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Abstract. This work offers a theoretical framework for the ling. Here we suggest the use of the two-electron coincidence
treatment of the simultaneous many-electron excitation ispectroscopy.

solids and surfaces. Starting from the transition operator, an In this method the energy and angular distributions of
expansion is presented that treats all involved interactiontsvo emitted electrons are simultaneously recorded after the
on equal footing. The method is applied to the simultaneouabsorption of a VUV [10] photon or after a definite en-
two-orbital excitation and the results are compared with reergy and momentum loss of an impinging electron [11-17].
cent experimental findings. It is concluded that such studie$he mechanisms leading to the double-electron emission are
provide a useful tool for the investigation of inter-electronicheavily dependent on the internal coupling between these

coupling. two electrons. In fact, the simultaneous two-orbital excitation
following the absorption of one VUV photon is exclusively
PACS: 79.20.Kz caused by the interelectronic interaction. This is due to the

single-particle nature of the electric dipole transitions which
implies that the photon can only interact with one electron
at a time. The second electron is emitted by means of corre-
One of the outstanding problems of theoretical physics iation with the first one [18]. Obviously, the probability for
the treatment of correlated many-body electronic systemshe double photoemission (DPE) is much lower than that for
In addition to the inherent non-separability of many-bodythe direct single-photoemission which makes the DPE experi-
Coulombic systems, the fermionic nature of the electronsnent particularly challenging. In fact, it is only very recently
and the infinite range of the Coulomb potentials are majothat the DPE signal can be experimentally extracted [10] from
obstacles for such a treatment. The theoretical models pthe large background of uncorrelated secondary electrons. As
forward to deal with this problem can be roughly dividedwill be shown below, the two-electron emission upon electron
into two categories: (a) first-principles methods and (b) modeimpact is also highly sensitive to the details of the electron—
Hamiltonian approaches. In the first case a “large-moleculelectron coupling.

approach” is adopted by restricting the number of interacting For the theoretical treatment of the two-electron excita-
particles [1] or the inter-electronic coupling is expressed irtion process the description of the propagation of correlated
terms of an effective self-consistent potential, as done in theystems in a multi-center potential (the crystal potential) is in-
density functional theory (DFT) [2]. The model Hamiltonian dispensable. In the first section of this work we develop there-
methods, for example the Hubbard and Anderson models [3ore a systematic framework for the propagation of correlated
4], proved very useful for the understanding of the physicatompounds under the action of a non-overlapping muffin-
phenomena that are influenced by the electronic correlatiotin crystal potential. This provides a calculational scheme for
for example the correlation gap, magnetic exchange and sthe amplitudes of the correlated electron-pair scattering from
perexchange. The values for the model-dependent key param-crystal potential. Numerical results are compared with re-
eters, such as the correlation energy and the charge-transtemt experimental data and manifestations of the electronic
energy, can be estimated from spectroscopic data as deducsmtrelation in the two-electron spectra are pointed out. Unless
from Auger and photoemission measurements [5—8]. On thetherwise stated, atomic units are used throughout.

other hand it is well established that the major structure of

the output of these experiments can be explained within a sin-

gle “quasi-particle” picture (see [9] and references therein)l Formal developments

Experimental evidence for inter-electronic coupling shows up

as subsidiary features in the spectra. Thus, it seems desirafile introduce the notation and the mathematical tools, it is
to develop experimental and theoretical techniques whoseseful to recall briefly the theoretical treatment of the single-
output can be directly linked to the inter-electronic coup-particle scattering from a multi-center potential. This for-




498

mulation is then generalized to the scattering of correlated = Z Q= Z‘L’” . (10)
compounds from a multi-center pontential. i i

We consider a system, characterized by a Hamiltohjan
to be prepared in a well-defined stage. Under the action of The operatoQ; describes the transition of the stag¢ under
an external perturbatiow, the system goes over into the statethe action of the potentiab; that is localized at the sit® in

[¥*) where the presence of all the scattering centeys j #i. The op-
eratorst, first introduced by Gyorffy [19, 20], describe the
[y ) =[14+95T*] le) . (1) transition of a statéy’) under the action ofv, where|y’)

_ _ evolves from|y) after being subjected t@,. Hence, in (10)
Heregy (go) is the advanced (retarded) Green function of thehe transition ofe) due to the perturbatiow is broken down

reference Hamiltoniaho. The dynamic response of the sys- into successive single-site transitions that are computationally
tem upon the action diV is described by the transition matrix more accessible.

T that satisfies the integral equation For the scattering of correlated systems from the muffin-
N N tin potentialW we follow the above ideas by assuming that in
™= W+W§T : (2)  absence oW the systems$, consisting ofN interacting parti-

The prime focus of this work is to find tractable and reasonPleS’ IS in a statg). We assume further that in absence of any

bl luti f(2) for int i “bod ; A internal interactions withif, the system is fully described by
able solutions of (2) for interacting many-body systems. Ay seata 0y Usually, this state is given in an explicit form.
we are concerned with the propagation of correlated systems " gyrateqy is to decouple effects due to internal cor-
in ordered materials we analyze the case whiéis a crystal relation of § from those arising due the scattering from
potential consisting of a superposition ®f individual non-

overlapping (ionic core) potentials;;, centered at site® To th_is_end ;N © wr(;t(\eNth_e Hﬁ mifltonia|_r|1 Eféhe to}\lal §ystem,
with domains®; (in configuration space), i.e. COHS'St,Lng of§ and W, in the form H = f"ZPi u'} +
Yk > wk = K+ Uint + Wex Whereu;; describes the inter-
M action of particlel with particle j within the compounds,
W= Z wi, 21N =0, Vj #i. (3)  wy is the interaction potential of particlewith the potential
i centered at the sitB andK is the kinetic energy operator.
The idea now is to decouple dynamical properties dU&ide

According to the superposition (3), tieoperator is decom- .0 those due ). To do that we defineX := Y, wy (the

posed into (for brevity we omit the superscripts) interaction of allN particles with the siteRy). The state¢)
M is thus an eigenfunction df + U;y;. The system$ goes over
T= Z Qi (4) mtp the statg¥) when subjected t0V.y. This state can be
: written as
where |¥) =[1+ Gint Tex |#)
M = [1+ GintText] [1+ GintUint] |¢0> . (11)
Qi =wi+wigoT =wi+wigQi+ ) wigQ;. () Following the procedure for single-particle scattering we can
i#A derive an expansion ol by noting that (cf. (5))
Introducing the singl_e-site transition operatgr= wj + M
wiOoti, (5) can be rewritten as ql(;xt = w4 kaintqléxt T Z W Giry qL " (12)
M 12k
Qi =t+) t0Q. (6) . .
o ; = With Texe = YN oK. Furthermore, we can define the scat-
tering path operatof”, of the system$ (for the scattering
TheT matrix can then be expressed in termg; of from Wey) as
M M M
T=) ti+) tigo(tj+wjgT). (M =68+ ) HGT, (13)
i j#i ke£i

Now we use thecattering path operators", asintroduce by  wherefy = wk + wkGin i is the scattering of the system from
Gyorffy [19, 20], the single sit&k. Equtation 13 describes the scattering of the
M M syr/]sterkrlls , asI a whole, f;orrr the ml%ti—csnterdgotentmﬁ.
i e ik el ik The physical meaning of the operaidr, g5, andiy is just the
=1 +Zt‘ Gor™ =tidj + Z T 0ot ) same as discussed for the single—partigi(é case where the sys-
kAl k7 tem 4 as whole is considered as a “quasi” single particle. The
, i ) internal response of the system due to the interadfignis
and sum ovejj. Comparison with (6) leads to described byp) = [1+ GinUin]I60) that appears in the ex-
i pression (11) for the total state vector. We note however, that
Qi= Z T () the internal and the external motions are not separable due to
j the presence of the Green functiGgy in (12). Till this point



499

the above exact treatment is just a reformulation of the manywhereq; = k} + k5, qr = ky + ko are the wave vectors of the
body problem in an integral form. Approximate solutions arepair's center-of-mass in the initial and final state, respectively,
deduced from (11) and (13). In the extreme case of weak in-e. k] andk; are the initial Bloch wave vectors of the individ-
ternal coupling we can negleldf,; and arrive at the scattering ual electrons. The bulk reciprocal lattice vector is referred to
of independent particles from multi-center potential or we caby G. ¢; (ki, k») is the double Fourier transform of the corre-
use in (11) the Dyson expansion &, for a perturbative lated two-electroWannierinitial state.

approach with regard t0;,;. The first-order expression that From (16) one can conclude

contains the involved interactions on equal footing has th%a) The delta function in (16) expresses a von Laue-like

form [21] diffraction condition for thetwo electronswhen the
N center-of-mass momentum of tipair changes by a re-
@) ~ [l+ Go'fext] H(1+Uij Gi)ldo) - (14) ciprocal bulk lattice vector during the emission process.

This (and the selection rules stated below) is equivalent
to assuming the pair as a quasi particle with momentum
The transition matrixTex; = Wext + WextGoText Can be ex- ki+ka (the pair's center-of-mass momentum) and per-
pressed in terms of the single-site scattering as done in (11(). forming a single photoemission of this quasi particle.
The pair operatogj; is the propagator within the two-body () The selection rules can be summarized in the equation
potentialu;j. Recent treatments [22, 23] of the two-electron € (K1 +kz) = 0, i.e. double-photoemissioniis forbidden if
emission from ordered materials following the electron im-  the momentum of the two-electron center-of-mass is per-
pact can be formally derived from (14). pendicular to the polarization vector orkf = —k. In
addition, the structure ap; (kq, k2), which is very much
dependent on the symmetry of the investigated core level,
2 Application to the two-electron emission imposes additional restrictions on the PDE spectra. In
fact, as clear from (16), the structure |gk (ky, kz)| can
In this section we apply the preceding theoretical model to  pe probed by a DPE experiment. These conclusions re-
the two-electron emission from a clean perfect surface. For main valid if we allow for mutual repulsion of the outgo-

this purpose, further inspection and simplification of (14) is  ing electrons, but disregard the final-state coupling to the

j>i

needed. cores [18].
. For delocalized states similar conclusions are drawn (see [18]
2.1 One-photon, two-electron transitions for more details).

The simplest application of (14) is the emission of two corre-
lated electrons. In this case the productin (14) reducesto on
one term corresponding to the inter-electronic potenijal
For a DPE reaction with linear polarized photon, the differ- ) _ ) )
ential cross sectionod (the transition rate normalized to the In this section we consider the simultaneous two-electron
incoming photon-flux density) for the emission of two elec-€mission from delocalized states upon the impact of an elec-
trons with moment#, andk; is given by [18] tron with momer_1tun1<o. The initial state, consisting of an
excited electronic vacuum state with wave veckgrand
do :47,20[0)2 |(¥le- Dli())|? 8(Ef — Ei)dkydk,. (15) @ bound state ) with energye and wave vectok has
p the asymptotic (long before the collision) fotka, x.«k). To
) , ) calculate the state (14) of the system during the excitation
Hereq is t_he f|ne-tstru.cture constaat,is the'frequency of the process we assume a screened (renormalized) Coulomb in-
photon with polarization vectar, D is the dipole operator (in - teractionuy, for the inter-electronic coupling. Furthermore
length form),[i(«)) is the many-body ground state afl)  he explicit shape of the external potentialy is needed.
is given by (14). Equtation 15 sums over unresolved initialjere we employ an approximate non-overlapping muffin-tin
state quantum numbe. In principle the correlated initial  jonic potentialsw!® (Wex = 3 w'°") (see [24] for more de-
state|i) can be derived in an analogous way from (14) startinqails)_ The form 1I‘actorv~vext — |<p|l\Next|kO> corresponding to

from uncorrelated statggo). . ___this scattering potential can then be reduced to
To get an insight into the effects of electronic correlation

let us look at the case whe}i¢ describes a many-body local- NVZr f _ _

ized state, for example a core-level state, from which two fasfp, = ——— Z e Kl Z 8@ (g — Kpw'©(K),
electrons are emitted (the energies of the vacuum electrons Auc . o

E; andE; have to be much larger than the binding energies). (17)
We assume a frozen-core approximation, i.e., only the de-

grees of freedom of the two emitted electrons are affected bynerepion(K) is the Fourier transform af©", N is the num-

the photo-absorption process. Furthermore, we inspect casggy of jonic cores illuminated by the electron beafy. is
where the on-site potentials and the final-state internal po- the volume of the two-dimensional unit cedj, is the surface
tentialsu;, are weak (the electrons are very fast). Under thesgaciprocal lattice vector, enumerates the atomic layers with
circumstances the cross section for the DPE can be writteghortest distance, , with respect to the origink = p— ko,
as [18] and f = exp(ip- rp) with r, refering to the coordinate of the

) 215 2.3 bound electron. With this external potential and the renormal-
dooc fe - (ki +k2) [l (Ke, k2) %6 g, ) (16)  ized inter-electronic interaction, the application of (14) yields

5(.2 Double electron emission upon electron impact
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for the scattering amplitude [17, 22] <
T =Tio+ Text. (18) k,

HereTs» is a direct electron pair excitation amplitude without
any interaction with the crystal where&s; involves the scat-
tering of the correlated pair from the crystal poteniiél:.
The amplitude (18) can be written in the explicit form

T =82(Kg, — KD L +CY 52 [gu—(Kﬁ—K&u)] / \
6.9 k

x L(gy £ KT, K™, K). # k,
(19) o

In (19) K§ =ko+k andK* = k; + k are the initial and the
final-state wave vector of the pair, respectivédy. = k; — ko
is the inter-electronic wave vectors of the pair. The function$g 1 The experimental setup as used in the experiments shown
C, £, £ depend on the description of the momentum-space Figs. 2, 3
wave function(q| xe«x) of the bound electron. For a jellium-
state momentum distribution and free inter-electronic propa-
gation, (19) can be evaluated in closed form [22]. An integration ovelk; (weighted with the density of states)
As in the case of DPE, presented in the preceding seand an average of the spin degrees of freedom are, how-
tion, only the pair's center-of-mass wave vector enters in thever, necessary since these quantities are not experimentally
von Laue-like diffraction condition, i.e. one can regard theresolved [22].
pair as a quasi particle located at the pair's center of mass. Assumingk; =0, the positions of the first diffraction
As in LEED (low energy electron diffraction) studies [24, 25] maxima (hereafter referred to as thel, 0) (1, 0) maxima)
diffraction occurs when the parallel component of this quasare indicated by arrows. The theoretical and experimental
particle’s wave vector is changed lgy during the collision.  data (Fig. 2) clearly show the (1,0), ar@-1,0) diffrac-
However, the pair's diffraction differs decisively from the tion peaks. The asymmetric shape of the spectrum is due
LEED case. The pair diffraction occurs at a fix&d . This  to the broken symmetry of the experiment since the incom-
does not imply fixecks, ko since a momentum exchange of ing beam does not coincide with the normal of the surface
the two electrons (the internal coordinate” changes then) (y =5°).
does not necessarily modifg*. Therefore, the pair diffrac- In Fig. 3a—c we choosg =0 and a Cu(001) crystal as
tion is actually a manifestation of inter-electronic correlationa target. The spectra become then symmetric with respect to
(otherwise, diffraction of each of the separate electrons wilE; = E, since the whole experimental setup (the scattering
take place). This is in contrast to a LEED reaction where thelane, spanned It andk,, and the crystal) is invariant under
electronic correlation does not modify significantly the pos-a18@ rotation around (note thatg | 2 lies in the scattering
itions of the diffraction beams. plane and is the bisector of the relative angle éds; - k»)).
Moreover, whereas the diffraction peaks are determinetfp jllustrate the exchange coupling between the two emit-

by the coupling to the crystal potential (and hence depengkd electrons we inspect in Fig. 3a the singlet (dotted curve
only on K*), the functional dependence gf on K—, which

characterizes the strength of electronic correlation (in mo-
mentum spacai, depends only ofK ~ ), controls theénten-
sity of the individual diffraction peaks and the actual shape of T
the spectra. _, om0

The experiments for the two-electron emission via elec<2 (-1,0)
tron impact have been performed in the geometry sketchea_
in Fig. 1. The incoming electron beam is tilted by an angleg
y with respect to the normal of the surface whereas theZ
two electrons are emitted under an anghker with re-
spect to surface normal. For a given incident eneigy,
and a fixed total energy of the pak: = E; + Ep, the
coincidence counts are monitored for different energy
sharing, (E1 — E»)/Ewr. To illustrate the diffraction con- i
ditions, as anticipated by (19), we note tHat k1, ko lie !
in the x—z plane (cf. Fig. 1), i.e.Kﬁr possesses only one 0.000 N : ‘
non-vanishing componenk; along the x axis. Accord- 20 10 K 0.0 Lo 20
ing to (19), it is this component that is relevant for the _ xfa.ul
pair diffraction and hence we transform the variabig — Z:\g-iﬁ-cizzrene;ﬁ:pmegé%'J\?S#S‘euﬂt'o?;tsgnfgrf a 'Z?%S) (;rci(é) Simé)'i at
EZ)/EW into K. In Fig. 2, the pair émission cross sec- E, =44¢V. The ?nycident beam is tilted witghyrespect F:o the t?\lormall by an
tion from a Fe(110)BCC) crystal is shown as function of angle of, = 5° (cf. Fig. 1) ande = 50°. The solid curveshows the theor-
K;}. The cross section is then proportional t5|? (19). etical results. The experimental results are on a relative scale

(L,0)

0.005

Cro$s Section
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Fig. 3a—c.The same as in Fig. 2 for@u(001) crystal in the normal incidence geometry that correspongs=t® in Fig. 1. Furthermore we choose= 40°

(cf. Fig. 1). The incident energy & = 34 eVand Eot = 27 €V. The singletsS, (dotted curviand the tripletst, (dashed curvescattering cross sections are
shown along with their statistical average2® =S+ 0.75¢!, (solid curvg. The relative spin non-resolved experimental dét# ¢ots) are shown. They have

been normalized to theory at one poibf.c We use the same target, scattering geometry, and incident energwp.ddamwever, the total energy of the pair

is lowered toE;y = 25 eV and Eyot = 23 eVin b andc, respectively. In all cases the experiments have been performed by the group of Prof. Kirschner [26]

in Fig. 3a) and the triplet (dashed curve in Fig. 3a) scatterinfReferences
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