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Abstract

We study theoretically the spin-dependent electron–electron scattering in ordered and disordered magnetic surfaces.

With the aid of the screened Korringa–Kohn–Rostocker (KKR) method and the density functional theory within the

local-density approximation we calculate the spin-dependent Kohn–Sham crystal potential in which two excited elec-

trons are propagating. The electronic band structure is also calculated and it is shown that a coincident measurement

of two excited electrons from a magnetic surface gives access to the spin-resolved spectral distribution of the band elec-

trons. We also discuss the case of disordered metals and point out the conditions under which the electronic spectral

properties of the surface can be imaged by means of coincident electron measurements.
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1. Introduction

Substantial theoretical and experimental efforts
are currently devoted to the investigation of mag-

netic systems, in particular those with a reduced
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dimensionality, such as surfaces and thins films

[1,2]. These studies are motivated by the impor-

tance of these materials both from a fundamental
and a technological point of view. The present

work focuses on one aspect of quantum theory

of magnetism, namely on the spin-dependent elec-

tron scattering and electron pair emission from

ferromagnetic surfaces and binary alloys. A well-

known technique related to the present study is

the spin-polarized electron energy loss spectro-

scopy (SPEELS) which has been employed to
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investigate the elementary (magnetic) neutral exci-

tations of ferromagnets [3–6]. In SPEELS one

measures the probability for an incident spin-

polarized electron to loose certain amount of

energy DE and momentum Dk. If Dk and DE are
sufficiently high a second electron may be emitted

which in principle can be detected in coincidence

with the scattered (primary) electron. As shown

below the coincidence spectra of this electron pair

can be utilized to study the spin-dependent colli-

sions at surfaces and to map out the electronic

structure of clean solids and binary alloys.
2. Spin-dependent electron scattering from clean

surfaces

The two electrons emitted from a clean

ordered surface obey the energy and wave vector

balances

E0 þ E ¼ Ee þ Es; k0;k þ kk þ gk ¼ ke;k þ ks;k.

ð1Þ
Here, E is the energy of the valence band electron

and kk is its (surface) Bloch wave vector. The sur-

face reciprocal lattice vector is denoted by gk. The

energies of the incoming, the scattered and emitted

vacuum electrons are respectively denoted by E0,
Es, Ee and their surface-parallel wave vector com-

ponents are k0,k, ks,k, ke,k. All these quantities are

supposed to be determined experimentally. Thus,

the values of E and kk can be deduced from Eq.

(1). There are various sources for the spin depen-

dence of the electron scattering in solids, most

notably exchange scattering and spin–orbit cou-

pling (SOC). Here we are only concerned with sys-
tems where SOC is negligible (this can be checked

experimentally [7,8]) and focus on effects due to

the exchange interaction only. In addition, the

experiments are currently not capable of resolving

the final-state electron spin projections. Experi-

mentally one measures, for a certain magnetization

direction M, denoted by +, a spin asymmetry A.

This is done by registering the normalized differ-
ence A in the electron pair emission rate W for

antiparallel and parallel alignment of the polariza-

tion vector of the incoming beam with M, i.e. one

determines
Aðks; ke;k0Þ ¼
W ð"+Þ � W ð#+Þ
W ð"+Þ þ W ð#+Þ . ð2Þ

Theoretically A can be related to the spin asym-
metry in the surface Bloch spectral functions as

follows [7,8]

Aðks; ke;k0Þ ¼ P e

X
l;gk

A
ðmÞ
l A

ðsÞ
l;gk

. ð3Þ

Here, the atomic layers parallel to the surface are

indexed by l and Pe is the magnitude of the polar-

ization vector of the incoming beam. The projec-

tion of the projectile electron�s spin parallel

(antiparallel) to + is denoted by # ("). AðmÞ con-

tains the information on the sample�s magnetic

asymmetry

A
ðmÞ
l ¼ Aðkk; l;E;+Þ � Aðkk; l;E;*Þ

Aðkk; l;E;+Þ þ Aðkk; l;E;*Þ
; ð4Þ

where A(kk, l,E,*) and A(kk, l,E,+) are the Bloch

spectral functions of respectively the majority

and the minority band. Details of the scattering

dynamics are encompassed in the exchange scatter-

ing asymmetry AðsÞ. As shown in [7,8], AðsÞ tends

to unity under a certain arrangement of the exper-

imental setup in which case the magnetic asymme-

try A
ðmÞ
l in the spectral function can be measured.

Details of the calculations of the sample�s valence
electron spectral function are given below.
3. Pair emission from disordered binary alloys

In this section we outline the theoretical treat-

ment of the electron pair emission from a substitu-
tionally disordered binary alloy AxB1�x that

consists of two atomic components A and B with

concentration cA = x and cB = 1 � x. The condi-

tion cA + cB = 1 ensures full randomness, i.e. there

is no statistical correlation in the lattice sites occu-

pation. In addition we employ the single-site

approximation, i.e. the one-electron potential at

the lattice site j depends only on the occupation
at j (by A or B atom). The crystal potential Vs is

then expanded as a sum V s ¼
P

jV
j
s of muffin–tin

potentials V j
s located at the sites j. The occupation

indices nj are random numbers taking the values

nj = 1 if the site j occupied by the atom of type A
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and nj = 0 otherwise. The on-site potentials are

written as

V j
s ¼ njV jA

s þ ð1� njÞV jB
s . ð5Þ

The configurational average hnji of nj (hereafter we
use the angle brackets h� � �i for configurationally

averaged quantities) is given by the probability

that the atom A occupies the site j, i.e. hnji = x

and x is the concentration of A. A relatively easy

way of treating disordered alloys is the so-called
virtual crystal approximation (VCA). In VCA

the potential V j
s is approximated as (5)

V j
s ¼ xV jA

s þ ð1� xÞV jB
s ; ð6Þ

and the calculations are performed in the same
manner as for ordered clean surfaces, however

using the potential (6). The second step in sophisti-

cation is the average t-matrix approximation

(ATA) in which a configurational average is per-

formed upon accounting for multiple scattering

from V jA=B
s , i.e. one operates with t-matrices tjA/B

rather than with single scattering potentials. Obvi-

ously VCA becomes legitimate when V j
s scatters

only weakly or/and at higher energies, in both cases

multiple scattering becomes less important. The

coherent potential approximation (CPA) super-

sedes ATA in that the calculations are performed

self-consistently, a fact which is particularly impor-

tant for accurate calculations of ground state prop-

erties, for a detailed discussion of this issue we refer

to [9–14].
In the case of fast projectile electrons (�30 keV)

traversing a thin standing film one can perform the

experiment under certain conditions where the

electron–electron scattering is the important fac-

tor, i.e. one neglects final and initial (vacuum) elec-

tron scattering events from the crystal [15,16]. The

measured quantity is a cross section W(Es,

Xs,Ee,Xe) which is differential in the solid emission
angles of two electrons Xe and Xs and in their ener-

gies Es, Ee. The configurational average of

W(Es,Xs,Ee,Xe) is [17]

W ðEs;Xs;Ee;XeÞh i ¼ kske
ð2pÞ3k0

dr
dX

� �
ee

Aðk;EÞh i.

ð7Þ
Here ðdr

dX Þee is theMott cross section. Thus, the cross

section yields direct information on the spectral
density of disordered samples. It should be noted

in this context that, due to the high incident electron

energy, this technique provides information on the

bulk electronic structure. Correspondingly the

theory employs the bulk spectral function. If the
spin polarization of the incoming electron is known

then the asymmetry in the bulk spin-spectral

density can be measured by measuring the spin

asymmetry, as given by Eq. (2). This kind of exper-

iments have not been yet done.

In general, the electron pair emission is strongly

influenced by scattering from the crystal [18,19]. In

addition, at low and moderate energies (61 keV)
only the first few atomic layers are relevant for

the electron pair emission process [8,16]. In this

general case the theoretical treatment is as fol-

lows. At first the operator M(ks,k0) describing

the interaction of the incoming electron (incident

with a wave vector k0 and leaving the sample

with the wave vector ks) with the sample is writ-

ten as a sum over the lattice sites Mðks; k0Þ ¼P
jMjðks; k0Þ, where

Mjðks; k0Þ ¼ ksjV j
sg

þ
s W se þ W segþ0 V

j
sjk0

� �
. ð8Þ

Here Wse is the interaction potential between the

primary and the secondary electrons and gþs ðgþ0 Þ
is the retarded crystal (free) Green�s function.
From Eq. (5) follows then that

Mjðks; k0Þ ¼ njMjAðks; k0Þ þ ð1� njÞMjBðks; k0Þ.
ð9Þ

With these equations the cross section is expressed

as

W ðEs;Xs;Ee;XeÞ

¼ kske
ð2pÞ5k0

X
jj0

vke jMjðks;k0ÞAðEÞM y
j0 ðks;k0Þjvke

D E
;

ð10Þ

where vke is the wave function of the secondary

(vacuum) electron. The one-electron spectral func-

tion A(E) derives from the occupied single-elec-

tron (Kohn–Sham) orbitals according to AðEÞ ¼P
iocc

jviihvijdðE � eiÞ ¼ � 1
p trIGðk; k

0;EÞ, where

G(k, k 0,E) is the retarded single-particle Green�s
function of the band electrons. By carrying out

the configurational average of the cross section

(10) one finds [17] that the disorder-averaged cross
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section is composed of a coherent and an incoher-

ent terms hW(Es,Xs,Ee,Xe)i = hWcoh(Es,Xs,Ee,

Xe)i + hW incoh(Es,Xs,Ee,Xe)i, where
W cohðEs;Xs;Ee;XeÞ
� �

¼ kske
ð2pÞ5k0

X
jj0

hvke jhMjiAðEÞhM y
j0 ijvkei

D E
; ð11Þ

and

W incohðEs;Xs;Ee;XeÞ
� �

¼ kske
ð2pÞ5k0

X
j

x hvke jMjAAðEÞM y
jAjvkei

D En

þð1� xÞ hvke jMjBAðEÞM y
jBjvkei

D E

� hvke jhMjiAðEÞhM y
jijvkei

� �o
. ð12Þ

hW cohi and hW incohi are due to the coherent and

incoherent scattering from the crystal potential.

From Eqs. (8) and (9) follows that hMj(ks,k0)i =
xMjA(ks,k0) + (1 � x)MjB(ks,k0). Having derived

the basic formal equations for evaluating the cross

sections we mention now some numerical details of

the calculations. In short, the electronic band struc-

ture is dealt with on the basis of CPA whereas due

to their higher energies (compared to the Fermi

energy eF) the excited (vacuum) electrons are trea-

ted with VCA. The single-site scattering potentials
are evaluated from a self-consistent density-func-

tional theory (within local-density approximation,

LDA). The total crystal potential consists of a

muffin–tin sum over these single-site potentials.

The scattering matrix elements are then evaluated

numerically.
4. Electronic band structure as a multiple scattering

problem

To provide the self-consistent potentials and the

scattering matrices we used the Korringa–Kohn–

Rostoker (KKR) Green�s function method [20,21]

within the density functional theory (DFT) which

is rooted in multiple scattering theory. The KKR
method is naturally designed to study systems with

randomness because it supplies explicitly the one-

electron Kohn–Sham Green function needed in

the coherent potential approximation (CPA)method
[22]. The KKR is also advantageous in that it sep-

arates effects related to purely geometric aspects of

the crystal lattice (positions of atoms) from the

dynamics of the particular atoms constituting the

material. Each value of the energy and crystal
momentum is dealt with directly and independently

without recourse to a variational principle and

without the need for orthogonalization. For any

(non-interacting) ensemble of atoms the scattering

operator T(E) is written in terms of single-site t-

matrices or so-called scattering path operator (for

a generalization to interacting systems see [25])

T ðEÞ ¼
X
n

tnðEÞ þ
X
n6¼m

tnðEÞG0ðEÞtmðEÞ

þ � � � ¼
X
nm

snm; ð13Þ

½sðEÞ�nmLL0 ¼ f½tnl ðEÞ�
�1 � gnmLL0 ðEÞg

�1
. ð14Þ

Here g(E) is the structure constants representing

the free-electron Green function. The relation

(14) is the central equation of the KKR method.

In our realization of the KKR method the crys-

tal potential and charge density are constructed

within the Wigner–Seitz cell including non-spheri-

cal contributions and near-field correction accord-
ing to [23]. We apply typically maximal angular

momentum lmax = 3 for the valence states and

lmax = 6 for the potential and density representa-

tions, respectively. For the k-integration we used

a special point method [24] with 256 points in

the irreducible Brillouin zone.
5. Results and interpretations

For the ordered three dimensional systems, Eq.

(14) is readily solved at the energy E and for the

wave vector k in the first Brillouin zone of the re-

ciprocal lattice. In this case the size of the KKR

matrix is determined by the restricted size of the

unit cell which makes the computations rather effi-
cient. Systems with a broken translational symme-

try such as clusters, impurities and alloys are

treated within the real-space multiple scattering

theory. However, solving the KKR equation is

limited by the size of the matrix equation (14)

which can be very large for realistic materials.
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Fig. 1. The magnetic moment in Bohr magneton of the binary

alloy Cu(1�x)Nix as a function of the concentration x. Calcu-

lations are performed using the KKR-CPA.
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For random substitutional alloys the problem is

simplified by the fact that the crystal is periodic,
however the distribution of the atoms is random.

All three methods, VCA, ATA, CPA-KKR [9–

11,13] have been realized numerically. Here we dis-

cuss briefly some typical results of the calculations.

Fig. 1 demonstrates how the value of the magnetic

moment of the binary alloy Cu(1�x)Nix is governed
Fig. 2. Fermi-surface map of Cux�1Nix system in (001) plane calcula

are given in units of 2p/a, where a is the lattice constant.
by varying the dopant concentration x. The elec-

tron pair emission is capable of tracing this change

by performing a spin-asymmetry measurement

according to Eq. (2) and extracting under the

appropriate geometry [7,8] the magnetic spin
asymmetry of the sample according to relation

(4). A detailed information is obtained by conduct-

ing the measurement under the condition where

Eq. (7) applies (i.e. transmission mode, high inci-

dent energies and where binary electron–electron

collision is dominant). As clear from Eq. (7) the

measured cross section is readily related to the

configurational average of the spectral function
(the Mott cross section is known analytically).

Fig. 2 shows typical results of hAi for CuxNi1�x

as a function of the surface-parallel wave vector

components at a fixed binding energy E = eF (i.e.

we perform a Fermi-surface mapping). We note

the (full potential) self-consistent results of Fig. 2

agree qualitatively with previous non-self consis-

tent calculations [10]. The characteristics of the
Fermi surface are markedly changed with an in-

crease of the Ni concentration. For Cu it shows
ted within the KKR-CPA. The components of the wave vectors
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a onefold, electron-like behaviour whereas for Ni a

manyfold, electron-like with hole pockets is evi-

dent. The spin-splitting of the 3d Fermi surface

of Ni diminishes at roughly x = 0.5 which is also

clear from Fig. 1.
Relation (7) connects the measured cross section

with the sample electronic structure. This direct

connection is generally not valid. For example

when lowering the energies or operating in the

reflection mode the electron–crystal scattering

becomes a key factor. An example is shown in

Fig. 3 for a 200 eV electron incident normal to

the surface of Cu(1�x)Nix and back reflected under
45� with respect to the surface normal n̂. The sec-

ondary electron is emitted under 90� with respect

to the primary electron and 45� relative to n̂. The

electron wave vectors and n̂ are in the same plane.

What is considered is the sharing within the elec-

tron pair of the total energy Etot = Es + Ee. The

band structure is evaluated via KKR-CPA and

the scattering states are described by means of
VCA. The various peaks seen in Fig. 3 are the

results of the pair diffraction [18] involving the

reciprocal lattice vectors gk = (00) and gk = ±(11),

and also due to the crossing of the Fermi surface

in the (001) plane. In this case the incoherent

scattering contribution as given by Eq. (12) is of

a less relevance due to the similar scattering

properties of Ni and Cu sites. This situation
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Fig. 3. The energy sharing distribution at an incidence energy

E0 = 200 eV from the (001) face of a copper–nickel alloy. The

sum energy of the electrons is such that the emitted electron

originates from the Fermi level (cf. Eq. (1)), the polar angles are

hs = he = 45� with respect to the [001] direction.
changes when the constituent atoms of the binary

alloy scatter differently (cf. Fig. 4). This is demon-

strated by considering Al-based binary alloys. For

a clean aluminum (x = 1) one observes in Fig. 4 a

structure in the region 0.5 > j(Es � Ee)/Etotj and
two structures in the regions 1 P j(Es � Ee)/

Etotj > 0.5 which correspond respectively to the

electron pair diffraction with the reciprocal lattice

vectors gk = (00) and gk = ±(11). The contribution

ofW incoh is marginal for Al0.85Mg0.15 since the dif-

ference between the on-site muffin–tin potentials of

the constituents is small. However in the case of

Al0.9Li0.1 and especially Al0.985Pb0.015 the large dif-

ference between the on-site muffin–tin potentials
induces a strong incoherent scattering of the elec-

tron pair in which case the energy sharing distribu-

tion is modified qualitatively by the incoherent

scattering.
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pair is emitted from the Fermi level and from the (001) face of

the aluminum alloy indicated in the figures.
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6. Conclusions

In this work we described briefly the spin-depen-

dent electron pair emission from clean surfaces and

binary alloys. It is shown that the coincident detec-
tion of the electron pair allows for an investigation

of the spin-split electronic band structure under the

condition of a single binary electron–electron

encounter and where the incoherent scattering

from the alloy crystal potential is negligible. In gen-

eral the pair emission can be utilized for studying

the electron scattering dynamics in ordered and

disordered matter.
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