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Abstract

The emission properties of an electron in a double quantum well driven by
ultrashort electromagnetic half-cycle pulses are studied. By numerically solving
the corresponding time-dependent Schrödinger equation we show that the
emission spectrum can be designed by appropriately choosing the parameters
of the pulses. Low-frequency generation (LFG) is observed, and conditions for
intense LFG and strong induced localization are found. The effects of absence of
generalized parity of the Floquet modes on the emission spectrum are discussed.
Simple relations for determining the values of the pulse parameters for controlling
the localization process and the emission properties are found from an analytical
approximation.

1. Introduction

A variety of novel phenomena such as coherent suppression
of tunnelling [1–3], even harmonic generation [2, 3] and low
frequency generation (LFG) [2, 3] among others, have recently
been found in the interaction of electrons in symmetric double
quantum wells with cw laser fields. From the practical viewpoint
the control of the dynamics of a given quantum system can
result in various applications, e.g. the laser-induced trapping of
an electron in a quantum well [2, 3], the control of electron
transfer reactions [4], the stabilization of a given configuration of a
molecule [5, 6], and the creation of entangled states [7]. It can also
be highly desirable for potential applications in designing electro-
optical devices and is essential for the realization of quantum
computation.

Although the emission and dynamical properties in double-
well potentials [1–3] and in two-level systems [8, 9] has been
theoretically explored in a considerable amount of works, all the
studies have been limited to the case in which the driving field is a
cw laser but no investigation has been reported on the possibility of
controlling quantum coherence with a train of ultrashort half-cycle
pulses (HCP) (for experimental works concerning generation and
applications of HCPs, the reader can consult, for example, [10]).A
highly asymmetric mono-cycle pulse is composed by a sharp tail
with a high peak amplitude and a subsequent weak and smooth tail.
As the peak amplitude of the sharp tail is several times larger than
the smooth one, the dynamics of the system is mainly determined
by the positive tail (for this reason the highly asymmetric pulse
is called a half-cycle pulse). The generalized parity present in
symmetric double wells driven by cw lasers is then absent in the
case of HCPs as driving fields and each HCP delivers an impulsive
momentum transfer (or kick) to the system [11].

In the present work we investigate the emission spectrum of
an electron confined in a AlxGa1−xAs based double quantum well
driven by a train of HCPs as well as its relation to the dynamics
of the electron motion.
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2. General formulation

We consider a conduction electron confined in a typical
AlxGa1−xAs based double quantum well growth in the
z direction. Within the parabolic band and the effective
mass approximations, the time-dependent Schrödinger equation
describing the dynamics of the system under a train of HCPs
can be written as

i h̄
��

�t
= [H0 + Vconf + V (z, t)]�, (1)

where H0 represents the bare Hamiltonian, Vconf refers to the
double-well confinement potential, and V (z, t) corresponds to
the interaction of the electron with the pulses. If the external
field is periodic with period T the wave function of the system
can be expressed as the superposition of the periodic Floquet
modes ��(z, t) [��(z, t) = ��(z, t + T )] obeying the following
equation [2][
H0 + Vconf + V (z, t) − i h̄

�
�t

]
�� = ����, (2)

where the eigenvalues �� represent the quasienergies.
A symmetric shape for the confinement potential similar to that

in [3] was assumed. The electron effective mass m∗ = 0.067m0

was taken constant through the heterostructure.
The electron interaction with the train of strongly asymmetric

pulses can be modelled by the potential

V (z, t) = z

N−1∑
k=0

FkU(t − t0 − kT ), (3)

where

U(t) =




exp

[
− t2

2�2

]
cos �t if − �

2�
≤ t < T − �

2�

0 otherwise

. (4)

In Eqs. (3) and (4) Fk denotes the peak field of the k-th pulse,
t0 corresponds to the time at which the first applied pulse is
centered, T is the time between consecutive pulses, N is the
number of applied pulses, and � characterizes the width of the
pulses. The parameter � = �

3�
√

ln 2
in Eq. (4) guarantees a ratio

8:1 between the peak amplitudes of the positive and negative tails
of the pulses. The duration d of the positive tail of each pulse is
given by d = 3�

√
ln 2.

The time-dependent Schrödinger equation [Eq. (1)] can not
be solved analytically, we therefore implemented a fast-Fourier-
transform based numerical method as described in [12] for
the time propagation of the initial wave function. After
computation of the wave function �(z, t), quantities of interest
as the probability PL(t) = ∫ 0

−∞ |�(z, t)|2 dz and the averaged
probability 〈PL〉� = 1

�

∫ �
0 PL(t) dt of finding the electron in the left
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well can be easily computed. The emission properties are studied
through the quantity I(	) ∼ | ∫ ∞

−∞ 
(t) exp[−i	t] dt|, where

(t) = 〈�(z, t)|z|�(z, t)〉 is the time-dependent dipole moment.
All calculations were performed with � = 20 fs and T = 100 fs.

For a better understanding of the emission properties and their
relation to the electron motion we developed, in addition to the
numerical scheme, a simple analytical approach. We firstly note
that for the system under study the two lowest-energy levels are
well separated from the other energy states. Hence, for certain
range of pulse parameters the system will behave, basically, as
a two-level system. The two-level system is then studied within
the sudden approximation (SA). The SA is valid if the duration
of each pulse is much smaller than the characteristic time of the
system (a condition that holds for the system here studied) and
consists in substituting each actual pulse by an instantaneous kick
that transfer a momentum�p (�p = area of the actual pulse) to the
system. The electron-pulses interaction can then be approximated
as V (z, t) ≈ z

∑N−1
k=0 �pk�(t − t0 − kT ) where �(x) represents the

Dirac delta function and �pk = ∫ T− �
2�

− �
2�

FkU(t) dt.
Within the two-level system approximation (TLSA) and the SA

the quasienergies corresponding to the Floquet modes were found
to be determined by �� = εi + nh̄	0 [	0 = 2�/T ; � = (i, n);
i = 1, 2; n = 0, ±1, ±2, . . .], where

ε1 = −h̄	0

2�
arccos(cos � cos ); ε2 = −ε1, (5)

with � = 
12�p/h̄ (
12 is the dipole corresponding to the
transition between the two lowest levels) and  = �	c/	0 (	c is
the characteristic frequency of the bare system corresponding to
the energy difference between the two lowest levels). The details
on the TLSA and the SA will be given elsewhere.

3. Results

The time average of the probability PL of finding the electron
in the left well under the assumption that it was localized
initially in that well (tunnelling initial conditions) as a function
of the pulse strength is displayed in Fig. 1 (a). Solid and dashed
lines correspond to the exact numerical result and the analytical

Fig. 1. (a) Time average of PL as a function of the pulse strength for tunnelling
initial conditions. (b) Dependence of the quasienergies on the pulse amplitude. (c)
optimal localization process for the case of optical initial conditions. (d), (e), (f)
Emission spectrum for different values of the pulse strength.

approximation, respectively. A good agreement between both
calculations can be appreciated, especially in the region of small
pulse amplitudes (for very strong pulses the TLSA is no longer
valid and the differences between the analytical model and the
numerical results become larger). A remarkable fact is that,
contrary to the case of a cw laser as a driving field, a train of HCPs
can maintain the localization of the initially trapped particle in a
wide range of pulse parameters.

It is worth noting that when a train of HCPs is applied
the Floquet modes of the system does not have a well defined
generalized parity [note that for HCPs Eq. (2) is not invariant under
the transformations (z → −z; t → t + T/2) as it is in the case
of a cw laser]. Consequently, in the case of HCPs the existence
of quasienergy crossings in the space of system parameters
is no longer guaranteed. Indeed, for the system here studied
the analytical approximation predicts a series of anti-crossings
but no crossing (and, therefore, no accidental degeneracy) of
quasienergies occurs. This situation is shown in Fig. 1 (b), where
the dependence of the quasienergies (dashed lines) on the pulse
amplitude is displayed. In the present case the achievement of
localization in spite of the absence of accidental degeneracy of
the quasienergies is due to the fact that for appropriate field
parameters all the Floquet modes expanding the wave function
of the system have the same phase at t0 + 2kT (k = 0, 1, 2, . . .).
Within the analytical model one can find that PL(t0) ≈ PL(t0 +
2kT ) is guaranteed if t0 ≈ T/2 and

�� = (n ± 1
4 ) h̄	0 (6)

(the details will be discussed elsewhere). If at t = t0 the particle
is still quasi-localized and the escaping time of the particle
is much lunger than 2T then Eq. (6) will lead to a strong
electron localization in the left well. The condition in Eq. (6) is
represented by straight dotted lines in Fig. 1 (b). The comparison
of Figs. 1 (a) and (b) confirms that the intersection of the
quasienergies with the condition Eq. (6) determines the pulse
amplitudes corresponding to optimal localization. On the other
hand, as usually, delocalization occurs at the points of anti-
crossing of the quasienergies [compare Figs. 1 (a) and (b)].

In practice, the common situation is that the initial state is
the ground state of the field-free system in which the particle
is completely delocalized (optical initial conditions). We then
have studied the process of localizing the initially delocalized
particle into the left well. Based on the analytical approximation
we estimated the parameters of an auxiliary pulse that push the
delocalized particle to the left well. After a time delay, when
the particle localizes in the left well, a train of HCPs is used
for maintaining the localization. The exact numerical results are
shown in Fig. 1 (c), where a fast localization of the particle in
the left well can be appreciated. This finding is also in sharp
contrast to the case of cw lasers as driving fields, where it has
not been possible to achieve such a strong and fast localization
[3]. Thus, the use of HCPs for controlling the electron motion can
be potentially useful for applications in designing electro-optical
devices as efficient ultrafast switches.

The emission spectrum (vertical lines represent the emission
peaks) obtained through exact numerical calculations for different
values of the pulse strength is shown in Figs. 1 (d)–(f). For brevity
we restrict the study of the emission properties to the case of
tunnelling initial conditions. The emission spectrum is in general
given by a static component at 	 = 0, integer harmonics (	 =
n	0), and doublets 	 = n	0 ± |ε2 − ε1|/h̄ around the integer
harmonics. One can then design the emission spectrum by using
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Eq. (5) for the estimation of the appropriate pulse parameters. The
general case in which all the emission lines are present is shown
in Fig. 1 (d), where the phenomena of LFG is quite apparent [note
that the doublets corresponding to the n-th harmonic are close to
the (n ± 1)-th harmonics, and therefore the LFG line corresponds
to the left doublet of the n = 1 harmonic]. Because of the absence
of generalized parity, there is not accidental degeneracy of the
quasienergies and hence there is a lower limit for the LFG
determined by the lowest value of the difference |ε2 − ε1| (note
that this lowest value corresponds precisely to the characteristic
frequency 	c of the bare system), i.e., at the pulse parameters
leading to optimal delocalization [see Figs. 1 (a) and (b)]. Under
the situation of optimal delocalization only the line corresponding
to LFG (that in this limit coincides with 	c) survives, while the
other lines collapse, i.e., the system behaves as transparent to the
external field. This situation is shown in Fig. 1 (e). On the contrary,
when Eq. (6) is fulfilled a crossing of the doublets corresponding
to subsequent harmonics occurs at odd multiples of 	0/2. This
situation corresponds to the process of optimal localization and the
corresponding emission spectrum is displayed in Fig. 1 (f), where
half-harmonic generation [i.e., at 	 = n	0/2 (n = 0, 1, 2, 3, . . .)]
can be clearly appreciated.

In summary, we have shown that a conveniently designed train
of HCPs can be used for an efficient control on the subpicosecond

scale of the electron motion (note that such a process lasts several
picoseconds when cw lasers are used as driving fields [3]) in
symmetric double quantum wells. The emission properties of
the system as well as their relation to the electron motion were
studied and useful relations for estimating the pulse parameters
that control the emission spectrum were found by means of an
approximated analytical model.
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