one can regard the
pair as a quasi particle located at the pair’s center of mass.
As in LEED (low energy electron diffraction) studies [24, 25]
diffraction occurs when the parallel component of this quasi
particle’s wave vector is changed byg‖ during the collision.
However, the pair’s diffraction differs decisively from the
LEED case. The pair diffraction occurs at a fixedK+. This
does not imply fixedk1, k2 since a momentum exchange of
the two electrons (the internal coordinateK− changes then)
does not necessarily modifyK+. Therefore, the pair diffrac-
tion is actually a manifestation of inter-electronic correlation
(otherwise, diffraction of each of the separate electrons will
take place). This is in contrast to a LEED reaction where the
electronic correlation does not modify significantly the pos-
itions of the diffraction beams.

Moreover, whereas the diffraction peaks are determined
by the coupling to the crystal potential (and hence depend
only on K+), the functional dependence ofL on K−, which
characterizes the strength of electronic correlation (in mo-
mentum spaceu12 depends only on|K−|), controls theinten-
sityof the individual diffraction peaks and the actual shape of
the spectra.

The experiments for the two-electron emission via elec-
tron impact have been performed in the geometry sketched
in Fig. 1. The incoming electron beam is tilted by an angle
γ with respect to the normal of the surface whereas the
two electrons are emitted under an angle±α with re-
spect to surface normal. For a given incident energy,E0,
and a fixed total energy of the pairEtot = E1+ E2, the
coincidence counts are monitored for different energy-
sharing, (E1− E2)/Etot. To illustrate the diffraction con-
ditions, as anticipated by (19), we note thatk0, k1, k2 lie
in the x− z plane (cf. Fig. 1), i.e.K+‖ possesses only one
non-vanishing componentK+x along the x axis. Accord-
ing to (19), it is this component that is relevant for the
pair diffraction and hence we transform the variable(E1−
E2)/Etot into K+x . In Fig. 2, the pair emission cross sec-
tion from a Fe(110) (BCC) crystal is shown as function of
K+x . The cross section is then proportional to|T |2 (19).

Fig. 1. The experimental setup as used in the experiments shown
in Figs. 2, 3

An integration overk‖ (weighted with the density of states)
and an average of the spin degrees of freedom are, how-
ever, necessary since these quantities are not experimentally
resolved [22].

Assuming k‖ = 0, the positions of the first diffraction
maxima (hereafter referred to as the(−1,0) (1,0) maxima)
are indicated by arrows. The theoretical and experimental
data (Fig. 2) clearly show the (1,0), and(−1,0) diffrac-
tion peaks. The asymmetric shape of the spectrum is due
to the broken symmetry of the experiment since the incom-
ing beam does not coincide with the normal of the surface
(γ = 5◦).

In Fig. 3a–c we chooseγ = 0 and a Cu(001) crystal as
a target. The spectra become then symmetric with respect to
E1 = E2 since the whole experimental setup (the scattering
plane, spanned byk1 andk2, and the crystal) is invariant under
a180◦ rotation around̂z (note thatk0 ‖ ẑ lies in the scattering
plane and is the bisector of the relative angle cos−1(k̂1 · k̂2)).
To illustrate the exchange coupling between the two emit-
ted electrons we inspect in Fig. 3a the singlet (dotted curve

Fig. 2. The experimental results (full dots) for a Fe(110) (BCC) sample at
an incident energy of50 eV. The total energy of the pair isEtot = E1+
E2 = 44 eV. The incident beam is tilted with respect to the normal by an
angle ofγ = 5◦ (cf. Fig. 1) andα = 50◦. The solid curveshows the theor-
etical results. The experimental results are on a relative scale
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Fig. 3a–c.The same as in Fig. 2 for aCu(001) crystal in the normal incidence geometry that corresponds toγ = 0 in Fig. 1. Furthermore we chooseα= 40◦
(cf. Fig. 1). The incident energy isEi = 34 eVandEtot= 27 eV. The singlet,σs, (dotted curve) and the triplet,σ t , (dashed curve) scattering cross sections are
shown along with their statistical average, 0.25σs+0.75σ t , (solid curve). The relative spin non-resolved experimental data (full dots) are shown. They have
been normalized to theory at one point.b, c We use the same target, scattering geometry, and incident energy as ina. However, the total energy of the pair
is lowered toEtot= 25 eV and Etot = 23 eV in b andc, respectively. In all cases the experiments have been performed by the group of Prof. Kirschner [26]

in Fig. 3a) and the triplet (dashed curve in Fig. 3a) scattering
contribution to the spin non-resolved spectrum (solid curve in
Fig. 3a). From simple symmetry consideration one can con-
clude that the triplet scattering must vanish when the two
electrons emerge with the same energies, i.e. forK+x = 0. In
fact, within our (approximate) model, it seems that the mini-
mum in the spin-averaged spectrum aroundK+x = 0 is caused
primarily by the diminishing triplet contribution atK+x = 0.

In Fig. 3b,c the energy-sharing distributions are de-
picted for various total energies of the pairEtot. This
means that the electron pairs originate from various states
in the conduction band. For electron emission from states
close to the bottom of the band the agreement between
theory and experiment worsens. This is due to the con-
tribution of other channels for the production of elec-
tron pairs in which the emission of the pair is accompa-
nied by inelastic processes. Presently, such channels are
not accounted for by the theory. A more elaborate treat-
ment taking inelastic reactions into account and employing
a more realistic potential than the one given in (17) is in
progress.

3 Conclusions

In this work we studied the electron-pair emission from solids
and surfaces. We discussed a formal theory for the treatment
of correlated system as they propagate through a multi-center
potential. The simplest case of two correlated electrons, pro-
duced by electron and photon impact from a perfect surface,
has been considered.
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