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We study the energy spectrum of magnons in a ferromagnet with topologically nontrivial magnetization
profile. In the case of inhomogeneous magnetization corresponding to a metastable state of ferromagnet, the
spin-wave equation of motion acquires a gauge potential leading to a Berry phase for the magnons propagating
along a closed contour. The effect of magnetic anisotropy is crucial for the Berry phase: we show that the
anisotropy suppresses its magnitude, which makes the Berry phase observable in some cases, similar to the
Aharonov-Bohm effect for electrons. For example, it can be observed in the interference of spin waves
propagating in mesoscopic rings. We discuss the effect of domain walls on the interference in ferromagnetic
rings, and propose some experiments with a certain geometry of magnetization. We also show that the non-
vanishing average topological field acts on the magnons like a uniform magnetic field on electrons. It leads to
the quantization of the magnon spectrum in the topological field.
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I. INTRODUCTION

The Berry phase theory1–3 allowed generalization of the
idea of Aharonov-Bohm effect4 on electrons in the electro-
magnetic potential, to an analogous effect related to a gauge
potential, which arises during the adiabatic motion of a quan-
tum system in a parametric space. Up to now, much effort
has been directed to better understand and find an experi-
mental confirmation for the Berry phase of electrons, for
example, in the case of electrons moving in a varying mag-
netization field of the inhomogeneous ferromagnet.5,6

One of the most intriguing consequences of the Berry
phase theory is the possibility of the Aharonov-Bohm-type
effect on electrically neutral particles or boson fields.7,8 An
example of the adiabatic phase for the polarized light has
been investigated by Pancharatnam9 and Berry.10 The other
example is the Aharonov-Bohm effect for the exciton,11

which is a bound state of an electron and a hole in semicon-
ductors.

Here, we consider the effect of the gauge potential and
Berry phase on the propagation of magnons in textured fer-
romagnets. Such quasiparticles are usually viewed as the el-
ementary excitations of the ordered homogeneous state of a
ferromagnet, but they can also be used to classify the excited
states near a metastable inhomogeneous magnetic configura-
tion. These magnons describe the dynamics of weakly ex-
cited inhomogeneous ferromagnet.

The dynamics of magnetization in nanomagnets has been
the focus of recent activity12 because of its importance for
magnetoelectronic applications.13,14 It includes the switching
of magnetization by electric current, spin pumping, magne-
tization reversal in microscopic spin valves, etc. Usually, the
magnons play a negative role in the magnetization dynamics
limiting the frequency of magnetic reversal, and also leading
to the energy dissipation. However, they can probably be
used in the spin-transport phenomena such as the spin cur-
rents of magnetically polarized electrons.

Here, we study the energy spectrum of spin waves in fer-
romagnets with a static inhomogeneous magnetization pro-

file, and we demonstrate the possibility of observation of the
Berry phase in the interference experiments on spin waves in
magnetic nanostructures. Recent results of the micromag-
netic computer simulation15–17 of such systems demonstrate
that the interference of spin waves actually can be observed
in magnetic nanorings with domain walls.

The equation for spin-wave excitations in a general case
of arbitrary local frame, depending on both coordinate and
time, was found long ago by Korenman et al.18 in the context
of local-band theory of itinerant magnetism.19 Here, we use
an idea of this method to relate the adiabatic space transfor-
mation to the Berry phase, and to find corresponding prop-
erties of the spin waves in a topologically nontrivial inhomo-
geneous magnetic profile, which is a metastable state of the
ferromagnet. We show that the magnetic anisotropy is a cru-
cial element determining the possibility of observation of the
Berry phase in real experiments.

II. MODEL AND SPIN WAVE EQUATIONS

We consider the model of a ferromagnet described by the
Hamiltonian, which includes the exchange interaction, aniso-
tropy, and the interaction with external magnetic field. It has
the following general form:

H =
1

2
� d3r�a� �n��r�

�ri
�2

+ F �n�r��	 , �1�

where n�r� is the unit vector oriented along the magnetiza-
tion M�r� at the point r, a is the constant of exchange inter-
action, F�n�r�� is a function determining the magnetic aniso-
tropy 
correspondingly, it includes a certain number of
tensors relating the components of vector n�r�� and the de-
pendence on external field, and M0 is the magnitude of mag-
netization.

Due to the condition n2�r�=1, the model is constrained
and belongs to the class of nonlinear � models.20 The sta-
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tionary �saddle point� solutions for the magnetization vector
n0�r�, describing metastable states of the ferromagnet, can be
found by minimizing Hamiltonian �1� with the constraint
n2�r�=1. It was shown �see, e.g., Refs. 21 and 22� that such
metastable states with inhomogeneous magnetization profile
are related to the topology of ferromagnetic ordering, and
they can include skyrmions, magnetic vortices, and other to-
pological objects.

We are interested in describing the dynamics of small
deviations �n�r� from a certain metastable profile n0�r� with
a nonuniform magnetization, n�r�=n0�r�+�n�r�, ��n�r��
�1. Correspondingly, we assume that the solution of a
saddle-point equation describing the state n0�r� is already
known.

We perform a local transformation

ñ�r� = R�r�n�r� , �2�

using the orthogonal transformation matrix R�r�. By defini-
tion, it determines the rotation of local frame in each point of
the space, so that the magnetization in the local frame is
oriented along the z axis, ñ0= �0,0 ,1�. Then, we consider
small deviations of magnetization s�r� from ñ0. Since s�r� is
small and vectors ñ0 are oriented along z, the vectors s�r� lie
in the x–y plane.

The transformation matrix in Eq. �2� is taken in a general
form of orthogonal transformation

R�r� = ei��r�Jz ei��r�Jy ei��r�Jz, �3�

where �, �, � are the Euler angles determining an arbitrary
rotation of the coordinate frame, and Jx, Jy, and Jz are the
generators of 3D rotations around the x, y, and z axes, re-
spectively.

Two rotation parameters �for definiteness, the angles �
and �� can be used to define the frame with the z axis along
the vector n0�r�. In the absence of anisotropy, the additional
rotation to the angle � is purely gauge transformation. How-
ever, in a general case of anisotropic system, this rotation
allows one to choose the local frame in correspondence with
the orientation of anisotropy axes.

The Hamiltonian of exchange interaction 
the first term in
Eq. �1�� in the rotated frame has the following form:

Hex =
a

2
� d3r� �ñ�

�ri
− Ai

�	ñ	�2

, �4�

where the gauge field Ai�r� is defined by

Ai�r� = � �

�ri
R�R−1. �5�

Transformation �3� and gauge potential �5� are 3
3 matrices
acting on the magnetization vectors. The matrix Ai�r� can
also be presented as

Ai�r� = iAi
��r�J�, �6�

where Ai
��r� belongs to the adjoint representation of the ro-

tation group.
Using �3� and �6�, we find the explicit dependence of the

gauge potential on the Euler angles

Ai
x�r� = sin �

��

�ri
− sin � cos �

��

�ri
,

Ai
y�r� = cos �

��

�ri
+ sin � sin �

��

�ri
,

Ai
z�r� =

��

�ri
+ cos �

��

�ri
. �7�

The magnetic anisotropy described by the second term in
the right-hand part of �1� gives, after transformation to the

local frame, a function F̃�ñ�r�� with correspondingly trans-
formed tensor fields. Here, we do not restrict the general
consideration of the problem by any specific form of the
anisotropy, but in the following we consider the most impor-
tant examples of easy-plane- and easy-axis anisotropy.

The Landau-Lifshitz equations for the magnetization in
the locally transformed frame are

�ñ�

�t
= −

�

M0
��	
ñ	� �H

� ñ


− �i

� �H

� ��i
�� ñ��

� , �8�

where ��	
 is the unit antisymmetric tensor, and

�i
�	 =

�

�ri
��	 − Ai

�	 �9�

is the covariant derivative. The right-hand part of Eq. �8�
vanishes for the magnetization profile corresponding to a
metastable state. This is seen from the Landau-Lifshitz equa-
tion in the unrotated original frame. In the following, we will
use Eq. �8� for the small deviations of magnetization from
the metastable state. Hence, we will consider in the right part
of �8� only the terms linear in deviations.

Using �1�, �4�, and �8�, we find the equations for weak
magnetic excitations near the metastable state �spin waves�

�sx

�t
= − cs� �2sy

�ri
2 − 2Ai

z�sx

�ri
− �Ai

z�2sy −
�Ai

z

�ri
sx + �Ai

y�2sy

+ Ai
xAi

ysx	 +
�

M0

�2F̃
�ñx�ñy

sx +
�

M0

�2F̃
�ñy

2 sy , �10�

�sy

�t
= cs� �2sx

�ri
2 + 2Ai

z�sy

�ri
− �Ai

z�2sx +
�Ai

z

�ri
sy + �Ai

x�2sx

+ Ai
xAi

ysy	 −
�

M0

�2F̃
�ñx�ñy

sy −
�

M0

�2F̃
�ñx

2 sx, �11�

where cs=�a /M0 is the stiffness.
Using �10� and �11�, we can also present the equations for

circular components of the spin wave, s±=sx± isy
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±i
�s±

�t
= �− cs� �

�ri
� iAi

z�2

− V�r� +
�

2M0

�2F̃
�ñx

2

+
�

2M0

�2F̃
�ñy

2 	s± + �− w�r� − ics Ai
xAi

y

+
i�

M0

�2F̃
�ñx�ñy

+
�

2M0

�2F̃
�ñx

2 −
�

2M0

�2F̃
�ñy

2 	s�, �12�

where V�r� and w�r� are, respectively, the effective potential
and a mixing field acting on the spin wave

V�r� =
cs

2

�Ai

x�2 + �Ai
y�2� , �13�

w�r� =
cs

2

�Ai

x�2 − �Ai
y�2� . �14�

Equations �12� for s+�r , t� and s−�r , t� are complex conju-
gates to each other since they both describe the same spin
wave with real components sx�r , t� and sy�r , t�.

We can see that V�r� is an effective potential profile for
the propagation of spin wave. Due to the terms w�r� and
icsAi

xAi
y in �12�, the equations for circular components s+

and s− are coupled even in the absence of anisotropy. All
these terms are of the second order in derivative of the rota-
tion angle, and they are small in the adiabatic limit, corre-
sponding to a smooth variation of the magnetization vector
n�r�.

III. SEMICLASSICAL APPROXIMATION

Equations �10� and �11� can be solved in the semiclassical
approximation. The condition of its applicability is a smooth
variation of gauge potential Ai

��r� and fields related to the
anisotropy, as well as the external magnetic field, at the
wavelength of the spin wave, kL�1, where k is the wave
vector of the spin wave and L is the characteristic length of
the variation of Ai

��r� and F�n�r�� �more exactly, the mini-
mum of the corresponding characteristic lengths�. Note that
the condition of applicability of the semiclassical approxima-
tion to solve the spin-wave equations does not require any
smallness of the gauge potential itself.

Starting from Eqs. �10� and �11�, we look for a general
semiclassical solution in the form

sx�r,t� = a cos
��r� − �t� + b sin
��r� − �t� , �15�

sy�r,t� = d sin
��r� − �t� + f cos
��r� − �t� , �16�

with arbitrary coefficients a, b, d, f , and a smooth function
��r�, so that we can neglect the second derivative of ��r�
over coordinate r. Substituting �15� and �16� in �10� and �11�,
we can find four equation for the a, b, d, f coefficients.

The solution �15� and �16� describes the elliptic spin wave
with an arbitrary choice of the axes x and y, and, generally,
with a varying in space orientation of the principal axes of
the ellipse. We can simplify our consideration by choosing

the angle ��r� at each point of the space in accordance with
the orientation of the principal axes. The corresponding
equation for ��r� can be found from the condition of b= f
=0 in Eqs. �15� and �16�

cs Ai
xAi

y −
�

M0

�2F̃
�ñx�ñy

= 0. �17�

Using �17� and neglecting the terms with derivative of Ai
z,

which are small in the semiclassical approximation, we write
the spin-wave equations �10� and �11� as

�sx

�t
= − cs� �2sy

�ri
2 − 2Ai

z�sx

�ri
− �Ai

z�2sy + �Ai
y�2sy	 +

�

M0

�2F̃
�ñy

2 sy ,

�18�

�sy

�t
= cs� �2sx

�ri
2 + 2Ai

z�sy

�ri
− �Ai

z�2sx + �Ai
x�2sx	 −

�

M0

�2F̃
�ñx

2 sx.

�19�

Note that by fixing the angle � in Eq. �17�, we are choosing
the gauge, which defines completely the potential Ai

�. We do
it in spirit of the usual fixing gauge in the Wentzel-Kramers-
Brillouin �WKB� approximation.

After substitution of �15� and �16� with b= f =0 into �18�
and �19�, we come to the following equation for the momen-
tum ki�r�
���r� /�ri:

�� + 2csAi
zki�2 − �cs
ki

2 + �Ai
z�2 − �Ai

y�2� + 2px��cs
ki
2 + �Ai

z�2

− �Ai
x�2� + 2py� = 0, �20�

where

px,y�r� =
�

2M0

�2F̃
�ñx,y

2 , �21�

are the anisotropy parameters.
Equation �20� should be solved for ki�r� as a function of

smooth inhomogeneous field Ai
��r�. This equation does not

constraint the orientation of k�r� but determines the magni-
tude of vector k�r� for each direction in the momentum
space. Let us take vector k�r� along an arbitrary direction,
defined by a unity vector g. Then, we can rewrite �20� as


� + 2cskgiAi
z�2 − �cs
ki

2 + �Ai
z�2 − �Ai

x�2� + 2px�


 �cs
ki
2 + �Ai

z�2 − �Ai
y�2� + 2py� = 0, �22�

and we come to the fourth-order algebraic equation for k�r�.
It can be solved numerically, and a resulting dependence of
ki�r� on the gauge field in the integral ��r�=�Cki�r�dri leads
to the Berry phase acquired by the spin wave propagating
along the contour C.

We can find the solution of Eq. �22� analytically in the
limit of weak gauge potential �Ai

z��k, which corresponds to
the adiabatic variation of the magnetization direction n�r�
and also the adiabatic rotation in space of the elliptic trajec-
tory, ��� /�ri��k. Then, in the first order of Ai

z we find
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ki�r� �
gi

�cs


��2 + p2�1/2 − p�1/2 + gigjA j
z�r��1 + p2/�2�−1/2,

�23�

where p= �px− py�.
Using Eq. �23� and taking the vector g along the tangent

at each point of a closed contour C, we find the Berry phase

�B�C� = �
C

Ai
z�r�dri

�1 + p2/�2�1/2 . �24�

As follows from �24�, the Berry phase �B�C� in the aniso-
tropic system acquires an additional factor �
�1
+ p2 /�2�−1/2 depending on the magnetic anisotropy parameter
p.

The denominator in �24� has a simple geometrical inter-
pretation. Indeed, the coefficients a and d in the semiclassi-
cal solution �15� and �16� are the ellipse parameters, which
are related to the anisotropy factor p

a

d
= �1 +

p2

�2�1/2

−
p

�
. �25�

Correspondingly, we can relate the parameter �= �1
+ p2 /�2�−1/2 in Eq. �24� to the geometry parameters of the
ellipse

� = sin 2� , �26�

where �=arctan�d /a�.
Using definition �7�, the Berry phase finally can be pre-

sented as

�B�C� = �
C
��� − 1�

��� + ��
�ri

+ ��cos � − 1�
��

�ri
	dri.

�27�

In this expression we extracted a term proportional to 2�N,
N�Z. This allows us to avoid the multivaluedness of Berry
phase in the absence of anisotropy when �=1.23 The first
term in �27� is proportional to the total winding number of
rotations associated with the angles � and �, whereas the
second term is a spherical angle on S2, which is the mapping
space of the vector field n�r�. The second term in �27� has a
standard interpretation of the Berry phase as the magnetic
flux penetrating the contour on S2, when the field is created
by a monopole at the center of Berry sphere. Following this
idea, one can interpret the first term in �27� as the flux cre-
ated by the magnetic string along the z axis, penetrating
through the mapping contour on the unit circle.23 In accor-
dance with Eq. �27�, this contribution to the Berry phase
vanishes for isotropic magnetic systems, �=1. The first term
in �27� is the topological Berry phase �it depends only on the
winding number�, in contrast to the geometric Berry phase of
the second term in �27�.23

As follows from �24�, the effective gauge field for spin

waves in the anisotropic system is Ãi=�Ai
z, and the corre-

sponding topological field acting on the magnons can be cal-

culated as the curvature of connection Ãi�r�

Bi = ��ijk

�Ak
z

�rj
+ �ijk

��

�rj
Ak

z . �28�

Note that there is a contribution related to the variation in
space of the anisotropy parameters 
second term in Eq. �28��.

We consider now in more detail the motion of elliptic spin
wave in the adiabatic regime. The anisotropy suppresses one
of the components sx or sy breaking the symmetry with re-
spect to rotations around the z axis. Correspondingly, there is
no gauge invariance s+→ei�s+ and s−→e−i�s− for the circu-
lar components, and the motion of magnetization in the spin
wave is elliptical. In the adiabatic limit of �Ai

z��k, the solu-
tions for sx and sy are given by Eqs. �15� and �16� with b
= f =0 and the ratio of amplitudes �a /d�. Thus, we could
expect the local invariance to transformations preserving the
value of sx

2+ �d /a�2sy
2=const instead of simple rotations in the

x–y plane.
Using the Fourier transformation of Eqs. �18� and �19� for

sx,y, we find the following equation for the elliptic compo-
nents of spin wave, s̃±=sx± i�d /a�sy:

�� + 2cskiAi
z − c̃s�ki

2 + �Ai
z�2� −

pd

2a
	s̃+

−
a

2d
�cs��ki

2� + �Ai
z�2��1 −

d2

a2� −
pd2

a2 	s̃− = 0,

�29�

and the complex conjugate to �29�, where c̃s=cs�1
+d2 /a2�a /2d, and we determine the d /a from the condition
of vanishing of the second bracket in Eq. �29�. This condition
determines the ellipticity factor, and we find that it coincides
with Eq. �25� in the limit of �Ai

z��k. Thus, we come to the
following equation for the elliptic wave in the gauge field:

�� + 2cskiAi
z − c̃s
ki

2 + �Ai
z�2� −

pd

2a
�s̃+ = 0. �30�

This equation is not gauge invariant but in the adiabatic re-
gime, neglecting the difference in small terms of the order of
�Ai

z�2, we can present it as

�� − c̃s�ki − �Ai
z�2 −

pd

2a
	s̃+ = 0. �31�

Equation �31� contains a factor ��1 before Ai
z, and formally

looks like the equation of motion of a particle moving in the
reduced gauge field, which in turn leads to an effective sup-
pression of the Berry phase. The calculation of Berry phase
using Eq. �31� with the gauge field suppressed by factor �
leads us again to Eq. �24�.

In the absence of anisotropy and in the adiabatic approxi-
mation, the solution of spin-wave equations has a simple
form. The equations for circular components �12� are sepa-
rated

±i
�s±

�0�

�t
= − cs� �

�ri
� iAi

z�2

s±
�0�, �32�

and the corresponding solution is
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s+�r,t� � exp�i� ki�r�dri − i�t	 , �33�

with ki�r��gi� /cs
1/2+gigjA j

z�r�. The spin wave propagating
along a closed contour C acquires the Berry phase of Eq.
�24� with p=0.

Using Eqs. �7� we can present the topological field �28� in
the absence of anisotropy as

Bi = − sin ��ijk
��

�rj

��

�rk
. �34�

It does not depend on the angle �, related to the choice of
gauge as in the case of electromagnetism.

By creating a certain metastable configuration of the mag-
netization n0�r� in the ferromagnet, we simulate an effective

gauge potential Ãi�r�, acting on the spin waves similar to the
magnetic field in case of electrons. In particular, when the
averaged in space topological field �28� is not zero, there
arises the Landau quantization of the energy spectrum of
magnons. In the absence of anisotropy, we find the quantized
spectrum ��n=2�cs��B���n+1/2�, where �…� means the av-
erage in space.

IV. INTERFERENCE OF SPIN WAVES IN MESOSCOPIC
RINGS

Let us consider now the ring geometry of a ferromagnet
with a topologically nontrivial metastable magnetization
n0�r�. It can be, for example, a magnetization vortex 
Fig.
1�a�� or an even number of domain walls in one branch of the
ring as presented in Fig. 1�b�. Such a magnetization profile
presents a metastable magnetic state.

Let us consider first the case when there is no anisotropy.
If kL�1 �adiabatic regime�, the low-energy magnetic exci-
tations of the metastable state are described by Eq. �32�. Due
to the presence of gauge potential Ai

z�r�, there is a phase
shift of waves propagating from the point A, where the
waves are excited, to the observation point B �see Fig. 1�.
The phase shift �Berry phase� equals the integral �Ai

z�r�dri

along the ring, and by using the Stokes theorem can be cal-
culated as the flux � of topological field B defined in Eq.
�34�. It can also be presented as the spherical angle enclosed
by the mapping of the ring to the circle at the unit sphere S2.
This way we can find the phase shift of 2� and �Nd for Figs.
1�a� and 1�b�, respectively, where an even Nd is the number

of domain walls in the right arm of the ring. For example, in
the case of Fig. 1�b� with two domain walls in the right arm,
there is no interference of spin waves excited in A and com-
ing to the point B because the corresponding phase shift is
2�.

In the absence of anisotropy, the interference in the ring
can be induced by rotating all magnetic moments from the
plane to a certain angle � 
the corresponding mapping is
presented in Fig. 2�b��. The Berry phase associated with the
path along the ring will be smaller than 2�. For �=� /6 the
Berry phase turns out to be �. This means that the experi-
ment with interference of spin waves propagating from A to
B through two different arms of the ring would result in a
complete suppression of the outgoing from B spin wave.
Physically, it can be realized using the ring with very small
easy-plane anisotropy, p /��1, in a weak external magnetic
field along z axis.

A similar idea was recently proposed by Schütz et al.24 for
the radial orientation of magnetic moments under inhomoge-
neous magnetic field directed from some point at the axis of
the ring. This magnetic field creates a “crown” of magnetic
moments, and the corresponding mapping is similar to that
presented in Fig. 2�b�.

However, in the case of nonvanishing easy-plane aniso-
tropy, there is no need to apply magnetic field to provide the
interference of spin waves propagating in the geometry of
Fig. 1�b�. In this case the Berry phase is given by Eq. �27�
with p=�
 /2M0=const, and we obtain the difference in
phases for two waves ��B=�Nd / �1+ p2 /�2�1/2. Thus, the in-
terference of spin waves should be clearly seen for the two-
arm geometry with domain walls. The computer simulation
experiments17 confirm this expectation.

Another possibility to observe the interference of spin
waves can be presented by the geometry of a wide ring �thin-
wall cylinder� as presented in Fig. 3. Assuming the easy-
plane anisotropy of the ribbon, we obtain the ground state
with a homogeneous magnetization along the axis of cylin-
der. The anisotropy axis is oriented radially in each point of
the cylinder, and the corresponding local frame is shown in
the figure as x�y�z�. Due to the homogeneous magnetization,
we get �=0, and from �7� we obtain Ai

z�r�=���+�� /�ri. The
components of anisotropy vector are ux=cos � and uy
=sin �. Using Eq. �34�, we find that the condition ũy =0 re-
duces to �+�=�, and from �34� we obtain ũx=1. Corre-

FIG. 1. Two rings with topologically nontrivial magnetization
field.

FIG. 2. Mapping of the ring to the n-space S2 �red contour� in
the case of in-plane vortex magnetization shown in Fig. 1�a� �a� and
for the same geometry with magnetization vector deviating from the
plane to the angle � �b�. The Berry phase is 2� in case �a� and � for
�=� /6 in case �b�.
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spondingly, the anisotropy parameter p=�
 /2M0, and we
obtain the Berry phase for the closed contour on the ring
�B�C�=2�NC / �1+ p2 /�2�1/2, were NC is the winding number
of the contour C.

The Berry phase of the spin wave propagating in mag-
netic ring plays the similar role as the phase of electron wave
function in the Aharonov-Bohm effect with magnetic flux
penetrating through the ring. A string through the ring plays
the role of the magnetic flux.23 However, the flux created by
the string does not depend on the size or shape of the mag-
netic ring. Correspondingly, the Berry phase associated with
the string has the topological origin, which makes it different
from the Aharonov-Bohm effect induced by the magnetic-
field flux thorough the conductive ring.

V. SPECTRUM OF MAGNONS IN A RING WITH
UNIAXIAL ANISOTROPY

The other example is a ring with uniaxial anisotropy in a
homogeneous magnetic field B along the axis z as presented
in Fig. 4. Due to the anisotropy and exchange interaction, the
magnetization along the ring is oriented as in Fig. 4, creating
a certain angle � out of the ring plane.

We take the anisotropy function F in the form

F�n� = −



2
n�

2 , �35�

which corresponds to the uniaxial anisotropy along the ring.
The local frame is chosen with the axis z along the magne-
tization at each point, and with the z–x plane tangential
to the ring �parallel to the axis z�. In this case we find

F̃=−
sx
2 cos2 � /2. The angles determining the orientation of

local frame are �=0 and �=r /R.

We can calculate the angle � using Eqs. �1� and �32� with
vectors u and B along the axis z. Then, using the polar co-
ordinates and the condition that n� and nz do not depend on
the point along the ring, we find the energy

E = 2��0R� an�
2

2R2 +

nz

2

2
− M0 Bnz� . �36�

Substituting n�=sin �, nz=cos �, we calculate the angle �
minimizing the energy �36�

cos � = min�1,
M0B


 − a/R2� , �37�

for 
�a /R2, and �=0 for 
�a /R2.
The gauge potential in magnetic ring induces the energy

splitting of magnons propagating in the opposite directions.23

Using Eqs. �7� we find Ax=sin � /R, Ay =0, and Az=cos �. It
should be noted that the gauge potential is constant along the
ring, so there is no need to use the adiabatic approximation
to determine the energy spectrum of magnons.

Using Eqs. �10� and �11�, after Fourier transformation
over time t and coordinate r along the ring, we find

�sx = ics
kn
2sy + 2iknAzsx + �Az�2sy + �Ax�2sy� + i�0sy ,

�sy = − ics
kn
2sx − 2iknAzsy + �Az�2sx� + ipsx − i�0sx,

�38�

where �0=�B. Here, the momentum takes discrete values
kn=2�n /L �n=0, ±1, . . . � to provide the periodicity of solu-
tion for the spin wave along the ring. We can use �38� to find
the equation for elliptic components of the spin wave

2�� + 2csknAz�s̃+

= �
cskn
2 + cs�Az�2 + �0�

 2 + 1

 
+

cs�Ax�2

 
−  p�s̃+

+ �
cskn
2 + cs�Az�2 + �0�

 2 − 1

 
−

cs�Ax�2

 
−  p�s̃−,

�39�

FIG. 3. Spin waves on a wide ring �thin-wall cylinder made of
easy-plane ferromagnetic ribbon�. The magnetization is along axis
z.

FIG. 4. Magnetization in a ring with uniaxial magnetic aniso-
tropy in a homogeneous external magnetic field along the z axis.
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where  =d /a is the ellipticity. The expression in the second
curved brackets vanishes for

 2 =
cskn

2 + cs�Az�2 + cs�Ax�2 + �0

cskn
2 + cs�Az�2 + �0 − p

. �40�

Then, using �39� and �40� we find the energy spectrum of
magnons in the ring

�n = c̃s�kn −
2 

1 +  2A
z�2

+
cs

2
�1 −

4 

1 +  2��Az�2

+
cs

2 
�Ax�2 −

 p

2
+ �0

1 +  2

2 
. �41�

The spectrum is shown in Fig. 5 for several first values of n
as a function of the magnitude of field B. We take the pa-
rameters 
 /2=�M0

2 �which corresponds to the dipolar shape
anisotropy of a magnetic cylinder�, R=75 nm, and 
R2 /a
=200. All the curves have a critical point Bc corresponding to
the magnetic field, for which the magnetization M starts to
deviate from the direction with �=0. In view of Eq. �37�,
Bc M0=
−a /R2. For n=0 the energy of magnons at this
point is the soft mode with �=0. This mode corresponds to a
uniform rotation of spins at each point of the ring toward a
tangential to the ring direction. In the local frame it is the
uniform rotation corresponding to the state with n=0.

For n�0 and B→0 we can find the spectrum in linear B
approximation

�n�B� � �n�0� + �B�1 +
1

4�n��1 + n2�3/2� −
2csnB


R2 − a
,

�42�

where �n�0�=�−n�0�. This shows that the spectrum is degen-
erate at B=0 with respect to the sign of n. The splitting for
B�0 in the linear approximation gives the curve for positive
n below the one for the same negative in accordance with
Fig. 5.

At large magnetic field B, the systematics of levels should
be changed. Namely, the lowest energy mode corresponds to
the uniform global deviation of orientation of all spins from
the direction along the z axis. In the local frame, it corre-
sponds to the mode with n=1. Thus, it would be natural to
label the modes with index m=n−1, so that the lowest in
energy is the spin wave with m=0. In the limit of B→!,
each pair of modes ±m is degenerate. It is clearly seen from
Eq. �41� with  =1. The splitting of these modes for B�Bc
demonstrates the existence of topological Berry phase for the
magnons on the ring23 because the equilibrium state is the
homogeneous magnetization, which leads to the vanishing of
geometric Berry phase.

VI. CONCLUSIONS

We calculated the Berry phase associated with the propa-
gation of magnons in inhomogeneous ferromagnets and me-
soscopic structures with topologically nontrivial magnetiza-
tion profile. We found that the most important effect is
related to the magnetic anisotropy. Due to the anisotropy, the
Berry phase for magnons is lower than a standard value of
the spherical angle on the Berry sphere with a monopole.
Besides, an additional contribution to the Berry phase arises
in anisotropic systems, which can be viewed as an effect of
the gauge string penetrating through the mapping contour on
the unit circle.

Using these results, we demonstrated that the Berry phase
can be observable in interference experiments on magnetic
rings, and is controllable using the additional homogeneous
magnetic field.

The spin-wave equations in the quasi-one-dimensional
case of mesoscopic rings are similar to the classical theory of
anisotropic 1D ferromagnets. However, as we show in Sec.
IV and V, the real geometry of rings determines the geomet-
ric and topological Berry phase of magnons, thus leading to
effects like quantization of the magnon energy spectrum.
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FIG. 5. �Color� Energy spectrum of magnons in the ring �Fig. 4�
as a function of external magnetic field B, where K=
 /2.
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