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Probing two-particle orbital orientation of bound states
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Abstract. – Under certain conditions specified in this work, a two-particle orbital orientation
of bound states can be detected by means of double photoemission with polarized light. These
conclusions are based on a tensorial analysis of the dipole transition amplitudes and are illus-
trated by a numerical study of double photoemission from helium oriented by laser-pumping.
The analytical and numerical results demonstrate the interrelation between two-particle corre-
lation and orbital polarization.

Introduction. – In most metals low-energy electrons can be described by the Landau the-
ory of Fermi liquids. The elementary excitations of such a liquid are quasiparticles that move
almost independently and with a well-defined energy-momentum dispersion relation [1]. At
low temperatures T , however, many of these liquids become unstable due to inter-quasiparticle
interactions resulting in a spontaneous symmetry breaking and in the formation of a new state
of matter, such as ferromagnetism and superconductivity (SC) [2, 3]. Cooper instability in
conventional SC leads to the formation of s-wave Cooper pairs with a vanishing total spin.
In this case gauge symmetry is broken at the critical temperature Tc [3]. On the other hand,
various experimental and theoretical studies have established new states of unconventional SC
associated with other kind of spontaneous symmetry breaking. For instance, in case of triplet
p-wave SC, which is believed to occur in the layered Sr2RuO4 compound [3], for T ≤ Tc the
time-reversal symmetry is broken in the superconducting ground state (which is also called
the chiral or the Anderson-Brinkmann-Morel (ABM) phase [2,3]). In view of this established
knowledge and numerous other examples it is valuable to envision methods and ways that
test for inter-particle correlations as well as for the footprints of possible symmetry reduction.
A recent work [4] along this line has demonstrated that correlation within a Cooper pair
in a conventional s-wave SC can be mapped out by means of one-photon two-electron spec-
troscopy (also called double photoemission DPE [5]). The question we pose here is whether
and under which conditions it is possible to test by means of DPE for a break of time-reversal
symmetry in a given sample and to test at the same time for the influence of quasi-particle
correlation. Surprisingly, this question is still unaddressed even for the most “simple” case
of a two-electron atom or ion. The present work is an attempt to deliver an answer to the
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above problem in a general manner and without relying on special properties akin to a specific
system. The approach is based on a tensorial analysis of the DPE transition amplitude from
an arbitrary two-electron state oriented along a given direction â. The key conclusions are:
The difference in DPE cross-sections for two different helicity state of a circularly polarized
photon (this difference is called conventionally circular dichroism, CD) signifies, under certain
experimental arrangements specified below, the existence of a well-defined dynamical phase
(φ) of the two-particle wave function. The influence of reversing the sign of this phase is
measurable and is equal to CD. (Quasi)particle correlation is reflected in a dependence of
the CD (and hence of φ) on the inter-particle quantities, such as the relative momenta and
energies. For time-reversal symmetric states CD vanishes. We remark that CD is as well
present in single photoemission processes and can be employed to test for spontaneous break-
ing of time-reversal symmetry (of single-particle orbitals), as demonstrated experimentally for
the pseudogap state of high-Tc SC [6]. DPE gives access to the properties of electron pairs
and offers additional information in that it allows an insight into the interplay between the
symmetry reduction and the inter-particle correlation. This is particularly important for the
understanding of the underlying mechanism of high-Tc SC.

To illustrate our findings and to give an estimate of the value of CD we performed full-
numerically the first calculations for DPE from oriented two-particle states, namely from
2 3Pm=±1 and 2 1Pm=±1 of helium. Here the chirality of the initial electron pair state is
supposed to be created experimentally (in contrast to the ABM ground state), for example, by
laser pumping ortho- or para-helium ground state with circularly polarized light. A markedly
different CD is obtained for triplet and singlet states which illustrates the influence of the
exchange interaction on φ.

General formulation. – We consider a target (orbitally) oriented along â and described
by an effective correlated two-particle state χ12ϕâ(r1, r2), where χ12 is the spin part and
ϕâ(r1, r2) is the spatial part of the wave function with a certain parity(1). By definition, the
oriented (chiral) state has a non-zero state multipole of the first rank (proportional to the
mean value of the angular-momentum vector) and therefore for such a state the time-reversal
symmetry is broken. We focus on systems in which spin and spatial degrees of freedom are
decoupled, i.e. the spin part χ12 dictates only the symmetry of ϕâ(r1, r2) under particle
exchange. A circularly polarized photon with a polarization vector ε̂+ (ε̂−)(2) excites this
initial state to a scattering state χ′

12ψk1,k2(r1, r2) which is characterized by the wave vectors
k1, k2 of the emitted electrons. In the dipole approximation used below the photon does
not couple to the electron spins. Thus, χ′

12 = χ12 and the optical transition amplitude has
the form

Tε̂± = ε̂± · fâ , fâ(k1,k2) = 〈ψk1,k2 |D|ϕâ 〉, (1)

where D is the dipole operator. The DPE cross-sections σ have the structure σ(ε̂±) = c|Tε̂± |2
with c being a real factor. From eq. (1) it follows that

|Tε̂± |2 =
(
ε̂± · fâ

) (
ε̂∗± · f∗

â

)
, (2)

thus
|Tε̂± |2 =

1
3
|fâ|2 +

1
2

(
ε̂± × ε̂∗±

) · (fâ × f∗
â) + T2

(
ε̂±, ε̂∗±

)
T2 (fâ,f∗

â) . (3)

(1)Many-particle systems can be mapped onto an effective two-particle problem [7]. The theory presented
here is then valid within the frozen core approximation, i.e. if only the two-particle orbital is excited which
has absorbed the photon. A more general approach based on the density matrix formalism can be found
elsewhere [8].
(2)We use a convention that a right (left) circularly polarized light has ε̂+ (ε̂−) polarization vector.
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Here T2(x,y) is a spherical tensor of rank 2 constructed from the spherical components of
the vectors x and y [9]. Only the second term on the rhs of eq. (3) is odd with respect to
exchange of ε̂+ and ε̂− (or fâ and f∗

â). Therefore, the measurable circular dichroism, defined
as CD = σ(ε̂+) − σ(ε̂−), reads

CD = c
[|Tε̂+ |2 − |Tε̂− |2

]
= −ic k̂ · (fâ × f∗

â) , (4)

where k̂ = ±iε̂± × ε̂∗± is a real unit vector along the light propagation direction. The vector
product fâ × f∗

â is pure imaginary, for fâ × f∗
â = −(fâ × f∗

â)∗, therefore dichroic effects
disappear if fâ is pure real or pure imaginary.

Initial-state orientation. – To illustrate the physical significance of the above analysis we
assume at first that the final state is treated within the plane-wave approximation (PWA)(3).
It is known that within the PWA for isotropic initial state CD vanishes identically [10].
Therefore, a non-zero CD is an indicator for the oriented initial state. Applying the dipole
approximation in the length form for D, the vectors fâ (eq. (1)) acquire the form

fâ =
i

(2π)3
∇

∫
d3r1d3r2e

−ik1·r1−ik2·r2ϕâ(r1, r2),

= i∇ϕ̃â(k1,k2), (5)

where ∇ = ∇k1 + ∇k2 and ϕ̃â(k1,k2) is the electron pair momentum-space wave function.
From eq. (4) there follows

CD = −ic k̂ · [∇ϕ̃â(k1,k2) × ∇ϕ̃∗
â(−k1,−k2)] . (6)

Now it is evident that CD changes sign upon time-reversal operation(4) acting on the initial
bound state and vanishes when the initial state is time-reversal invariant.

Reversing the sign of the phase of the spacial initial bound state corresponds to reversing
the sign of the momentum-space wave function phase φ(k1,k2) and to inverting the mo-
menta at the origin, i.e. ϕâ(r1, r2) 	→ ϕ∗

â(r1, r2) corresponds to ϕ̃â(k1,k2) 	→ ϕ̃∗
â(−k1,−k2).

Therefore, eq. (6) dictates CD = σ(ε̂+, φ) − σ(ε̂−, φ) = −σ(ε̂+,−φ) + σ(ε̂−,−φ). Comparing
eqs. (4), (5) we also conclude that

CD = σ(ε̂+, φ) − σ(ε̂−, φ) = σ(ε̂+, φ) − σ(ε̂+,−φ),
= σ(ε̂−,−φ) − σ(ε̂−, φ). (7)

The relations (7) allow the following key conclusions: The circular dichroism can be regarded
as a measurable change in the cross-section upon the phase sign reversal of the initial two-
electron bound-state wave function. For real initial-state wave functions (e.g., if the state is
isotropic) φ ≡ 0 and hence CD = 0. A direct relation between the circular dichroism and the
phase within PWA can be obtained from eqs. (4), (5):

CD(k1,k2) = C · ∇φ(k1,k2); C = c
{(∇|ϕ̃â(k1,k2)|2) × k̂

}
. (8)

(3)The plane-wave approximation (PWA) is unrealistic for atomic targets unless the electron energies are
high compared to the initial binding. For solids screening effects make PWA more viable. In a superconductor
(SC) the coherence length (the size of the pair) can reach a micron in conventional SC or few lattice constants
in high-Tc SCs making the screening even more effective. This fact is endorsed by the agreement of the recent
numerical PWA results with experimental data for single photoemission from conventional SC, cf. ref. [4] and
references therein.
(4)Under a time-reversal operation Θ the transformation applies Θϕ(r1, r2) = ϕ∗(r1, r2) and Θϕ̃(k1, k2) =

ϕ̃∗(−k1,−k2).
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As pointed out in ref. [11], the two-particle probability density |ϕ̃â(k1,k2)|2 is accessed (within
PWA) by using linear polarized light; hence for given k1, k2, one performs the experiments
with linear and circular polarized light and retrieves the phase gradient from CD and the DPE
cross-section(5).

Effects of final-state phase. – The direct connection between the initial-state phase and
CD relies on the PWA, in which case additional dynamical phases due to distortions of the
final-state wave function are eliminated. In general, however, the vector fâ, eq. (1), may be
expressed as

fâ = i

∫
d3q1d3q2ψ̃

∗
k1,k2

(q1, q2)∇ϕ̃â(q1, q2), (9)

where ψ̃k1,k2(q1, q2) is the Fourier transform of ψk1,k2(r1, r2). Thus the phase of fâ is de-
termined by the phases of ψ̃k1,k2(q1, q2) and ϕ̃â(q1, q2). These two-phase relations can be,
however, disentangled by means of their symmetry properties, even in the general case. This
is achieved by performing the experiment under specified geometrical conditions in which case
the link between the dichroism and initial-state phase differences is generally established, i.e. it
persists even in the presence of final-state interaction. To show that we recall that theory [10]
and experiment [13] proved if the initial state is isotropic CD is finite(6), unless k1, k2 and k̂
are coplanar or k1 = k2. These conditions for vanishing CD for isotropic initial states we call
non-chiral kinematics. In general, under these conditions a reversal of k̂ to −k̂ (or equivalently
ε̂+ to ε̂−) does not affect σ, unless there exists an additional polarization direction â for the
initial state. Thus, CD measurements unravel the orbital polarization, i.e. an orientation or
an alignment of the state ϕâ along â [14]. Measuring in the non-chiral kinematics a finite
CD from a certain specimen does not determine whether the sample quantum state is aligned
(along an axis) or oriented (along a direction). However, when the polarization direction is
known from measurements(7) or from symmetry considerations and k̂ ‖ â one can choose a
special DPE kinematics where one of the electrons is emitted along the quantization axis (cf.
figs. 1). In this situation, the alignment does not contribute to CD [8] and CD is finite only
if the initial state is oriented, as demonstrated numerically below.

Numerical examples. – To illustrate the above findings and to give an estimate of CD for
real systems we calculated fully differential DPE cross-sections for orbitally polarized helium.
The ground state of He has J0 = 0 and cannot be polarized. However, the states 2 1,3P can
be oriented, e.g. by pumping with a circularly polarized laser. Experimentally the use of the
excited He as a target is quite feasible, as was demonstrated by studies on the superelastic
electron scattering from laser excited 2 3P He state [15].

For clarity the calculations are performed using a simple (but reasonable) ground state
wave functions which consist of (anti)symmetrized product of two hydrogen-like single-electron
orbitals unl with effective charges considered as variational parameters(8):

ϕm(r1, r2) = N± [u1s(r1)u2p(r2)Y1m(r̂2) ± u1s(r2)u2p(r1)Y1m(r̂1)] , (10)

(5)In fact, the DPE cross-section with linear polarized light is related to σ(ε̂+) + σ(ε̂−) [12].
(6)For isotropic targets the CD in DPE can be related to the dynamical phase of the final-state wave func-
tion [10].

(7)The DPE cross-section σ possesses a cylindrical symmetry around k̂ if k̂ ‖ â. This fact can be used, in

principle, to determine the angle between â and k̂.
(8)For the 2 1P state the values of the variational parameters are Z1s = 2 and Z2p = 0.97 [16] which gives a
binding energy of E(2 1P ) = −2.123 (experimental value is −2.124). For the 2 3P state one finds Z1s = 1.99
and Z2p = 1.09 [16] leading to the binding energy of E(2 3P ) = −2.131 (experimental value is −2.133).
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Fig. 1 – m-resolved double ionization cross-section of 2 1Pm state of atomic helium following the
absorption of a right (left) circularly polarized photon, labelled respectively by ε+ (ε−). One slow
electron with 5 eV energy is fixed along the light propagation direction k (which is also the quan-
tization axis of the atom (thick arrow)). The polar angle θ of the second 10 eV electron is varied.
The calculations were done using the 3C model for left (a) and right (b) circularly polarized light
and within PWA (c) for right circularly polarized light. (d) the same as in (a), but for the triplet
state 2 3Pm. The results for ε̂+ can be obtained from those shown in the figure applying eq. (11).

where N± is a normalization factor and Y1m(r̂) are the spherical harmonics. The + (−)
sign refers to the singlet 2 1P (triplet 2 3P ) state. The electron-pair states with m = ±1 are
completely oriented along ±z-direction. Taking into account that Y1m(r̂) = (−1)mY ∗

1−m(r̂)
one can show that in the chosen non-chiral kinematics the relation (ε̂+ · fm) = (ε̂− · f−m)∗

holds and therefore
σ(ε̂+,m) = σ(ε̂−,−m). (11)

Thus equations of the type (7) proved for the PWA are valid in a more general case. The
final state ψk1,k2 is approximated by a product of two plane waves modified by three two-
body Coulomb distorting factors, the so-called 3C approximation [17]. The 3C wave function
accounts correctly for all two-particle multiple scattering processes (and hence it is asymptot-
ically correct) but it neglects short-range correlations such as three-body scattering events.
Nevertheless, for the purpose of illuminating the main physical effects (which is our aim here)
the 3C model turned out to be very instructive and in most cases sufficient (for a detailed dis-
cussion of the strengths and shortcomings of the 3C theory we refer to ref. [5]). The functions
fâ are evaluated full-numerically.

Figures 1(a) and 1(b) illustrate the message of this work. Dichroism caused by final-
state phase effects is eliminated by tuning the experimental arrangements to the non-chiral
kinematics with one of the electrons moving along the z-axis. Then, DPE from a state with
a time-reversal symmetry (aligned or isotropic state), such as ϕ1,3Pm=0 = ϕ∗

1,3Pm=0
, does not
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show CD. On the other hand, the existence of a defined positive or negative sense of current
circulation (around the directed vector k̂) associated with the electron pair state results in a
finite CD. It suffices to measure DPE and CD from one orbitally oriented state to know the
results for the (unknown) state with the opposite phase sign, as stated by eqs. (7, 11) and
confirmed by calculations (cf. figs. 1(a) and 1(b)). This finding is decisive to test for orbital
orientation of a given sample. It is important to recall that the phase φ of interest here is that
of the correlated electron pair. Thus, the phase φ will depend on the initial-state correlation
between the two electrons. Figures 1(a) and (d) demonstrate this dependence on one type
of correlation, namely the exchange interaction. As clear from eq. (10), the initial state is
the sum or difference of two (non-identical) complex functions, each having its own phase.
Therefore, the phase φ+ of the sum (singlet state) will be generally different from the phase
φ− of the difference (triplet state), as demonstrated by figs. 1(a) and (d). An explicit analytic
formula for the connection between the phase and CD is established only within PWA through
eq. (8). When more realistic final-state wave functions (such as 3C) are used no such explicit
connection has yet been established. Even though the existence of a phase of fâ is exclusively
due to the initial state (under the non-chiral kinematics), the value of the phase of fâ remains
obscured. This is because fâ is expressed (eq. (9)) as the integral of complex functions. For
this reason, generally, a finite CD is an indicator for the existence of broken time-reversal
symmetry in a system. The dependence of CD on k1 and k2 reveals the interplay between
the time-reversal symmetry breaking and the inter-particle correlation.

As clear from fig. 1 the time-reversal symmetry is restored at certain configurations k1

and k2 (points where σ(m = +1) = σ(m = −1)), which within the PWA can be related
to a vanishing (or constant) phase of the momentum-space two-electron wave function (cf.
eq. (8)). These high symmetry points can be shifted (or removed) by final-state interaction
(cf. figs. 1(b) and 1(c) and eq. (9) for the underlying reason). With increasing energies E1

and E2 the PWA results become more reliable. In fact, figs. 1(b) and 1(c) evidence that,
even at low energies, the PWA captures the overall features of the process, except when
the two electrons are emitted in the forward hemisphere close to each other. In this case
the electron-electron repulsion, which is not included in the PWA, is dominant and leads to
a reduction of the cross-section in these regions. The angular correlation pattern originate
from an interplay between dipole selection rules, exchange interaction and electron-electron
electrostatic repulsion [8].

Final remarks and conclusions. – In summary we have shown that under certain condi-
tions DPE can be utilized to study the existence of two-particle orbital orientation in correlated
systems and it allows to map out the phase dependence on the two-particle correlation. This is
demonstrated explicitly for the case of a polarized atomic helium target. As mentioned in the
introduction we expect the proposed method to be useful for addressing the phase relation in
superconductive materials such as those studied recently [18]. For this case in particular and
for extended systems in general screening effects validate the use of the plane-wave approx-
imation for the final state. This statement has been confirmed by a recent experiment [19].
However, when dealing with SC an additional complication arises: For high-temperature su-
perconductors with a pairing mechanism the coherence length, i.e. the extent of the Cooper
pair, is on the order of few lattice constants and the dipole approximation (on which the above
theory is based) can be used. For conventional superconductors however the coherence length
is on the micrometer scale and one has to deal with all the multipoles in the photon-target
interaction. In this case one can also show [20] that the dichroism is related to the gradient of
the phase of the Cooper pair wave function. In ref. [20] concrete calculations can be found for
copper oxide high-Tc materials with a dx2−y2 wave pairing symmetry in the CuO2 planes. The
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SC gap is then real and hence CD vanishes identically. However, as proposed in refs. [21,22],
upon an admixture of s-wave pairing the SC gap turns complex and the CD is then finite, as
explicitly shown in ref. [20] where other types of pairing with time-reversal symmetry breaking
are analyzed.
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