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ABSTRACT

We study the charge dynamics in a double quantum well and in ballistic mesoscopic rings driven by half-cycle
pulses. It is shown that such pulses can be utilized to localize, within femtoseconds. i control. for picoseconds,
the electronic motion in a Gaj—,Al:As based double quantum well. To identifv the pulse parameters that
appropriate for an efficient control process we developed a simplified analytical model and corroborated the
results by performing full numerical calculations. We also show that when a thin hallistic mesoscopic ring is
subjected to a linearly polarized HCP a post-pulse (and therefore field-free) polarization is induced in the ring.
The non-equilibrium post-pulse polarization oscillates in the ring as long as the coherence is preserved and decays
on a time scale determiined by the relaxation timne.
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1. INTRODUCTION

The time-dependent electric field in a sub-picosecond unipolar electromagnetic pulse rescnibles one-half of an
optical field cycle in an electromagnetic wave and therefore such pulses are often referred| to as "half-cycle” pulses
(HCPs) (Fig.1 b).! In principle, for a freely propagating electronagnetic wave the time integral over the electric
field F(t) vanishes. An HCP makes non exception, however the half cycle with the oppaosite polarity is strongly
attenuated and stretched in time (cf.Fig.1 b). Therefore, in reality HCPs are wono-cvele pulses consisting of a
very short, half ¢ycle with a duration ty4 followed by a mnuch slower half-cycle of an opposite polarity and a much
smalier amplitude (the tail of the pulse). Typical pulse amplitude asymmetry is 13:1.'

The interaction of charge carriers with HCPs differs fundamentally from that with continuous wave (CW)
lasers: if the characteristic time scale of carriers motion (such as the round-trip time of a confined electron)
is longer that the HCP duration, the interaction with HCP can be viewed as an impnlsive “kick™ received by
the electron (as outlined in the appendix).? For times longer than the HCP duration f,, but shorter than the
duration of the complete pulse, the amount of the kick (i.e. the charge carrier womentiun change) is given by
Ap = — 0" F(t)di. This physical picture is reflected in the quantumn dynamics of the particles: subjecting a
particle to an HCP leads in effect to a linear transformation of the momentum space wave function ‘i’(p) in the
direction of the kick, i.e. ¥(p) — T(p+ Ap). In the configuration space, the application of an HCP phase-shifts
the electron wave function according to ¥(r) — ¥(r)e~"AP"*, From this scenario of the clectron-HCP interaction
one may expect that the position and the momentum of a given electronic distribution can be controlled and
manipulated {to a certain degree quantified below) by applving a sequence of kicks with appropriate relative
strengths, delays, and directions. Such HCP trains are feasible nowadays.?

This paper presents two cases demonstrating how the charge carriers behave when exposed to HCPs:

1) we investigate the electron dynaimics in a double quantum well {DQW) driven by a sequence of HCPs. We find
that an appropriately designed train of HCPs renders possible a swift control {in femtoseconds) of the electron
motion in symmetric double-well structures. This finding is in contrast to the case when CW lasers are used
as driving fields,? in which case such a strong lfocalization was not achieved and the time needed to reach the
electron localization is on the order of few picoseconds.?

2) As a second example we study the dynamics of a thin hallistic mesoscopic ring (MR) subjected to a linearly
polarized HCP. Over the past few decades considerable research efforts have been devoted to the study of
mesoscopic systems which constitute a paradigin for the intriguing manifestation of quantum mechanics on a
macroscopic (micrometer) scale. At low temperatures the phase coherence length of the charge carriers in such
systems increases significantly and may well exceed or be on the order of the system size. Quantum interferences
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Figure 1. (a) Electron confining potential: the central barrier hight is ~ 240 meV. The wells and barrier widths are
~ 50 A and ~ 60 A, respectively. {b) The electric field amplitude vs. time for a typical (realizable) sequence of half eycle
pulses.

dominates then the hehaviour of the systemn giving rise to phenoinena such as the persistent curents® 1! and the
Aharonov-Bohm conductance oscillations'? in MRs. A further aspect that was addressed by previous studies is
the dynamics of charge carriers in MR under the action of time-dependent electric fields while the MR is being
threaded by a static magnetic field.**"'® Some investigations were devoted to the dynamical properties of MRs
driven by CW lasers.!?1® Here we focus on the study of the charge polarization of a MR induced by an HCP.
That & time-averaged charge polarization can be induced at all is due to the strong (time) asymmetry of the
HCP, as outlinved above. A CW field does not induce in the ring a time-averaged (over the period of the laser)
polarization. The non-equilibrium charge polarization generated by HCP oscillates in time (as detailed below)
and lasts for times imuch longer than the pulse duration, offering thus the possibility to study non-equilibrium
states in absence of external fields.

2. DYNAMICAL LOCALIZATION IN DOUBLE QUANTUM WELLS

We consider a conduction electron confined in a typical Al;Ga,_ As based DQW. Within the parabolic band
and the effective mass approximations {the effective mass ™ = 0.067myg is assumed coustant throughout the
heterostructure), the time-dependent Schrédinger equation describing the dynamics of the systemn driven by a
sequence of HCPs is given by

., 0¥

zﬁ—a—rzHlI' i H = Hg+ Veony + Vi(z, ) (1)
where Hp is the bare Hamiltonian, Ve refers to the confinement potential [of. Fig. 1 {a)] and V(1) stands
for the coupling of the electron to the pulses. As shown below a typical localization time is ~ 132 fs which is
well below the typical time scale (several picoseconds) for the elastic scattering and electron-phonon interaction
in high purity Ga(Al)As-GaAs heterostructures with typical electron concentrations.?? Therefore, these effects
are subsidiary for the localization process.

The electron interaction with a sequence of N, HCPs is described by the time-dependent potential

Ny

Vizty=xy Falt—t) . (2)
h=1
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where Fi denotes the peak field of the Ath pulse. All the pulses are considered to be described by the same
envelope function a(t) and centered at times £ {k = 1,...,N,}. For the envelope shape we use a Gaussian
function, i.e., a(t) = exp[—t?/(20?)] with ¢ = 10 fs. This means that the relevant (positive polarity) part of
the HCPs envelop |Fig. 1 (b}] is modelled hy the Gaussians, performing the calculations with the actual pulses
shown in Fig. 1 (b) leads to essentially the same results presented below.

The time-dependent Schridinger equation (1) with the driving potential (2) is solved numerically using a
fast-Fourier-transform based numerical method®! for the time propagation of the initial wave function. We
assume that the system is initially in the ground state of the field-free symmetric DQW. Then, before applying
the pulses, the particle is completely delocalized, with the same probability of being in the left or in the right
well. In order to trace the electron motion upon the application of the HCPs, we investizate the time evolution
of the dynamic probability

0
PLt) = / W (o, 61 {x, t)dx {3)

=

of finding the electrou in the left well.

We are particularly interested in the femtosecond control of the electron wave-packet localization in the
double well heterostructure by means of a train of HCPs. As a general strategy for controiling the electron
motion we propose the following scheme. One applies at first (at ¢ = ¢} an auxiliary HCP with a strength
F.uz capable of promoting the system from the ground state to a time-dependent coherent state for which the
electron localizes in one of the well, say in the left well. The localization is achieved at the time ¢ = {1 + {140
the time lag #;,. we call hereafter the localization time. Once the electron has been localized in the left well
one applies a periodic train of HCPs for suppressing the electron tunnelling to the right well. In this way, the
electron localization will be sustained in time until the train of pulses is turned off. The main task is then to
find the appropriate pulse parameters that lead to a sustainable localization of the electron in one of the wells.
To obtain an estimate on such field parameters we developed, in addition to the exact numerical ealculation,
a simplified analytical approach. The analytical approximation is based on the following observations. For the
system under study the two lowest-energy levels are well separated from the other energy states. Hence, for a
certain range of pulse parameters the svstem will behave, basically. as a two-level system. Further simplification
is brought about by the fact that for ultrashort HCPs the duration of each pulse is much smaller than the typical
characteristic time 7. = 27 /w, (w. is the frequency corresponding to the energy difference between the sround
and the first excited states of the field-free DQW) of the undriven system (in the DQW studied here, we have
for example 7. = 665 fs in absence of the pulses, while the duration of the emploved pulses is about 50 fs). As
the width of the pulses is very small compared to the characteristic time of the undriven systeni, one can apply
the impulsive approximation {IA).%? For details on the 1A see Appendix A.

Within the two-level approximation the wave function of the system can be expressed as

2

Yzt = 3 Calt 8O (2) (4)

n=1

where ‘I’ﬁ, () (n = 1,2) represent the two lowest levels of the field-free system. The two-dimensional spinor
C(t) = (Cy{t), C2(t))T obeys the time-dependent Schrédinger equation

N
L AC(1) z
i = | = (Rwe/2)0: + i, g Fra(t — ty)oz | Ct) (5)

where ¢, and o, are Pauli matrices and p,, = (\Ilgo)(m)lw]lll}zm(;r)).

From Eqgs. (3) and (4), and taking into account the symnietry of the system one finds that within the two-level
system approximation the time evolution of the probability of finding the electron in the left well is given by

PLt) = % + Re[CH ()] - (6)
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After application at ¢ = t, of the auxiliary pulse the two-dimensional spinor C(t) = (C, (¢}, Ca(th?T evolves
as {see Appendix A)

C(t) = Up(t, t)U (¢, £1,0)Up (21, 0)C(0) {7}
where -
eiwe [ 0

Up(t,t') = ( 0 e~ Fwelt—=t) ) ' (8)

BiaPy p KD

_ tpo, _ f cos(FEE i isin (21271
Ult, £1,0) = er™ ( isin (2251)  cos ( g‘ ' (9)
and p, = p,,, = Fuuz [ a(t — £1)dt is the momentum transferred to the system by the auxiliary pulse. For the

case of a Gaussian-like pulse the transfer of momentum due to the auxiliary pulse is given by p,, . = Fau.0V27.

Assuming that the system is initially in the ground state of the undriven DQW [i.e., C{#) = (1,0)7] one
obtains from Egs. (6} - (9} that for an auxiliary pulse with peak amplitude such that yx,,p,/f = =/4, the
probability Pp{t; +7./4) = 1, i.e., with a time lag {7./4) upon the application of the auxiliary pulse, the electron
is localized perfectly in the left well. The value 7./4 is then the rough estimate for the localization time. The
appropriate peak field for a Gaussian-like auxiliary pulse to localize the initially delocalized electron can be
estimated as

L
A L Vam (10)
Bityn0

In absence of external fields the localized electron tunnels to the other well (more precisely, the peak value of
the electron probability density oscillates from one well to the other with a period 7.). So the localization can
not be sustained for times intervals longer than 7./4. In order to suppress coherently the tunnelling we apply
a periodic train of HCPs at t; = ¢, + 7./4 + v. The value of v € 7./4 can be chosen arbitrarily subject to the
restriction v <€ 7./4 (this restriction prevents the tunnelling of the electron before the application of the train
of pulses).

The train of HCPs is assumed to be periodic with a period T and to be built out of individual pulses with
peak amplitudes Fi, = F, k& = 2,3,..., ¥,. The evolution of the system after the application of the train of HCPs
is given, at stroboscopic times [f =tz + (k — 2)T; k =2, ..., N} by the relation

Clta + (k= OT) = [Ulta + T )" 2C(t2) + k=2, N, , (11)

where the operator {/(¢; 4+ T, ts) is given by

(12)

-3«.1" :p xw, T ) B
U(£2+T,t.2):Ug(r.2+T,t2)U(t2+T.t-_>,L2):(e cos (=) e ““(‘5“))

: T #2P w.T Sy

ie=aeTgin (B28)  em 3w T ¢os (H28)
and p = F [a(t — tz)dt. Note that in Eq. (11) C(t,) refers to the electron being localized in the left well. For
sustaining this localization in time we then propose to induce a periodic cyclic evolution to the system, ie.. to
drive the systemn through a time dependence such that

Clta+1T) = Clty) : 1=0,1,2,... , (13)

where ¢; is a real number (the phase acquired by the wave function within the Ith evolution cycle) and 7
represents the duration of one evolution cycle (note that 7 does not necessarily coincide with T3, 1t is clear
from Egs. {6) and {13} that if the svstem undergoes a pertodic cyclic evolution then Py {t) becomes periodic with
period 7, ie.,

Prto+1IT)=Pr{tz)  [=0,1,2,... . (14)

Thus, if the particle was localized in the left well at ¢ = ¢5 (le., if Pr{t2) &= 1) then it will also localize in that well
at any time t = ¢2 + /7. By imposing the condition in Eq. {13) on Eq. {11) one obtains that for a periodic train
of HCPs with peak amplitudes such that g, p, /k = 2n + 1)7/2; n € Z, the system follows a cyclic evolution
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Figure 2. a) Py vs. time and peak amplitude F,,: of the auxiliary pulse. Following Fi,: we apply, after a time delay
T =fz — t; = 220 fs, a quasiperiodic train of HCPs with peak amplitudes Fi = 85 kV/cm (see text for details). (b) a cut
in (a) at Fuur = 42.5 kV/om. The values of the peak amplitudes were estimated by using Egs. (10) and {13). The period
of the train of HCPs is set to be T'= 100 fs.

with 7 =T or T = 27 in dependence of whether v = /2 or v # 1'/2. The appropriate peak amplitudes [} for
the train of Gaussian-like HCPs to suppress the electron tunnelling can then be estimated as

2 127
Fomp o A DRVIT s N neZ (15)
4,0
We remark that the condition above has to be complemented with the requirement T <« 7./4, in order to avoid
the tunnelling of the trapped particle between consecutive pulses.

We summarize the ideas of the scheme presented here. An auxiliary pulse with peak amplitude Fj,, given
by Eq. (10) is applied at ¢ = t,. The auxiliary pulse pushes the electron into the left well. Once the particle has
been localized in the left well, a subsequent train of HCPs with period T « 7. /4 (for the numerical calculations
we assumed T = 100 fs) and field amplitudes determined by Eq. (15) is applied at ¢t = t3. The train of HCPs
then keeps the particle localized in that well by “kicking” it back at the time when it starts tunnelling to the
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second well. Following this strategy we performed full numerical calculations, The results (see Fig. 2), evidence
that strong localization of the initially delocalized electron can he achieved in times of the order of a hundred
femtoseconds. This finding is in sharp contrast to the case when CW lasers are used as driving fields,? where it
has not been possible to achieve such a strong localization and, in addition, the time needed to achieve electron
localization was found to be on the order of few picoseconds.* We also note that although we have focused in the
localization in the left well, the electron localization in the right well can be achieved by changing the polarity
of the HCPs. Furthermore, as clear from Fig. 2{a) the localization is robust to considerable changes in the
field strength which makes the present control scheme a good candidate for applications, such as the design of
electro-optical devices and ultrafast switches.

3. CHARGE POLARIZATION OF DRIVEN MESOSCOPIC RINGS

We cousider a one-dimensional, non-interacting MR of radius pg at zero temperature exposed (at t =¢; =0) to a
single HCP which is linearly polarized along the x direction. The ring is considered to be isolated and to contain
N spin—% particles. The applied pulse has a duration 74 much shorter than the ballistic time 7¢ which is the
time interval a particle at the Fermi level (Er) needs for completing one turn around the ring. This condition
74 <€ Tr is currently feasible experimentally: for a typical ballistic ring 7¢ is several tens of picoseconds®?* and
HCPs with 7, = 1 ps are readily available.! The problem can then be treated within the impulsive approximation
{see Appendix A). Within this approximation, the single-particle wave function just before (¢ = 07) and right
after (£ = 0%) the pulse are related through the following matching condition

T(h, £ =07)=Wh t =0 )eos? (16)

where e denotes the electron charge, a = epgp/h aud p is the area of the pulse (i.e. the time-integral over the
electric filed amplitude of the HCP). The polar angle 8 defines the angular position of the charge carrier with
respect to the HCP polarization axis.

The time-dependent wave function ¥, (#,t) describing the evolution of a particle initially residing in the
m, th orbital state can be expanded in terms of the ring staticnary eigenstates ‘ng)(é‘) =™ /\/2r as

1 > : it
T (0.8) = ——= > Cplm, )Mo 78 (17)
0 \/ﬁ 0

Here we denoted the orbital energies of the unperturbed states by F,,, where

m=—oc

9
fem?

= g s= (), L1, 42,0:1 . 18]
2”1"(3% ¥ m L] ( )

m

Taking into acconnt the matching condition stated in Eq. {16) and after applying the expansion theorem one
finds that the expansion coefficients are given by

fort <0

o-m m
— Mg
Cru(n?m t) { im“—me_mn (&) for t >0 ° (19)

with Ji(x) representing the Bessel functions and d,, , is the Kronecker symbol,

Upon applying the HCP the energy spectrum of the particles is rearranged. Specifically, the energy corre-
sponding to a particle initially in the m, th state evolves as

Eniy(8) = (W8 HH Wiy (6,0)). (20)
. EAR >
th < 1I'mn(g! t‘) |0t Pmn(e! t)

Il

From Eqs. {17} - (20} one finds that the energy corresponding to a particle initially in the m, th state is given by

Bim®
E QmY:J- for f S 0 21
my (t) = r)r:'lfp.‘__ (772(2, + qu) fort >0 o
2 i -
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Figure 3. Time dependence of the dipole moment u for different values of the relaxation time 7..;. The radius of the
ring and the number of particles were set to go = 1.5 pm and N = 1600, respectively.

Recalling that oo = gppp/fi we can write for the particle energy upon the pulse

2 2
Ep, (> 0)= By, (t<0)+ % P

2m~

(22)

Thus, applving an HCP to the ring shifts the unperturbed energy spectrum by an amount that scales quadratically
with the strength of the pulse and does not depend on the size of the ring. The initial energy degeneracy {of the
clock- and anticlock-wise circulating angular states) is preserved after the pulse is applied. Furthermore, since
E, (t > 0) grows quadratically with mg Eq. (22) dictates that the energy of a particle at the Fermi level (for
which mg = N/4) is affected only marginally by the pulse if (N/4)? 3 «?/2. For small p and for rings containing
a large number of particles this condition may well be satisfied, e.g., as for the explicit numerical illustrations
discussed helow.

To inspect the structure of the coherent states created by the pulse we analyze Egs. (17) and (19). Under
the condition m’ = |m — myg| 3 a we have from Eqgs. (19) and the asymptotic behavior of the Bessel functions
that.

|Cr(my, t > 0] — (—-—*ﬂ ) ’ " (23)
my. t > 0)] = rm Iy oa. 2
1o fomm’] \2m/! :

In the weak field regine, i.e. for small p, « is small. In such a situation the condition m’ = |m —m,| » a

is easily reached and |Cy,(m,, ¢ > 0)|? rapidly decays when increasing the value |m — m,|, i.e., only few states
(labelled by ) around m, contribute to the coherent population created by the pulse.

It is not difficult to prove from Eqs. (17} - (19) that ¥y, (8.t) =W (-0,{), i.e, the clockwise-counterclockwise
syviumetry of the charge carrier is preserved after the apoplication of the pulse, and therefore, currents carried by
particles initially in the m, and —m, states compensate each other. This fact together with the degeneracy of
the states [see Eq. {21)] confirms the intuitive expectation that no total (time-averaged) current is induced in
the ring.

The dipole moment p,, along the x axis corresponding to a particle initially in the m,th stationary state is
is given by

tm, (£) = qoo{cos @)y () (24)

where

27
(cos@)mn(t)z/o (o, (0,)]? cos 08 . (25)
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Figure 4. Time dependence of the total dipole u{t) as a function of the pulse field amplitude F for an array of eight
non-interacting rings with varying radii [(a) - (d)] and number of particles |(e} - (h}] at zero temperature.

From Egs. (17) - (19), and (25) we deduce that {cos@)nq, (t}) = (cos8)_, (t). Therefore, the contributions of
particles initially in the m, and —m, states to the polarization interfere constructively and a non-vanishing total
polarization is generated. The total HCP-induced dipole moment along the x axis is given by

wu(e) = D" flmy, htm, (t) (26)

m, .0

where ¢ refers to the spin of the particle, f represents the non-equilibrium distribution function, and ,umu(f)
15 given by Eq, (24). In the weak-field limit considered here, the non-equilibrium distribution function can he
calculated within the relaxation time approximation.?® The corresponding Boltzmann equation for determining
[ is given by
aflm ¢t m, ., t) —np(m,
f( [} )_f( nl) F( ) (27)

- "

ot Trel
where 7. represents the (averaged) relaxation time and np(m,) denotes the Fermi-Dirac distribution function
corresponding to the equilibrium state.
We performed explicit calculations for a ballistic GaAs-AlGaAs ring of the type used in the experiment

reported in Ref. 24. The electron effective mass was set m™ = 0.067m,. Sine-square shaped HCPs with a time
duration of 1 ps were considered. All the calculations correspond to the zero temperature regime.
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The time dependence of the total dipole moment w for different values of 7.4 are shown in Fig. 3. Ve
recall that the duration of the pulse is 1 ps. Taking this into consideration we conclude that the build-up and
decay of the polarization, as illustrated in Fig. 3, occur in a field-free manner, e.g., the polarization is generated
within 10 ps after the application of the pulse. This peculiarity can bhe exploited as a unique opportunity for
investigating relaxation processes in absence of external perturbations. It is also noteworthy that the magnitude
of u is substantial [ in Fig. 3 is depicted in units of 10° D]. The maximum absolute value of the induced electric
dipole moment decreases when shortening the relaxation titne, Nevertheless, the post-pulse polarization is still
appreciable within a typical range of values of 7,,; in ballistic semiconductor MRs® as shown in Fig, 3.

A further potential application of the proposed scheme is to apply a pulse {or train of pulses) to an artificially
planar array of isolated rings. Such rings arravs (however interconnected) have been realized experimentally, as
reported in Ref. 26. Upon an appropriate design of the corresponding planar array (e.g.. by varying the radius
or the number of particles in certain rings in the array) one can create a desired map of a charge polarization of
the quasi two-dimensional structured material. This situation is illustrated in Fig. 4 for an array of eizht isolated
rings.

4. CONCLUSIONS

In summary, we showed that the electron motion in a symmetric DQW can be controtled on a femtosecond
scale by subjecting the svstem to an appropriately designed sequence of HCPs. Simpile analytical expressions
for estimating the pulse parameters leading to the dynamical localization of the electron were obtained by using
a two-level system approximation. The analytical results were corroborated by implementing full numerical
calculations. We expect this efficient control scheme to be potentially interesting to various applications, in
particular in designing ultrafast electro-optical devices. We also showed that the application of a linearly polarized
HCP to a ballistic MR induces a post-pulse {and therefore field-free) polarization. The time-cependent post-pulse
polarization could be useful for measuring relaxation times since it oscillates in the ring and decays in a time
of the order of 7,.;. Furthermore, planar arrays of isolated MRs driven by HCPs could be useful for designing
artificially structure materials with desired polarization properties.

APPENDIX A, THE PROPAGATOR WITHIN THE IMPULSIVE APPROXIMATION

We consider a system described by the Hamiltonian H{®. The system is subject to an electromagnetic pulse
centered at ¢ = £;. The subsequent time evolution of the system is determined by the time-dependent Hamiltonian
H = HY 4 V(t), where V(¢) represents the coupling of the external field to the svstem. The time evolution
operator U(t,0) satisfies the equation of motion

meé—i’O—) = [H'O + v(O)U(t.0) | (28)
and satisfies the relation
U({*ato) = UD(t!tl)U(tstl!O)UO(tlvO) B (29)

where the propagator U(t, £,,0) = Ug(t.,tl)U(t.,O)Ué(tl,O) (t > t;) and Uy(t, t,) denotes the evolution operator
of the undriven system. From Egs. (28) and (29) one obtains, after some mathematical manipulations, that

X ot 0 (),
U(l‘-,t]_,o) = Te:(p [_%/ e!H( Ve /hV(t’ + tl)(‘-’_er” /hd!,f:| , (30)
gy

where T is the time ordering operator. For the case of a short interaction time the time ordering in Eq. (30) can
be neglected. This approximation is equivalent to the Magnus expansion of the exponential up to a first order.??
Then for the case of a short pulse, the propagator can be approximated as

] t=ty : . :
Ut t),0) =exp [—%/ etH My 4 Ll)e_’”(m' H'dt'] . (31)

_j_l
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Taking into account the identity
1
e~ Bet =B+[B,A]+§T[(B,A),A1+.,. . (32)
one finds from Eq. {31) the following expansion for the propagator
i i i
Ut,$1,0) = exp |-+ Vo + =3[ Vi, iH O] + —5 {Vo, HOL HO} 4+ ] 33
(213,0) = exp | £ Vo + Vi iHO) 4 (10, HOL HO) (39

where .
IVH = / (“"’ - t’l)nv(tl)dt’ y = Oa 1-2- t> f’l . (34)
0

For the case of our interest here the interaction potential V{t} has the general form V{t) = r.eFa{t —t,), with r
deuoting the spatial coordinate of the carrier, e the polarization vector of the external feld, F the peak amplitude
of the field, and a(t — t;) the envelope of the pulse. We note that since the pulse is strongly peaked arcund £,
the lower and upper integration limits in Eq. (34) can be set fo —o0 and oo, respectively. In the case the pulse
has a Gaussian-like shape, ie., a{t — #1) = exp|-(t - t.1)2/(202)] one obtains

Vo=reFovar ., Vi=0, Vp="Vo? . (35)

On the other hand, H(m/ﬁ ~ 771 (here 7, refers to the characteristic time of the unperturbed system). Therefore,
f o/7e & 1 (Le., if the duration of the pulse is much smaller than the characteristic time of the undriven system)
then the first term of the expansion in Eq. (33) suffices. In such a case the propagator in Eq. (33) can be written
as

Ult, t),0) = exp [%r-p] . {36)

wlere ~
p= —eF/ a(tdt’ (37)

-

is determined by the area of the pulse. The evolution operator in Eq. (29) takes then the following form
Ult, ty) = Ug(i,tl)eﬁr'on(!l,O) . (38)

This equaticn reveals the essence of the impulsive approximation: the action of the pulse can be interpreted as
al instantaneous fick that transfers a momentum p to the system. In particular, one deduces from Eq. (38) that
the wave function of the system right before (¢ = ¢} and just after (¢ = ¢} the application of the pulse satisfies
the following inatching condition

(v, t]) = eT PR (r, t7) . (39)
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