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We propose a simplified version of self-interaction corrected local spin-densitysSIC-LSDd approximation,
based on multiple scattering theory, which implements self-interaction correction locally, within the KKR
method. The multiple scattering aspect of this new SIC-LSD method allows for the description of crystal
potentials which vary from site to site in a random fashion and the calculation of physical quantities averaged
over ensembles of such potentials using the coherent potential approximation. This facilitates applications of
the SIC to alloys and pseudoalloys which could describe disordered local moment systems, as well as inter-
mediate valences. As a demonstration of the method, we study the well-knowna-g phase transition in Ce,
where we also explain how SIC operates in terms of multiple scattering theory.
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I. INTRODUCTION

The self-interaction corrected local spin densitysSIC-
LSDd approximation1,2 has proved to be a useful scheme to
describe static correlations in strongly correlated electron
systems. In particular, it can determine whether an electron is
delocalized or localized, i.e., whether its orbital is part of the
valence states or not. This leads to a determination of the
number of valence states and a nominal valence, as demon-
strated by numerous calculations on rare earths, actinides,
transition metal oxides, including the parent compounds of
the highTc materials and the CMR materials.3–9

The full SIC-LSD scheme is unfortunately difficult to
implement.10 This is due to the repeated transformations
from reciprocal spacesk spaced to real space to evaluate the
self-interaction potential and the back transformations tok
space to solve the band structure problem. So far most ap-
plications of the full SIC-LSD formalism have been imple-
mented in the LMTO-ASAslinearized muffin-tin orbitals in
the atomic sphere approximationd band structure method.11

In this paper a simpler but more versatile scheme is devel-
oped and implemented within multiple scattering theory, in
the Korringa, Kohn, RostockersKKRd formulation. Its main
advantage, thanks to a straightforward determination of the
Green’s function, is a possible generalization to alloys via
the coherent potential approximationsCPAd.12–16 Since a
single-site approximation underpins this new formulation, in
what follows it is referred to as a local self-interaction cor-
rectionsLSICd formalism. It is based on the experience with
the full SIC-LSD implementation showing that to better than
98% the electron is localized on the site under consideration,
which justifies the single-site approximation. While in the
full LMTO-ASA implementation, the representation of the
localized orbitals over a real-space cluster determines the
extent of these orbitals, in the present scheme the degree of
localization is determined by the energy dependence of the
single-site phase shift, in particular the width of its reso-

nance, corresponding to the localized electron. A broader
resonance would imply reduced localization.

The SIC-LSD formalism for solids has been developed
into a scheme that treats both localized and delocalized elec-
trons on equal footing. The decision whether an electron
should be considered as localized or delocalized is based on
a delicate balance between the energy gain due to the inclu-
sion of the self-interaction correctionslocalizationd energy
and the energy loss in band or hybridization energy.3 While
this methodology has been successful in differentiating local-
ized from delocalized electrons, i.e., a dual character of the
electron, it does not describe the interesting crossover be-
tween localized and delocalized states which occurs, for ex-
ample, in heavy fermion systems. Our aim here is to develop
a theory which describes local fluctuations of the electronic
configurations between that where an electron can be said to
be localized and another where an electron is delocalized. It
will be shown that the present local formulation of SIC-LSD
readily lends itself to be the basic idea of such a develop-
ment. The origin of our approach goes back to the invention
and use of the coherent potential approximation to describe
the charge and spin fluctuations about the Hartree-Fock so-
lution of the Hubbard model by Hubbard himselfsHubbard
III approximationd.17–19 The present implementation of this
idea rests on its generalization to account for the correspond-
ing fluctuations about the local density approximationsLDA d
to the first-principles density functional theorysDFTd.20–22In
the literature this generalization, when applied to spin fluc-
tuations, is referred to as the KKR-CPA implementation of
the disordered local momentsDLM d picture.23,24 Indeed, the
present work can be considered as the further elaboration of
this basic idea in which the LSIC replaces the LDA as the
local description of the electronic structure and the attention
is being focused on the valance fluctuations. Interestingly, it
is now well established that Hubbard’s so-called “alloy anal-
ogy” approximation, which prompted the use of the CPA,
leaves out of consideration some very important fluctuations.

PHYSICAL REVIEW B 71, 205109s2005d

1098-0121/2005/71s20d/205109s17d/$23.00 ©2005 The American Physical Society205109-1



The most significant of these are those which give rise to a
Kondo-like resonance at the Fermi energy in the case of the
Hubbard model and correspond to such a qualitatively new
physics as the Mott transition. The relevance of this in the
present context is that such fluctuations are well described by
the dynamical mean field theorysDMFTd25 whose static
limit, for the Hubbard model, is precisely the “alloy analogy”
CPA of Hubbard.19 This point was particularly clearly ex-
plained in the recent paper of Kakehashi.26 Consequently, it
is reasonable to regard our LSIC based KKR-CPA-DLM cal-
culations as investigations of the static limit of a yet unde-
veloped first principles DMFT. In what follows when we
refer to the need to include dynamical effects in the theory it
is the above theoretical considerations we will have in mind.

The paper is organized as follows. In Sec. II we outline
the physical picture underlying the present approach. In Sec.
III a general formulation of SIC-LSD, following Perdew and
Zunger,1 is briefly summarized with reference to some as-
pects of the LMTO-ASA implementation based on the Wan-
nier function representation of localized orbitals.10 In Sec.
IV, the formalism of the local self-interaction corrected local
spin densitysLSIC-LSDd within multiple scattering theory is
described in detail. There we concentrate on the phase shifts
and single-site Green’s function from which the SIC charge
and potential, corresponding to localized electron states, are
calculated within the KKR method. Since the latter can be
easily extended to include coherent potential approximation,
Sec. V briefly summarizes its most important equations in
terms of the multiple scattering quantities. In Sec. VI the
formalism is extended to finite temperatures. The potential
and versatility of the LSIC method is demonstrated on the
application to thea-g phase transition in Ce. In Sec. VII we
first discuss thef-phase shifts, total energies, lattice param-
eters, densities of statessDOSd, and spectral functions at
T=0 K for the a andg phases, as obtained from the LSIC-
KKR method. Wherever appropriate we compare with the
results of the full SIC-LSD implementations within
LMTO-ASA.10 In this section we also present calculations
for finite temperatures and the full phase diagram of the
a-g phase transition. Both the CPA and DLM are utilized to
accomplish the latter, and to illustrate how the present ap-
proach is capable to describe both spin and valence fluctua-
tions at finite temperatures. Section VIII is devoted to vari-
ous aspects of the present approach and among them a
consideration of how intermediate valence could be realized
within the present implementation, which motivates a pos-
sible generalization to include dynamics, as outlined in Sec.
IX. The paper is summarized in Sec. X.

II. PHYSICAL PICTURE

In the present formulation of SIC, we adopt the physical
picture of multiple-scattering theory, where a solid is repre-
sented by an array of nonoverlapping scattering centers. The
electronic motion is then broken down into a sequence of
scattering events and a free propagation in between. The
most useful concept of this method is a phase shift, describ-
ing scattering of electrons from ions, the scattering centers in
a solid. If a phase shift is resonant it is reminiscent of a

bound state at positive energies, i.e., above the zero of the
potential which in our case is the muffin-tin zero. The energy
derivative of the phase shift is related to the Wigner delay
time. If this is large the electron will spend a long time on the
site. Such slow electrons will be much more affected by the
spurious self-interaction and therefore should see a SI-
corrected potential.

In most systems, where the electrons are truly delocalized,
the self-interaction contribution to the potential is negligible
and therefore the LDA is an excellent approximation. When
the phase shift has a resonance one has to calculate the self-
interaction correction for thissl ,md angular momentum
channel. This is accomplished by calculating the one-
electron charge density for this channel, defining the charge
density for the self-interaction correction. From this one can
readily calculate the self-interaction potential which has to
be added to the LSD potential, and then the new phase shifts
are calculated for the totalsSIC-LSDd potential. This has to
be carried outm channel bym channel for a given angular
momentuml. The minimum of the total energy will deter-
mine the optimum configuration ofsl ,md channels to be self-
interaction corrected. Therefore to each of them channels
one can assign two potential functions,Veff

SIC-LSDsrd and
Veff

LSDsrd. The formalism determining the energy functional
associated with the potentialVeff

SIC-LSDsrd is briefly outlined in
the next section. It should be mentioned here that if the total
energies corresponding to these two different potentials are
sufficiently close, one can envisage dynamical effects to play
an important role as a consequence of possible tunneling
between these states. We shall return to this point in the later
sections.

III. SIC-LSD FORMALISM

It has been pointed out by Perdew and Zunger1 that den-
sity functional theorysDFTd schemes, like the local spin
density approximation, suffer from a spurious self-
interaction of the electrons with themselves. In principle, this
self-interaction term should vanish exactly, as it does in the
Hartree-Fock theory. In practice, however, this cancellation
is incomplete. Perdew and Zunger suggested an approximate
solution to this problem, which was constructed for finite
systems but is here extended to solids in a different way as
compared to previous implementations for solids.2

The usual representation of the total energy within the
LSD-DFT formalism in the Kohn-Sham approach21 is

ELSDfn↑,n↓g = o
as

occ

kfasu − ¹2ufasl

+ Eext + EHfng + Exc
LSDfn↑,n↓g, s1d

wherefas’s are the Kohn-Sham orbitalsfas is a combined
index labeling the orbital and spins↑ or ↓d, respectivelyg,
nas= ufasu2, ns=oa

occnas, n=n↑+n↓. Eext is the external field
energy functional,EH is the Hartree energy
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EHfng =E d3r E d3r8
nsr dnsr 8d
ur − r 8u

, s2d

and Exc
LSD is the LSD approximation to the exchange-

correlation energy functional. On the basis of the above, Per-
dew and Zunger proposed a self-interaction corrected LSD
on an orbital by orbital basis

ESIC-LSDfhnasjg = ELSDfn↑,n↓g − o
as

occ

sEHfnasg + Exc
LSDfnas,0gd,

s3d

by subtracting explicitly the self-Coulomb and self-exchange
and self-correlation energy of alloccupiedorbitals. This cor-
rection restores the property that the true functionalEfng
should have, namely that the self-Coulomb energy exactly
cancels the self-exchange and self-correlation energy for ev-
ery single orbital,EHfnasg+Exc

exactfnas ,0g=0. This leads to an
orbital dependent SIC potential seen by an electron in orbital
fas,

s4d

with the external lattice potentialVextsr d, and

VHfngsr d = 2E d3r8
nsr 8d

ur − r 8u
, s5d

Vxc,s
LSDfn↑,n↓gsr d =

dExc
LSDfn↑,n↓g

dns

. s6d

This self-interaction correction vanishes exactly only for
extended states. In order to apply the SIC scheme to solids,
the approach by Perdew and Zunger has to be generalized.
This involves simultaneously a Wannier representation of the
orbitals, necessary to determinenas of Eq. s4d, and a Bloch
representation to solve the band structure problem. Further-
more, the Wannier functions are required to fulfill the local-
ization criterion which ensures that the energy functional is
stationary with respect to unitarian mixing among the orbit-
als. This localization criterion is necessary, because the SIC
is not invariant under unitary transformations of the occupied
orbitals. This is in contrast with the LSD where a unitary
transformation of the occupied orbitals leaves the LSD po-
tential invariant, since the total charge density remains unal-
tered. For the orbital dependent SIC potentialVSIC such a
unitary transformation will changeVSIC. The localization cri-
terion kauVa

SIC−Vb
SICubl=0 determines the unitary transfor-

mation which ensures the global minimum of the total en-
ergy and the hermiticity of the Hamiltonian. Solutions of this
equation usually take the form of the eigenvectorual having
weight in one channel onlyfsIm a jd2+sRea jd2=1g which
would be different from the channel where the weight of the
eigenvectorubl fsIm bid2+sRebid2=1g is concentrated, i.e.,i
is not equal toj . This generalization forms the basis of the

SIC implementations10,27 which start from a band-picture
scenario.

IV. SINGLE-SITE SIC-LSD FORMALISM

As already mentioned, the proposed generalization of the
Perdew and Zunger idea is based on the notion of resonances
in scattering theory, which are the reminiscence of atomic
states in the solid. Core states are represented by bound
states at negative energies, where the imaginary part of the
generalized complex phase shift jumps abruptly byp. Local-
ized valence states still have very sharp resonances but band-
like states are characterized by slowly varying phase shifts.

The central quantity ofsscalar-relativisticd multiple scat-
tering theory is the single-particle Green’s function15

Gssr ,r 8;ed = o
LL8

Z̄Ls
i sr i ;edtsLL8

i j sedZL8s
j sr j8;ed

− o
L

Z̄Ls
i sr ,;edJLs

i sr .;eddi j , s7d

with r =Ri +r i, wherer i is a vector inside the cell atRi, L
=sl ,md denotes the combined index for the decomposition
into symmetrized lattice harmonicsYL andr ,sr .d is the vec-
tor smallerslargerd in magnitude from the pairsr ,r 8d. The
building blocks of the Green’s function are the regular and
irregular solutions of the radial Schrödinger equation at a
given scomplexd energye,

ZLs
i sr i ;ed = Zls

i sr i ;edYLsr̂ id, s8d

Z̄Ls
i sr i ;ed = Zls

i sr i ;edYL
* sr̂ id, s9d

JLs
i sr i ;ed = Jls

i sr i ;edYLsr̂ id. s10d

The scattering-path matrixt sin iL, jL8 and s representa-
tiond,

tsed = ft−1sed − gsedg−1 s11d

is related to the structural Green’s functiongsed, describing
the free propagation between the scattering centers, and thet
matrix defines the single-site scattering.

The total valence charge density per spins is given by

nssr d = −
1

p
E

EB

EF

de Im Gssr ,r ;ed, s12d

whereEB andEF denote the bottom of the valence band and
the Fermi energy, respectively. In standard LSD calculations,
the new effective potential for the next iteration of the self-
consistency cycle is calculated from this densitysnow in-
cluding the core contributionsd as

Veff,s
LSDsr d = Vextsr d + VHfngsr d + Vxc,s

LSDfn↑,n↓gsr d. s13d

In order to remove the spurious self-interaction, still present
in this potential, we consider the problem of electrons mov-
ing in an array of scatterers. As already mentioned, an elec-
tron which shows localized behavior has a sharp resonance
in its phase shift, associated with a large Wigner delay time
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on a particular site. To determine the SIC charge we will
consider for a moment the atomic limit, i.e., the situation
where the scatterers are far apart. In this case the single-site
t matrix and the local multiple scatteringt matrix coincide,
and all occupied states correspond to bound states. In this
limit each bound state contributes exactly the charge of one
electron, and this charge can be calculated by integrating the
diagonal of the spectral function just around the energy of
the bound state. In order to be able to decompose the charge
density fEq. s12dg into different angular momentum chan-
nels, we choose symmetry adapted spherical harmonics.
These are defined by applying a unitary transformation to the
ordinary realsor complexd spherical harmonics, such that the
on-site scattering matrix becomes diagonal,

o
L1,L2

ULL1

† tL1,L2

ii sedUL2L8 = dLL8t̃LL
ii sed. s14d

It is easy to verify that the required transformation matrixU
is, in fact, independent of the energye. This transformation
to symmetry adapted spherical harmonics also ensures that
the degeneracy of states, which are localized, is conserved.
We will demonstrate this later by SI correcting the triplet
statessone by oned of the Cef manifold. In this symmetrized
representation, the Green’s function, which in the atomic
limit equals the atomic Green’s function, becomes diagonal
with respect to this quantum number. Hence we can decom-
pose the spin resolved charge density into itsL components
and define the charge of a state, characterized by its principle
quantum numbern, angular momentumL, and spins,

nnLs
SICsr d = −

1

p
E

E1

E2

de Im GLL,ssr ,r ;ed, s15d

where the energiesE1 and E2 lie slightly below and above
the energy of the statenLs. Within the multiple scattering
formulation, in the atomic limit, this charge density can be
written as

niLs
SICsr d = −

1

p
E

E1

E2

de ImfZ̄Ls
i sr i ;edtsLL

ii sedZLs
i sr i ;ed

− Z̄Ls
i sr i ;edJLs

i sr i ;edg, s16d

where i is the site index, since in this case the single-sitet
matrix and thet matrix are obviously identical. This, of
course, is not the case for a solid with finite lattice spacings.
When considering resonances in a solid it is nota priori
clear whether to use thet or t matrix for calculating the
charge density in question. The main difference between us-
ing the t matrix or t matrix is that the latter does include a
small hybridization of the localized state with the surround-
ing atoms, while the former does not. Also the choice of the
lower and upper integration limits is not clearly defined. We
will now give a short discussion of the possible modes for
calculating the SIC charge of a resonant state.

The lower integration limit is most reasonably chosen to
be the bottom of the energy contourEB. However, care has to
be taken that this contour always encloses the SI-corrected
states. In the case of Ce, discussed in the following sections,
the contour also includes the 5p semicore states. The upper

integration limit could be either chosen such that the SIC
charge density integrates to exactly one electron, or simply
set to the Fermi energyEF. Using thet matrix, we find that
we have to integrate up to anEtop, which is slightly above the
Fermi level in order to capture one electron. Thet matrix, on
the other hand, due to hybridization, yields a charge of one
for energies slightly below the Fermi energy. Unfortunately,
when dealing with thet matrix, it is computationally very
expensive to assumeE2 different from the Fermi energy.
However, the excess charge due to integrating up to the
Fermi level is only of the order of a hundredth of an electron.
sThe missing charge in case of integrating thet matrix up to
the Fermi level is of similar magnitude.d In the following we
used thet matrix integrated up toEF to determine the SIC
charge. Some tests with thet matrix, and the requirement of
a SIC charge of unity, resulted in an upward shift of the total
energies by about 1 mRy.

The charge density, calculated in either of the proposed
ways, is used to construct the effective self-interaction free
potential, namely

Veff,iLs
SIC−LSDsr d = Veff,s

LSDsr d − VHfniLs
SICgsr d − Vxc

LSDfniLs
SIC,0gsr d.

s17d

In this paper we only consider the spherically symmetric part
of the SIC density and SIC potential. Hence, thet matrix is
diagonal in l and m. Here it should be noted that, if we
transform the equations back to the unsymmetrizedsreal or
complexd spherical harmonics, this effective potential as-
sumes matrix character with respect to the angular momen-
tum, and would not simply couple to the density, but rather
to the nondiagonallm, l8m8 density matrix. This is concep-
tually analogous to the rotationally invariant formulation of
LDA+U by Dudarevet al.28

For each self-interaction corrected channelL̃=sl̃ ,m̃d and

s̃, we replace theL̃th element of the originalt matrix by the
one obtained from the SI-corrected potential

t̃Ls
i = tLs

i s1 − dL,L̃ds,s̃d + t
L̃s

i,SIC-LSD
dL,L̃ds,s̃, s18d

wheretLs
i is thet matrix calculated from the effective poten-

tial Veff,s
LSDsr d, andtLs

i,SIC-LSD is calculated from the SI-corrected
potentialVeff,iLs

SIC-LSDsr d. This t̃ matrix is then used in Eq.s11d to
calculate the SI-corrected scattering path matrixt̃. From the
latter the new SIC-LSD charge density is calculated, and the
process is iterated until self-consistency is reached. The cor-
rection term, which approximately compensates the self-
repulsion, is an attractive potential which will pull down in
energy the state to which it is appliedssee Sec. VIId.

To finish this section we would like to mention that in
contrast to the LSD, the SIC-LSD Hamiltonian is not invari-
ant under unitary transformations of the occupied orbitals. As
pointed out before, in the full implementation the localiza-
tion criterion is applied to make the solution stationary under
this unitary mixing of states. In the present implementation
there is no such localization criterion, and one has to be
solely guided by the energetics to find the global energy
minimum. Note that the total energies are invariant under a
rotation of the coordinate system owing to the symmetry
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adapted spherical harmonics that diagonalize thet matrix at
theG point. Hence, the energies of the configurations where,
one by one, each state out of a degenerate manifold is local-
ized are the same. This was tested on Ce by SI correcting all
f states separately. As expected, the energies for localizing
any of theT1u sor, respectively, theT2ud states were identical.

V. CPA GENERALIZATION

One of the advantages of the multiple scattering imple-
mentation of the SIC-LSD formalism is that it can be easily
generalized to include the coherent potential
approximation,12–16 extending the range of applications to
random alloys. In addition, one can use it to treat static cor-
relations beyond LSD by studying pseudoalloys whose con-
stituents are composed, e.g., of two different states of a given
system, one delocalized, described by the LSD potential, and
another localized, corresponding to the SIC-LSD potential.
Combined with the DLM formalism for spin fluctuations,23,24

this allows also for different orientations of the local mo-
ments of the constituents involved.

In the CPA extension of the SIC-LSD formalism, bearing
in mind its single-site aspect, it is required to satisfy the
following CPA self-consistency condition

ctA,00sed + s1 − cdtB,00sed = tC,00sed, s19d

where the impurityt matricestA,00sed andtB,00sed are given
by

tA,00sed =
tC,00sed

h1 + tC,00sedftAsed − tCsedgj
s20d

tB,00sed =
tC,00sed

h1 + tC,00sedftBsed − tCsedgj
, s21d

and thet matrix of the coherent potential approximation

tC,00sed =
1

VBZ
E d3k

1

ftC
−1sed − gskW,edg

. s22d

HereVBZ is the volume of the Brillouin zonesBZd, tAsed and
tBsed are the respective single site scattering matrices of the
A and B species, occurring with the concentrationsc and 1
−c, respectively, andtCsed is the t matrix of the effective
CPA medium. Note that in the CPA extension of the SIC-
LSD formalism, the CPA conditionfEq. s19dg is an additional
self-consistency criterion to the usual charge or potential
self-consistency.

Finally, it should be mentioned that the formalism of this
section can be easily generalized from a binary to a multi-
component case, as described in Ref. 29. In addition, an ex-
tention of the LSIC-CPA formalism to finite temperatures
can be implemented as described in Sec. VI.

VI. FINITE TEMPERATURES

In this section we summarize the relevant formulas under-
lying the finite temperature generalization of the present for-
malism in its CPA extention. In contrast toT=0, at finite

temperatures the physics is dominated by thermalsclassicald
fluctuations. Therefore, to properly take into account the fi-
nite temperature effects, one needs to evaluate the free en-
ergy of the systemsalloyd under consideration, namely

FsT,c,Vd = EtotsT,c,Vd − TfSelsT,c,Vd + Smixscd + Smagscd

+ Svibscdg, s23d

where Sel is the electronicsparticle-holed entropy,Smix the
mixing entropy,Smag the magnetic entropy, andSvib the en-
tropy originating from the lattice vibrations.

The electron-hole entropy is defined as37

SelsT,c,Vd = − kBE densedhfbsedln fbsed

+ f1 − fbsedglnf1 − fbsedgj, s24d

wherekB is the usual Boltzmann constant andfbsed denotes
the Fermi-Dirac distribution function. The entropy of mixing
in the case of a binary system can be expressed as

Smixscd = − kBfc ln c + s1 − cdlns1 − cdg. s25d

The magnetic and vibrational entropies are strongly depen-
dent on the system under consideration, and they will be
discussed in more detail in the section dedicated to the phase
diagram of Ce.

Finally, note that in the definition of the free energy, the
finite temperature enters only via the Fermi-Dirac distribu-
tion and the entropy contributions, while for the exchange-
correlation energy, being part of the total energyEtot, the T
=0 K LDA sLSDd approximation is used for all tempera-
tures, which is a common practice in allab initio calcula-
tions.

This section completes the formal description and imple-
mentation of the LSIC-KKR-CPA band structure method. In
the following sections we shall illustrate the potential and
versatility of this approach for describing strongly correlated
electron systems by an application to Ce. There we present
both theT=0 K and finite temperature results, including the
phase diagram of the famousa-g phase transition.

VII. CE a-g PHASE TRANSITION

Ce is the first element in the periodic table that contains
an f electron, and shows an interesting phase diagram.30 In
particular, its isostructuralsfcc→ fccd a-g phase transition is
associated with a 15%–17% volume collapse and quenching
of the magnetic moment.30 The low-pressureg phase shows
a local magnetic moment, and is associated with a trivalent
configuration of Ce. At the temperatures in which theg
phase is accessible, it is in a paramagnetic disordered local
moment state. Increasing the pressure, the material first
transforms into thea phase, which is indicated to be in an
intermediate valence state with quenched magnetic moment.
At high pressuress50 kbar at room temperatured Ce eventu-
ally transforms into the tetravalenta8 phase. With increasing
temperature, thea-g phase transition shifts to higher pres-
sures, ending in a critical points600 K, 20 kbard, above
which there is a continuous crossover between the two
phases.
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In the following paragraphs we first discuss the SIC and
non-SICf-phase shifts and densities of states. Then we com-
pare the results of LSIC total energies, for the ferromagnetic
arrangement of local moments, with the earlier calculations
of the full SIC implementation, in order to benchmark the
method. After discussing the density of states of the LDA
and SIC-LSD calculations, we mix the two phases using the
CPA and DLM for the spins. Finally, allowing for finite tem-
peratures, we describe the full phase diagram of Ce.

A. f-phase shifts and corresponding densities of states

Before presenting our results for the phase diagram, we
discuss briefly the scattering properties of a single Ce site. In
particular, we concentrate on the phase shifts and corre-
sponding densities of states forf electrons. In Fig. 1 we
show the phase shifts for the SI corrected and uncorrectedf
channels of Ce. It can be seen that the uncorrectedf states
have a very sharp resonance just above the Fermi energy.
The steep resonance corresponds to a long Wigner delay time
and indicates that the state is already well localized. The
self-interaction correctedf state is shifted down in energy by
about 9 eV, and becomes a bound statesit lies below the
muffin-tin zerod.

In Fig. 2 we present the density of states and the inte-
grated DOS for the self-interaction correctedf channel. It
can be seen that by integrating Eq.s16d up to the Fermi
energy, one collects slightly more than one electron. This is
because there is a small density of states in the vicinity of the
Fermi levelsnote the scale of the left-hand-side axis in Fig.
2d, which is due to slight hybridization of the SIC channel
with the other f channels whose resonances occur in the
vicinity of the Fermi levelssee Fig. 1d. Some contribution to
this density of states might also come from 5f states. This is
implied by the behavior of the phase shifts in Fig. 1. The
sharp jump byp indicates that the 4f state is a bound state of
the SIC potential, and the slow rise of the phase shift above
the Fermi energy can be associated with the progression to-
wards the 5f state. Figure 2 also shows that the integrated
DOS at the energy where the phase shift goes throughp, i.e.,

at about −2.5 eV, is slightly less than 1. This is most likely
due to the integration method used to display the quantities
in Fig. 2 which is less accurate than the contour integral used
in the self-consistent calculations.

B. Total energies and equilibrium volumes of Cea and g
phases

In order to determine the ground state configuration of Ce
at a given volume, we calculated the total energies for dif-
ferent volumes using the LDA to describe thea phase and
the SIC-LSD formalism for theg phase, when SI-correcting
one localizedf electron, allowed to populate in sequence all
possible f states. In both LDA and SIC-LSD calculations
spin-orbit coupling has been neglected for valence electrons,
but fully included for core electrons, for which the Dirac
equation has been solved. The corresponding total energies
as functions of volume are shown in Fig. 3. We find that the
LDA, used to represent thea phase, yields the lowest energy
minimum, as seen in Table I. There the ground state proper-
ties of the studied configurations are summarized. Table II
compares the present results for the ground state configura-

FIG. 1. sColor onlined Phase shifts of the SI-corrected and un-
correctedf states in Ce from the SIC-LSD calculation. The energies
are relative to the Fermi level.

FIG. 2. sColor onlined Density of states and integrated density of
states of the SI-correctedf channel.

FIG. 3. sColor onlined The calculated total energies for Ce from
LDA and SIC-LSD, with differentf states localized, as functions of
volume, given in atomic unitssa.u.d3.
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tions with previous calculations and with experimental val-
ues. Note small differences between the different calcula-
tions, which are due to different schemes, and indicate the
sensitivity of the results to computational details.

The observed degeneracy of the states within the triplets
demonstrates the rotational invariance of the formalism.
Note the large crystal fieldsCFd splitting, separating theT1u
triplet from the other SIC states. As already mentioned, the
calculations presented in this section assume a ferromagnetic
alignment of the local moments in theg phase. However,
when discussing the phase diagram of Ce, we will also con-
sider the disorder of the local moments using the DLM
framework.23,24

For theg phase, treated ferromagnetically, out of the three
possible localized states listed in Table I, the state with the
A2u symmetry gives the lowest energy solution. This local-
ized state is also associated with the highest volume among
the possible localized configurations. Only 0.8 mRy separate
the minima of thea andg phases, giving rise to the transi-
tion pressure at the absolute zero of about −2.3 kbar. This is
in good agreement with the experimental value of −7 kbar,

when extrapolated to zero temperature, and with other theo-
retical valuesssee also Table IVd. The bulk moduli, given in
Table I, are calculated at the theoretical equilibrium volumes.
When evaluated at the experimental volumessas it is com-
mon practice in DFT calculationsd, their values are substan-
tially reduced to 239 kbar for thea phase and 203 kbar for
the g phase, which is in considerably better agreement with
the experimental numbers. The volume collapseswith re-
spect to the volume of theg phased is obtained at 22%,
which also compares well with the experimental values of
15%–17%. We note that the underestimation of the volumes
of both thea andg phases is due to the KKRl-convergence
problem, which was addressed by Moghadamet al.34 They
demonstrated that angular momenta as high as 16 were
needed to obtain satisfactory convergence in the total energy.
In the present calculations we chooselmax=3, which does not
seem sufficient for a good description of the equilibrium vol-
umes of the two phases. Although it seems that this
l-convergence problem should affect the LSD and SIC-LSD
calculations in a similar manner, we see a significantly larger
error for thea phase, in agreement with the results obtained
by other well-known KKR packages when the LDA approxi-
mation is implemented to describe the electronic structure of
thea phase.35 The larger error for thea phase than for theg
phasesfound also in the LMTO-ASA calculationsd is most
likely due to the fact that LDA is not adequate for describing
the experimentally reported correlated nature of thea phase.
In fact, the LDA calculations correspond strictly to the high-
pressurea8 phase, which is purely tetravalent and has a
smaller lattice constant than the observeda phase. However,
as already mentioned, in our calculations we have treated Ce
as a trivalent systemsone localizedf electrond in theg phase,
and a tetravalent systemsall f electrons are treated as delo-
calizedd in the a phase. Experimental data seems to suggest,
thata-Ce has a noninteger valence of 3.67. One could argue

TABLE I. The total energy differences as obtained from the
LDA and SIC-LSD calculations, with respect to the ground state
energy solutionsLDA d, for Ce in different f configurations. The
corresponding volumes and bulk modulisevaluated at the theoreti-
cal lattice constantsd are also given.

DE smRyd V sa.u.d3 B skbard

LDA 0.0 158 701

A2u 0.8 202 355

SIC T1u 20.3 201 352

T2u 1.5 197 351

TABLE II. Comparison of the computed equilibrium volumes and bulk moduli with those of other
calculations and experiment. The bulk moduli have been calculated at the theoretical equilibrium volumes.
Note that unlike in the present, SIC-LSDsKKRd implementation, the results based on the LMTO refer to the
full SIC-LSD scheme, involving repeated transformations between real and reciprocal spaces, and Bloch and
Wannier representations. The two different sets of LMTO calculations refer to different basis sets and to
different ways of solving the SIC-LSD eigenvalue problem. In the reported LDA and GGA calculations the
g phase was modelled by constraining thef electrons to the core.

Method

a-Ce g-Ce

V sÅ3d B skbard V sÅ3d B skbard

SIC-LSD sKKRda 23.4 701 29.9 355

SIC-LSD sLMTOdb 24.7 484 32.6 310

SIC-LSD sLMTOdc 25.9 443 34.0 340

LDAd 24.5 477 33.7 312

GGAd 27.7 391 37.3 288

Expt.e 28.2 270 34.7 239

aThis work.
bReference 31.
cReference 32.
dReference 33.
eTaken from Ref. 33.
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that this intermediate valence character of the 4f state could
be represented in terms of a pseudoalloy composed of the
trivalent and tetravalent Ce atoms. We shall elaborate on this
point in one of the following sections.

C. Densities of states of Cea and g phases

The densities of states of Ce from the LDA and ferromag-
netic SIC-LSD calculations are shown in Fig. 4. The LDA
DOS shows all thef states hybridized into thes, p, and d
states. However, in the SIC-LSD panel of the figure, one
clearly sees the split-off localizedf state at about −8 eV. Of
course, this does not agree with the spectroscopic position of
this state. To accomplish the latter, one would have to take
into account the self-energy, which could be evaluated from
the total energy difference corresponding to systems with
constrainedf occupations.36 The localizedf state apart, one
can clearly see the exchange splitting of the remaining states
in the SIC-LSD calculations. The unoccupiedf states in the
SIC-LSD density of states are pushed up by 1 eV or so.
These unoccupiedf states are furthermore exchange split by
1 eV.

From Table III we note that the number of occupiedf

states hardly differs between theg phase and thea phase.
This noninteger value of 1.35 in both cases is a consequence
of the hybridization of thef states with thes, p, andd states
seen in Figs. 5 and 6. The number off electrons remains
constant between the LDA and the SIC-LSD, which might
seem rather surprising. What happens is thatf electrons that
participate in bonding in thea phase get transferred to local-
ized electrons in theg phase. At the same time some of the
bondingd electrons are transferred to the repulsivesp chan-
nel. These effects conspire to give the larger lattice constant
for the g phase.

The s, p, andd spin-resolved densities of states of Fig. 5
show remarkably rigid band behavior between the LDA and
SIC with the Fermi energy moving down with respect to the

TABLE III. Angular momentum decomposed charges from
LDA and SIC-LSD calculations. Note that thep channel includes
the 5p semicore states.

s p d f

LDA 0.40 6.06 2.19 1.35

SIC 0.51 6.16 1.99 1.35

FIG. 4. sColor onlined Spin-resolved density of states of Ce in
the a sad andg phasesbd with ferromagnetic arrangement of local
moments.

FIG. 5. sColor onlined Spin- and symmetry-resolved DOSsin
states/eVd for the states originating fromssA1gd, psT1ud, and
dsT2g andEgd channels. As in Fig. 4, the SIC-LSD calculation re-
fers to the ferromagnetic arrangement of the local moments.

FIG. 6. sColor onlined Spin- and symmetry-resolved DOSsin
states/eVd for the states originating fromf channels. Note the dif-
ferent scale of the plot with respect to Fig. 5. As in Fig. 4, the
SIC-LSD calculation refers to the ferromagnetic arrangement of the
local moments.

M. LÜDERS et al. PHYSICAL REVIEW B 71, 205109s2005d

205109-8



SIC-LSDd partial density of states. We also note that in Fig.
6 the unoccupiedf states are well separated from the Fermi
level, because the Fermi energy is lowered, and the hybrid-
ization with the occupieds, p, andd states has been substan-
tially reduced. These changes in thes, p, andd densities of
states are also reflected in Table III where we see a reduction
of 0.2 electrons in thed channel of the localized phase and a
corresponding increase of 0.1 electrons in both thes and p
channels of the localized phase. Even though the Fermi en-
ergy moves down in the localized phase, we see from Fig. 5
that the number of occupied states in thes and p channels
has increased.

D. Ce a-g pseudoalloy

In order to improve on the LDA representation of corre-
lations in thea phase of Ce, in the present approach, in the
spirit of the Hubbard III approximation,19 one can model the
experimentally implied noninteger valence of the Ce ions by
a pseudoalloy consisting of the trivalentsSIC-LSDd Ce ions
with concentrationc, and the tetravalentsLDA d Ce ions with
the concentrations1−cd. In addition, taking into account the
disordered local moments of the trivalent Ce ions in theg
phase, one can assume that their up and down orientations
occur with equal probabilities. Supposing homogeneous ran-
domness, such a ternary pseudoalloy can be described by the
coherent potential approximationsCPAd. The respective con-
centrations of the trivalent and tetravalent Ce ions in the
pseudoalloy are then determined by minimizing the total en-
ergy for each volume with respect to the concentrationc.

In Fig. 7 we show the total energies for thea-g pseudoal-
loy at T=0 K, in which theg phase occurs with the concen-
trationc sc/2 for each spin orientationd, and thea phase with
the concentrations1−cd, for several lattice constants. It can
be seen that all shown total energy curves have their minima
either atc=0 spurea phased or c=1 spureg phased. Hence a
fractional occupation of the 4f state appears to be energeti-
cally unfavorable for all lattice constants. From these calcu-
lations we can conclude that a static, single-site approxima-
tion is not sufficient to describe the intermediate valence

state ofa-Ce at T=0 K. These calculations are consistent
with the earlier results by Svane who performed supercell
calculations to model 25%, 50%, and 75% ofa-g admix-
tures, but treating theg phase ferromagnetically and not as a
DLM phase.32 There too, no total energy minimum was
found for intermediate concentrations between 0 and 1, and
also a mainly convexsfrom aboved curvature for the total
energy, as a function of concentration, was obtained. This
suggests that to describe the intermediate valence state of the
a phase one would need to consider a dynamical generaliza-
tion of the CPA,26 which would involve dynamical fluctua-
tions between the trivalent and tetravalent states. Other pos-
sible mechanisms to favor intermediate valence will be
commented about in Sec. VIII.

E. Ce a-g spectral functions

In this section we discuss the spectral functions along the
G-X line, calculated for the pseudoalloy consisting of 50%
g-admixture into thea phase, i.e., 50%a, 25% g spin-up
and 25%g spin-down, in comparison with the spectral func-
tions of the pure phases, all at the same volume, as shown in
Fig. 8. The pureg phase has been represented by a 50%
spin-up and 50% spin-down alloy. The purea phasefpanel
sadg shows a well-defined band structure.sThe minor smear-
ing of the bands is due to a small imaginary part added to the
energy.d Of course, the LDA leads trivially to a non-spin-
polarized band structure, but the absence of an exchange
splitting in panelssbd and scd is due to the use of DLM,
which defines an effective medium in which the local mo-
ments are averaged out. In the panelssbd and scd the broad-
ening of the spectral functions is apparent. The actual line-
width of the spectral function can clearly be seen in Fig. 9,
showing the spectral functions at theG point. Here, similarly
to the smearing effect seen in Fig. 8, the residual linewidth
seen in panelsad is purely due to the small imaginary part of
the energy, necessary to obtain well behavedt matrices.

The spectral functions reveal some features of the current
approach. First, it can be seen that thes- andd-derived states
at theG point are hardly affected by the CPA. These states
have no hybridization with the SI-correctedf state. Symme-
try analysis of the spectral function, shown in panelsbd of
Fig. 9, reveals that theA2u f state appears twicesthe peak at
−8 eV and the sharp shoulder just above the Fermi energyd,
since we are in the split-band regime. Due to the DLM treat-
ment of theg phase, this feature is also seen in panelscd,
where the upper of the split-band peaks merges with the
lower triplet f peak. The two tripletssT1u and T2ud show
common band behavior. The corresponding broadenings are
very different between panelssbd and scd. Moreover, panel
scd, as compared to panelsad, also shows that the unoccupied
f states have been pushed up in energy, because the localized
f electron is more effective in screening the nuclear charge.
This results in an energy splitting of thea andg unoccupied
triplets which leads to a broadening of the unoccupied trip-
lets, as seen in panelsbd. The shoulder at about 1 eV is an
indication that the splitting is noticeable on the scale of the
dispersion of the bands. The broadening of the triplets is
reduced in panelscd where noa phase is admixed and where

FIG. 7. Total energiessT=0 Kd of the Cea-g pseudoalloy as a
function of the concentration of localized states. The curves corre-
spond to the lattice constants, indicated in the figure. The labels of
8.85 and 9.05, corresponding to the remaining curves, have been
omitted for readability.
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the broadening of the lower triplet state is a consequence of
merging with the upper split-band peak of the singlet state.
Note that thef states at the Fermi level have a finite lifetime
which might indicate a shortcoming of the static CPA for the
description of an intermediate valence, a coherent mixture of
the localized and delocalized states in terms of wave func-
tions might be a more appropriate description.

F. Phase diagram

In this section we concentrate on the finite temperature
phase diagram of Ce. The idea of describing Ce at finite

temperatures as a pseudoalloy ofa- andg-Ce atoms was first
put forward by Johanssonet al.33 and by Svane.32 Since at
finite temperatures the thermalsclassicald fluctuations are of
major importance, the static approximation should suffice. In
the work by Johanssonet al. the pseudoalloy was treated by
the CPA implemented within the LMTO method, where theg
phase was modeled by including the 4f states into the core,
while in thea phase thef states were treated as band states.
Due to the different treatment of both phases, their total en-
ergies could not be compared and the energies of theg phase
had to be adjusted by hand to yield the correcta-g transition

FIG. 8. Spectral functions alongG-X, relative to the Fermi level,
for theg-phase concentration 0 in panelsad, 0.5 in sbd, and 1 inscd,
respectively. The spectral functions were calculated at the lattice
constanta=8.65 a.u.

FIG. 9. sColor onlined Spectral functions at theG point for the
g-phase concentrations 0sad, 0.5 sbd, and 1scd. The character of the
respective peaks is marked above the upper horizontal line of each
panel.
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pressure at zero temperature. Svane, on the other hand, de-
scribed theg phase as a ferromagnet using the LMTO-SIC,
thus treating both phases on equal footing, and utilizing a
supercell to mimic the pseudoalloy at only a few accessible
concentrations. From these calculations he concluded that a

FIG. 10. sColord Calculated free energies for the temperatures
T=0, 800, and 1600 K. The plots represent fits to the calculations,
which have been performed for concentrations from 0scorrespond-
ing to the purea phased to 1 scorresponding to the pureg phased, in
steps of 0.1, and for lattice constants from 8.25 a.u. to 9.65 a.u., in
steps of 0.2 a.u. A constant of 17 717 Ry has been added to all
energies.

FIG. 11. sColord Gibbs free energies forT=0, 800, and 1600 K.
In order to enhance the readability of the plots the energies have
been calibrated by a linear term, proportional to pressure.
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linear interpolation of thea andg energies to arbitrary con-
centrations should be adequate enough.

Here we present calculations which combine both the
CPA and the SIC-LSD to describe theg phase as a DLM
system, treated as a ternary alloy, consisting of spin-up and
spin-down SIC sites with concentrationsc/2 each, and LDA
sites with the concentrations1−cd. In addition, we go be-
yond the scope of previous works by taking into account the
effect of finite temperatures on the electronic total energies
and the electronic contribution to the entropy, as defined in
Sec. VI. However, the vibrational entropy,Svib, is neglected
in the presented results. We shall briefly comment on its
effect on the calculated phase diagram in the next section
where we analyze in detail how different aspects of the
present calculations influence the final results.

Ideally, one would like to treat a pseudoalloy, which con-
sists of all possible states of a Ce ion, i.e., the LDA, and all
possible SI-correctedf states. This would give rise to a
pseudoalloy consisting of 15 components, the LDA plus the
14 possiblef-SIC statessincluding the spin multiplicityd.
Since this would be quite a formidable task, we use a sim-
plified approach. Figure 3 indicates that crystal-field splitting
gives rise to nearly degenerateA2u ssingletd andT2u stripletd
states, while theT1u triplet lies 20 mRy higher in energy. At
the temperatures considered here, theT1u states are thermally
not accessible. Thus treating the remaining eight states as
degenerate, leaves us with a nine component pseudoalloy,
with the constraint that the concentrations of the considered
eight SIC states are equal and can be set toc/8. It is easy to
show that in this case, in addition to the mixing entropy
defined in Sec. VI one has to take into account a term

Smagscd = kBc ln 8, s26d

arising from this eightfold multiplicity. Note that in previous
studies, where the CF splitting has not been taken into ac-
count, the magnetic entropy was assumed to be that of a
spin-orbit sSOd coupledJ=5/2 state, i.e.,Smagscd=kBc ln 6.
In the next section we shall comment on how the two differ-
ent magnetic entropy terms influence the critical characteris-
tics of the calculated phase diagram.

We performed calculations for several lattice constants,
embracing the equilibrium lattice constants of both phases,
and concentrations from 0 to 1, in steps of 0.1. The results
for the free energies of the three selected temperatures are
shown in Fig. 10. In theT=0 K panel one clearly sees the
two minima, corresponding to the purea-phasesLDA d and
the pureg-phasesSIC-LSDd calculations. The equilibrium
lattice constant for a given concentrationc interpolates be-
tween the two extremes, and it is apparent that an interme-
diate valence state, even if not energetically favorable, would
correct the underestimated lattice constant of thea phase. As
the temperature is increased, the free energy surface gets
strongly tilted towards the SIC-LSD side and now shows
only one broad minimum. This is mainly due to the magnetic
entropy.

Although the concentration-dependent free energies are
the quantities directly accessible from the calculations, they
do not easily reveal the full information on the phase dia-

gram. In order to determine the fullp-T phase diagram, it is
necessary to calculate the Gibbs free energy,

GsT,c,pd = FsT,c,VsT,c,pdd + pVsT,c,pd. s27d

The Gibbs free energies are displayed in Fig. 11. From them,
at each given pressure and temperature, we can determine the
concentration of the trivalent Ce, by minimizing the Gibbs
free energy with respect toc. At zero temperature one finds
sfor low pressuresd two local minima, associated withc=0
andc=1. By increasing the pressure, the order of the minima
changes and the minimizing concentration jumps from 1 to
0. At higher temperatures the minima start moving towards
intermediate concentrations. Only above the critical tempera-
ture, one finds the minimum smoothly changing from low to
high concentrations.

We can obtain the free energy of the physical system at a
given volume by evaluating the concentration dependent free
energy at the minimizing concentrationcmin,

FsT,Vd = FsT,cmin,Vd. s28d

These free energies are displayed in Fig. 12, which clearly
shows the double-well behavior for low temperatures, which
is gradually smoothened out with increasing temperatures.
Furthermore one finds that, at elevated temperatures, the free
energy is mainly lowered at large lattice constants, corre-
sponding to theg phase, with its larger entropy.

Inserting the minimizing concentrationcmin into the
pressure-volume relation

psT,Vd = psT,cmin,Vd = −
]

]V
FsT,cmin,Vd s29d

allows to calculate the isotherms of Ce, which are displayed
in Fig. 13. It can be seen that the average valence, close to
the coexistence line, gradually changes with increasing tem-
perature. Above the critical temperature, the valence changes
continuously with increasing pressure from trivalent to tet-
ravalent.

FIG. 12. sColor onlined The free energies as function of the
volume for the temperatures 0shighest curved, 200, 400, 600, 800,
1000, 1200, 1400, and 1600 Kslowest curved. A constant of
17 717 Ry has been added to all energies.

M. LÜDERS et al. PHYSICAL REVIEW B 71, 205109s2005d

205109-12



In Fig. 14 we present phase diagram, obtained from the
free energies of thea-g pseudoalloy, with theg phase de-
scribed by the DLM approach. It can clearly be seen in the
figure how the transition becomes continuous above the criti-
cal temperature. The experimentally observed critical point
s600 K, 20 kbard falls on top of the calculated phase separa-
tion line, which starts at the zero temperature transition pres-
sure of −7.4 kbar. This means that the slope of the phase
separation line is in very good agreement with experiments.
The critical temperature overestimates the experimental one
by roughly a factor of 2, which is still reasonable considering
that the critical temperature is very sensitive to various small
details of the calculations and in particular the theoretical
lattice parameters of both the Ce phases. Note that theTc at
zero pressure of 169 Kssee Table IVd compares well with
the experimental value of 141±10 K.

Finally we examine in more detail the discontinuity across
the phase separation line. Figure 15 shows the magnitude of

the discontinuities for the various ingredients of the Gibbs
free energy. As expected, all contributions vanish at the criti-
cal temperature, above which there is a continuous crossover
between thea and theg phase. It also can be seen from this
figure that the entropy discontinuity is by far the largest con-
tribution. The phase transition is therefore driven by entropy,
rather than by energetics. The entropy discontinuity itself is
mainly determined by the magnetic entropy.

G. Analysis of results

In order to investigate the importance of the different as-
pects of the present calculationssi.e., the DLM description of
the g phase, the inclusion of finite temperature effects in the
electronic free energy, and the CPA itselfd, as compared to
earlier studies, we have also performed a set of calculations
where, selectively, we neglect some of these effects and look
at the consequences. In particular, we study the influence of
these effects on the critical temperature and the slope of the
phase separation line. The results of these calculations are
summarized in Table IV, in comparison with the results of
earlier theoretical, as well as, experimental studies.

First we focus on the importance of the disordered local
moments representation of theg phase. By comparing the
DLM results in Table IV with those marked by Ferrosferro-
magnetic calculations for theg phased, one finds that the
DLM calculations lead to a moderate lowering of the critical
temperature, and a more negative zero temperature transition
pressure. This can easily be understood, since at zero tem-
perature, the ferromagnetically ordered phase has a lower
energy as compared to the disordered phase. Experimentally
such a magnetic order is not observed, since at low tempera-
tures sand positive pressuresd Ce is in its nonmagnetica
phase. The lowering of the critical temperature cannot be
easily identified with a specific aspect of the DLM calcula-
tions, since many effects, such as the curvature of the free
energies with respect to the concentration, but also the an-
harmonic terms in the total energy as a function of volume,
conspire to determine the phase diagram.

The second point is the effect of finite temperature on the
total energy and the electronic entropy. In earlier studies of
the phase diagram,32,33,40the electronic structure calculations
were performed at zero temperature, and the finite tempera-
ture effect entered only via the mixing entropy, the magnetic
entropy and in Ref. 33 also the vibrational entropy. This
means thatEtotsT,c,Vd was replaced byEtots0,c,Vd and the
electronic entropySel was neglected. In Fig. 16, we analyze
the difference between the electronic free energy
FelsT,c,Vd=EtotsT,c,Vd−TSelsT,c,Vd and the total energy at
T=0. The differenceFelsT,c,Vd−Fels0,c,Vd exhibits a mod-
erate dependence on the concentration. The larger effect for
the a phase is easily explained using a low temperature ex-
pansion. The main effect of the finite temperatures is the
broadening of the Fermi function. To lowest order in tem-
perature, the change of the free energy is proportional to the
density of states at the Fermi level. The effect on the phase
diagram can be seen in Table IV by comparing the columns
I and II. Neglecting these finite temperature effects gives rise
to an increase of the critical temperature by roughly 200 K,

FIG. 13. sColord Calculated isotherms for the temperatures
T=0 slowest curved, 200, 400, 600, 800, 1000, 1200, 1400, and
1600 K shighest curved. The color indicates the fraction of localized
electrons, blue is all localizedsg phased, and red is all delocalized
sa phased.

FIG. 14. sColord Phase diagram obtained for the pseudoalloy,
composed ofa- andg-Ce. The crosses indicate the calculated and
experimental critical points. The color indicates the fraction of lo-
calized electrons, blue is all localizedsg phased, and red is all de-
localizedsa phased.
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while the slope of the phase separation line remains unal-
tered.

Next is the effect of the CPA. In the study by Svane,32 it
was suggested that the weak departure from linearity of the
total energy curves as a function of concentrationsFig. 7d did
not play an important role. Thus, we recalculated the phase
diagram, replacing the full concentration dependence of the
total energy by the linear interpolation

Elinsc,Vd = s1 − cdEs0,Vd + cEs1,Vd. s30d

The effect of this approximation can be seen in Table IV by
comparing the columns II and III, respectively. Both sets of
calculations use theT=0 K total energies only. The transi-
tion temperature obtained from the linear interpolation is
strikingly reduced, in comparison to the CPA calculation, and
similar to the one reported by Svane. As pointed out by Jo-

hanssonet al.,33 the critical temperature is to a large extent
determined by the mixing entropy. Without the mixing en-
tropy one would at all temperatures find a sudden transition
swith a finite volume collapsed between the low- and high-
pressure phases. The mixing entropy will, if the temperature
is high enough, lead to a minimum of the free energy for an
intermediate concentration of theg phase, eventually result-
ing in a continuous crossover between the low-pressure and
the high-pressure phases. As seen in Fig. 7, the CPA gives
rise to a convexsfrom aboved curvature of the total energies.
It effectively reduces the mixing entropy and increases the
critical temperature. It can also be seen that within this linear
approximation, the difference between the DLM and the
Ferro calculations is strongly reduced, which means that the
main effect of DLM is not only the energy lowering of theg
phase, but more importantly a different shape of the energy
versus concentration curves.

Last, we discuss the effect of the degeneracy of theg
phase ground state. As described above, in the CF calcula-
tions a degeneracy of 8 was used, corresponding to almost
degenerateA2u and T2u states, arising from a crystal field

TABLE IV. The critical temperature and pressure, as well as, the zero temperature and room temperature transition pressures and the zero
pressure transition temperature for different calculations: DLM and Ferro refer to the disordered or ferromagnetic alignment of the local
moments in theg phase, CF and SO indicate the crystal field or spin-orbit scenario, as discussed in the text. The index I denotes calculations
with finite temperature effects included in the band structure and the CPA, II refers to the neglect of these finite temperature effects, and III
represents calculations, where in addition the concentration dependence was approximated by a linear interpolation. The main results, which
are also shown in the figures, are the DLM-CFsId calculations, printed as bold in the table.

DLM-CF DLM-SO Ferro-CF Ferro-SO

Svanea Johanssonb KVCc Promd Expt.I II III I II III I II III I II III

Tc 1377 1528 1129 1407 1568 1157 1444 1660 1139 1471 1689 1166 1300 980 520 600 600

psTcd 56 62 51 47 52 43 64 74 58 53 61 49 47 39 39 18 20

psT=0 Kd −7.4 −7.4 −7.4 −7.4 −7.4 −7.4 −2.3 −2.3 −2.3 −2.2 −2.3 −2.3 −1.0 −6 −6 −7

psT=300 Kd 6.1 6.2 6.2 4.1 4.2 4.2 11.0 11.4 11.4 9.0 9.5 9.5 10 7 8 6 6

Tcsp=0d 169 167 167 196 194 194 52 52 52 61 61 61 135 140±10

aReference 32.
bReference 33.
cKondo volume collapse model, Ref. 38.
dPromotion model, Ref. 39.

FIG. 15. Discontinuities of the total energysthick solid lined, the
total entropyTSsthick dashed lined, and thepV term sthick dashed-
dotted lined over the phase separation line as function of the tem-
perature. The entropy term is further decomposed into the electronic
sthin solid lined, the mixing sthin dashed lined, and the magnetic
sthin dashed-dotted lined contribution.

FIG. 16. Temperature dependence of the electronic free energy,
as defined in the text.
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splitting. The results to be compared here are shown in the
columns CF and SO of Table IV. In the SO scenario, the
term proportional to ln 6, corresponding to aJ=5/2 state,
was used for the magnetic entropy, instead of ln 8, as in the
CF scenario. One can see that the magnetic entropy, being
linear in c, determines mostly the slope of the phase separa-
tion line and has only a minor effect on the magnitude of the
critical temperature. The results obtained with the DLM and
the magnetic entropy due to the CF splitting show better
agreement of the calculated transition pressures with experi-
ment. This, however, may be due to a cancellation of errors.
The slope of the phase separation line is mainly given by the
ratio sSg−Sad / sVg−Vad, whereSasgd and Vasgd are theT=0
values of the entropy and the volume of theasgd phase.

Due to the larger underestimation of the volume of thea
phase, the volume collapse is slightly overestimated in our
approach. Therefore the higher value of the entropy differ-
ence in the CF scenario, as opposed to the SO scenario, leads
to a better agreement with the experimental slope. It should
be noted though that these calculations do not include the
vibrational entropy. To estimate the effect of this vibrational
entropy, we recalculate the phase diagram using a simple
model for the vibrational entropy, namely

Svibscd = − kBcDSvib
g−a, s31d

with the value ofDSvib
g-a<0.75, as suggested by Jeonget al.41

In doing so, the critical temperature is only slightly reduced
to 1292 K, while the critical pressure increases to 69 kbar. In
view of the above discussion, it is not surprising that a con-
tribution, which is purely linear inc, basically affects only
the critical pressure. We conclude from this result that this
simplified model for the vibrational entropy is too crude and
a more sophisticated one should be put in place. One should
add here that Johanssonet al.33 have employed a Debye-
Grüneisen model, while Svane32 has completely neglected
the vibrational entropy.

Finally, we would like to comment on the finding of Ni-
klassonet al.42 that the disordered local moments can give
rise to a localization off-electrons. From our DLM only
calculation, without applying SIC, we found that it is not
possible to stabilize a local moment in Ce, except at very
large volumes, where even the LSD yields a magnetic solu-
tion.

VIII. DISCUSSION

As already mentioned, experiments indicate that thea
phase is not composed of tetravalent Ce atoms, but is rather
described by an intermediate valence of 3.67.30 From Fig.
10, we see that an intermediate valence, i.e., a fractional
concentrations0,c,1d, would lead to an increased equilib-
rium lattice constant. One can simulate the effect of the in-
termediate valence for thea phase by simply rescaling the
concentrations when evaluating the phase diagram. In Fig.
17 we present the critical points of the phase transition ob-
tained when we represent thea phase by a nonzero concen-
tration, c0, of the trivalent Ce atoms, added into the host of
tetravalent Ce atoms. As can be seen in the figure, the critical
temperature quickly decreases with the increase of the ad-

mixture of trivalent Ce in thea phase. In this calculation, the
SIC-LSD energies have been uniformly calibrated to keep
the zero temperature transition pressure at its original value
of −7.4 kbar. It can be seen in the figure that the best value
for critical temperature is obtained forc0<0.4, which corre-
sponds to an intermediate valence of 3.6.

The intermediate valence scenario for thea phase, as dis-
cussed above, could result from dynamical fluctuations.
These fluctuations could be realized by describing Ce as a
two level systemsTLSd. We will elaborate on this idea in
Sec. IX. A mechanism, based on the dynamical interaction of
two states will, quite generally, be more effective if the two
states are close in energy. Looking at the total energy as a
function of the lattice spacing and the concentrationsFig.
10d, one finds that the purea and g solutions sLDA and
SIC-LSD, respectivelyd are degenerate close toa=8.9 atomic
units. The interaction of these two states will lower the total
energy at these lattice constants, and eventually might estab-
lish them as the global minimum. The increased lattice con-
stant would be closer to experimental values. Clearly such a
state would be neither described by full localization nor de-
localization of thef electron, but would be better character-
ized as an intermediate valence state. In the following sec-
tion we will outline how we envision this two-level system
to work.

The next point we want to discuss is the effect of lattice
relaxations. In the intermediate valence regimesas described
by the static CPAd there is a rather large size mismatch be-
tween thea and theg atoms, which may give rise to strong
internal strains. Allowing for lattice relaxations, which are
not considered here, would give rise to an energy lowering
for intermediate concentrations and could lead to intermedi-
ate valence, even in the static limit, and hence to the reduc-
tion of the critical temperature.

Another factor that might have a significant influence on
the phase diagram and its characteristics is associated with
the single-site aspect of the CPA. Being a single-site theory,
the CPA cannot deal with order in disorder, namely with
short range ordersSROd in the distribution of the alloy con-

FIG. 17. Critical points of the phase transition, obtained when
the concentration of trivalent Ce atoms in thea phase is artificially
fixed at a finitec0. The points are marked by their corresponding
value ofc0, wherec0=0 represents purely tetravalent Ce.
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figurations. However, even in the disordered phase it must be
important to distinguish situations where the nearest neigh-
bors are preferentially like atoms from those where they are
unlike atoms. Such short range order is expected to lower the
free energy of the disordered state and hence lowerTc of the
a-g phase transition. In addition, it should influence the en-
ergetically favorable relative concentration of the two differ-
ent components of the alloy. Thus by taking SRO into ac-
count one might be able to move beyond the primitive alloy
analogy and improve on the present LSIC-KKR-CPA ap-
proach. The way it could be accomplished is by implement-
ing the nonlocal extention of the KKR-CPA,45–47 which
would allow to treat possible correlated valence fluctuations
near thea-g phase transition in Ce.

Finally, the phase diagram of Ce suggests that at negative
pressure there could exist a quantum critical pointsQCPd,
i.e., a localization-delocalization transition at zero tempera-
ture, driven by pressure. The vicinity of this QCP, although it
is not accessible experimentally, could still influence the
physics of the material in the accessible positive pressure
range. The quantum fluctuations, which are responsible for
the transition, should also be visible in its vicinity and could
explain the correlated nature of thea phase.

IX. OUTLOOK

Several times in this article we have referred to the pos-
sibility of going beyond the theory outlined above by allow-
ing for dynamical valence and spin fluctuations. In short, the
suggestion is that, as above, we regard the self-interaction
corrected and the not so corrected version of the local poten-
tial at a site, as corresponding to two states of the atom and
allow for such atom to tunnel between the two statesual and
ubl, which would form a two-level system. Electrons inter-
acting with such TLS were already thoroughly studied in the
context of metallic glasses.43 In the present scenario such a
procedure would address the valence fluctuations. On the
other hand, identifying the possible spin states of the SI-
corrected system with the two levels51 would constitute a
possible dynamical generalization of the DLM formalism,
taking into account dynamical spin fluctuations. This might
describe the Kondo screening of the local moments at low
temperatures.

Many of the consequences of such interactions are by
now well known.44 In such studies the TLS is an atom tun-
neling between two nearly degenerate positions in a metallic
environment.44 The physics is particularly interesting in the
case of assisted tunneling where the TLS changes its state as
an electron scatters from it. However, it should be stressed
that in the cases where the atom changes its position in the
tunneling process, the TLS is external to the electron system
while in the proposed model it is designed to capture the
physics of a slowly changing collective degree of freedom of
the electrons themselves. In this sense our TLS is very much
like the DLM in paramagnetic metals.

From the point of view of the present perspective the most
directly relevant work on external TLS’s is that of Vladaret
al.48 They show that, if the TLS couples two or more angular
momentum states, as the temperature is lowered the high

temperature pseudoalloy phase gives way, at a characteristic
temperatureTK to a ground state which is an orbital analogue
of Kondo singlets of magnetic impurities in metals. In the
case of the LDA/SIC-LSD TLS, this means, that at high
temperatures, we would find the pseudoalloy, as described
above, while at low temperatures, the system would be nei-
ther in the LDA, nor in the SIC-LSD state, but would be in
an intermediate valence ground state. Clearly, such dynami-
cal fluctuations may also help to reduce the critical tempera-
ture if the generalized Kondo temperature, associated with
the TLS, is not too small.

As a final remark concerning the dynamical generaliza-
tion of our disordered local valence calculations we note that
the above model is an analogue of Yuval and Anderson’s
Kondo Hamiltonian approach to the magnetic impurity prob-
lem, as opposed to the full dynamical calculation based on
the Anderson model, deployed for the same problem by
Hamann.49,50 The relevant point to stress is that these two
calculations yield, in the appropriately asymptotic, namely
scaling, regime the same results. Thus, they lend credit to the
above proposed short-cut to a first principles DMFT treat-
ment of our fluctuating valence problem.

X. CONCLUSIONS

We have presented a multiple scattering, implementation
of the SIC-LSD formalism for solids within KKR band struc-
ture method, combined with the CPA description of interme-
diate valences. The method has been illustrated on the appli-
cation to the Cea-g phase transition. The results have been
discussed in detail, highlighting the functionality and poten-
tial of this approach owing to a better static description of
spin and valence fluctuations. The importance of all the dif-
ferent aspects of the formalism has been analyzed in detail.
This method is not to be looked at as an alternative to the
earlier implementations within the LMTO-ASA band struc-
ture method. Its great potential, and in some way superiority,
arises from the local and multiple scattering aspects through
which the method lends itself easily to various generaliza-
tions and extensions on the account of the straightforward
determination of the one-electron Green’s function. Of par-
ticular interest here is an inclusion of dynamical fluctuations,
for which a roadmap has been briefly outlined in the preced-
ing section. The results of the present paper constitute the
crucial steps on this road towards dynamics.

Finally, there is one more aspect of the present results
which warrants further comment. As we have reported in
Sec. VII G, in our DLM calculations local moment formed
only when the local electronic structure was described by
SIC-LSD, while it iterated to zero when LDA was used in
recalculating the spin polarized crystal potential. This is pre-
cisely the behavior one would have expected on the basis of
the numerous successes of SIC in predicting moment forma-
tion, and no moment formation in applications to extended
systems.31,32 Clearly, the fact that our local implementation
of SIC, namely LSIC, behaves in this way lends strong sup-
port to our contention that self-interaction correction formal-
ism can be, and perhaps should be, applied at the local level.
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