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Abstract. – We derive necessary and sufficient conditions for the quasistationarity of time-
dependent quantum systems and point out the relationship between the degree of quasista-
tionarity, the Fubini-Study metric, and the Aharonov-Anandan phase. As an illustration, we
analyze the dynamical localization of an electron in a double quantum well and the sustain-
ability of field-induced orientation of polar molecules.

Introduction. – The capability of steering the quantum dynamics into predefined paths
by external fields has profound implications for physical and (bio) chemical processes. E.g.,
laser-orienting molecules is essential for molecular trapping, electron transfer reactions and
laser-induced isomerization [1–3]. Major efforts are currently devoted to developing techniques
and concepts for promoting a quantum system into a state for which at a certain time tc, the
expectation value of a given observable achieves a predefined (control) quantity [4]. The
general question of how to maintain this desired value for a time lag ts, i.e., the dynamical
sustainability of the control process, has not been addressed specifically. This issue is, however,
of vital importance for applications. For instance, in a chemical reaction the observable of
interest might be the reactants relative orientation that acts as the control parameter for
the reaction yield. If the reaction takes place on a time scale treac, it is essential that the
orientation persists for a time ts larger than treac.

The purpose of the present work is to develop general concepts for determining the prop-
erties of the external, time-dependent driving fields that lead to a coherent control process
sustainable in time. For a system residing in a known state at t = 0, one aims at steering with
time-dependent external fields the expectation values 〈O〉(t) of the observable O to attain the
desired value 〈O〉c(t = tc). Here, tc is the duration of the control process and 〈O〉(t), ∀ t are
measured relative to 〈O〉0 = 〈O〉(t = 0). The question posed here is what are the necessary
and sufficient conditions to sustain 〈O〉(t > tc) close to 〈O〉c for a given time lag ts. Here we
deal with non-stationary systems that are well describable in terms of pure states composed
by a coherent superposition of a finite number N of unperturbed states.

Formulation of the problem. – It is instructive to introduce some general definitions.
Definition 1. A time-dependent observable is called a (field-induced) quasistationary observ-
able if within tc ≤ t ≤ ts the relation |〈O〉(t) − 〈O〉c| < η applies, where |〈O〉c| 	 η ∈ R+.
Thus, η characterizes the degree of quasistationarity of 〈O〉(t) during t ∈ [tc, ts].
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Definition 2. A time-dependent observable is called cyclic quasistationary if it is quasistation-
ary and its expectation value satisfies 〈O〉(tc + Tk) = 〈O〉(tc + Tk−1) (k = 1, 2, . . . , nc), with
T0 = 0, nc is the number of cycles, and Tk (Tk > 0) is the duration of the k-th cycle.
Definition 3. A time-dependent observable is called periodic quasistationary (PQ) if it is qua-
sistationary and there exists T > 0 such that 〈O〉(tc + kT ) = 〈O〉(tc) with k = 1, 2, . . . , npc.
The quantity T is then referred to as the period of the observable and npc is the number of
periodic cycles. In general nc ≥ npc, for a periodic cycle may contain sub-cycles. Examples
of PQ processes are the coherent suppression of tunnelling (CST) [5–7], dynamical localiza-
tion [6, 8], and sustainable molecular orientation [9]. The CST occurs when a particle in a
symmetric double quantum well (SDQW) attains at t = tc a state that is localized in one of
the wells (say the left one). Applying an appropriate continuous-wave (CW) laser field (with
a period T ) the particle remains localized in the left well, meaning that the tunnelling is co-
herently suppressed [5–7]. To monitor the system one utilizes the time-dependent probability
P

L
(t) of finding the particle in the left well. The CST occurs when P

L
(tc + kT ) ≈ P

L
(tc)

(k = 1, 2, 3, . . .) [5–7]. If for a given state |Ψ(t)〉 the expectation value of any observable is
PQ, then the state is called a PQ state.

Quasistationarity and Aharonov-Anandan phase. – A necessary condition for a quantum
state to be PQ is that the corresponding wave function possesses a periodic cyclic evolution,
i.e.

|Ψ(tc + kT )〉 = eiφk |Ψ(tc)〉, k = 1, 2, . . . , npc , (1)

where φk ∈ R is the phase change within k periodic cycles and T stands for the duration of
each periodic cycle. The total phase φ (exp[iφ] = 〈Ψ(tc)|Ψ(tc + kT )〉) acquired by the wave
function during an evolution cycle can be written as φ

T
= φ

D
+ φ

AA
, where φ

D
and φ

AA

represent the dynamical and the Aharonov-Anandan (AA) phases [10–13], respectively. For
a given physical system the dynamical phase φ

D
is not uniquely determined, since it is only

defined up to a gauge transformation. The Aharonov-Anandan phase φ
AA

= φ
T
−φ

D
, however,

is gauge invariant and constitutes a uniquely determined property of the physical system, i.e.,
φ

AA
is a geometric quantity in that it does not depend on the choice of the Hamiltonian as

long as the Hamiltonians describe the same closed path in the projective space(1).
For a further progress we employ the Floquet formalism [6]. For a periodic external field

with a period T and frequency ω = 2π/T , the system state vector is expressible as

|Ψ(t)〉 =
∑
λ

Aλe
−iελt/h̄|Φλ(t)〉. (2)

The Floquet modes |Φλ(t)〉 have the same periodicity as the external field and ελ are the cor-
responding quasienergies. According to conventional wisdom, the degeneracy of quasienergies
is a necessary condition for the occurrence of CST [6] (CST is just a particular case of PQ).
This general belief is not strictly correct and leaves open the possibility of achieving CST in
the absence of quasienergy degeneracy: This can be seen in case of a two-level system (TLS)
for which the state vector (2) at stroboscopic times is given by

|Ψ(tc + kT )〉 = e−
i
h̄ ε2kT

[
e−

i
h̄ (ε1−ε2)kTA1e

− i
h̄ ε1tcΦ1(tc) +A2e

− i
h̄ ε2tcΦ2(tc)

]
. (3)

(1)The wave function of a time-dependent N -level system is expressible as a coherent superposition of the N
stationary eigenstates of the unperturbed system. The coefficients of this expansion constitute the components
of an N -dimensional complex vector in the N -dimensional complex space CN . The corresponding projective
Hilbert space, usually denoted by CPN−1, is defined as the set of all complex lines in CN that pass through
the origin (these lines are sometimes referred to as “rays”). Thus, all the vectors in CN that differ by only a
multiplicative phase have the same image in the projective space CPN−1. Hence, trajectories in the Hilbert
space corresponding to the evolution of a cyclic state project onto closed curves in the projective space.
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ε1 and ε2 are the representatives of the two quasienergy classes in the first Brillouin zone. The
state vector (3) turns periodic cyclic (cf. eq. (1)) if all the relevant Floquet states have the
same phase (modulo 2π) at t = tc + T , i.e., if one of the following conditions is fulfilled: a) If
ε1 − ε2 = nh̄ω; (n ∈ Z). b) If A1 = 0 or A2 = 0. c) If (ε1 − ε2)l = mh̄ω; (l,m ∈ Z, m/l /∈ Z).

The condition a) corresponds to the degeneracy of quasienergies and leads to T = T . The
condition b) results in T = T and occurs when the wave function collapses into a Floquet
state. The condition c) implies a periodic cyclic evolution with the duration of each periodic
cycle being a multiple of the period of the field, i.e., T = |l|T . Notably, the conditions b) and
c) do not require crossing of quasienergies. The conditions a), b), and c) can be regarded as
necessary conditions for PQ. Generalization to N -level systems is readily performed along the
same lines. Thus, prerequisites for the cyclic evolution of an N -level system are the conditions
a), c), or their combinations have to occur repeatedly (i.e., they have to be fulfilled for all
the combinations of pairs of quasienergies corresponding to the Floquet modes that enter
the expansion (2)). The generalization of condition b) is the requirement that all but one
of the expansion coefficients Aλ must vanish. We stress, however, that conditions a), b), c),
or their combinations are not sufficient for a state to be PQ, since only the periodicity of
time-dependent observables is then guaranteed but not quasistationarity. To derive necessary
and sufficient conditions for PQ we proceed as follows: Let λi (i = 1, 2, . . . , N − 1) be the
coordinates on the projective Hilbert space corresponding to an N -level system and let φ

G
be

the geometric phase (see [10] and references therein) acquired by the wave function through
an arbitrary (but unitary) evolution. We introduce the N -dimensional space Lξ with points
ξ determined by the set of coordinates ξi = λi; ξN

= 2φ
G

with a metric defined as g̃ = ( g 0
0 1 ).

The (N − 1) × (N − 1) block matrix g = (gij), gij = Re[〈∂ξ
i
Ψ|∂ξ

j
Ψ〉] − 〈∂ξ

i
Ψ|Ψ〉〈Ψ|∂ξ

j
Ψ〉,

(i, j = 1, 2, . . . , N − 1) is the Fubini-Study metric [10, 11]. As φ
G

is defined modulo 2π,
we restrict the analysis to the region 0 ≤ ξ

N
≤ 4π of Lξ. The length of a path CL with

(nonorthogonal) end points ξc = ξ(tc) and ξ′ = ξ(t′) in Lξ is given by (summation over

repeated indexes is implied) L(CL) =
∫ ξ′

ξc
(g̃αβ dξα dξβ)1/2; α, β = 1, 2, . . . , N . The length

L(CL) constitutes a nondegenerate positive-definite functional, which is also a representation
invariant. Stationary states are represented in Lξ by stationary points (i.e., their coordinates
are invariant with time) in the hyperplane ξ

N
= 0 (point A in fig. 1). If CL is such that

L(CL) ≈ 0 for t′ = ts the system is quasistationary (curve B in fig. 1). Generally, the opposite
is not true. For example, if the path CL corresponds to multiple turns in the vicinity of ξc, the

.

!N

CPN-1
A B

C

D

E

2"

Fig. 1 – Different kinds of trajectories in Lξ. Point A represents a stationary state. Trajectories
B and C correspond to cyclic quasistationary states with small and large lengths, respectively. D
corresponds to a cyclic evolution far from quasistationarity. E represents a non-cyclic state evolving
along a large geodesic. The dotted line perpendicular to the hyperplane ξN = 0 guides the eye.
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length L(CL) may be rather long while the system is still quasistationary (curve C in fig. 1).
Therefore, L(CL) ≈ 0 (with t′ = ts) constitutes a sufficient condition for quasistationarity.
This constraint is, however, too strong. A weaker condition is inferred by taking as a reference
the path Cfree

L corresponding to the evolution of the field-free system in the time interval
tc ≤ t ≤ ts. The condition L(CL) � L(Cfree

L ) for t′ = ts serves thus as a sufficient condition
for the quasistationarity of the driven system. It has been shown in ref. [11] that

g̃αβ dξα dξβ =
〈
˙̃Ψ(t)| ˙̃Ψ(t)

〉
dt2 ≥ gij dξi dξj , (4)

where | ˙̃Ψ(t)〉 = d|Ψ̃(t)〉/dt is the velocity vector in the Hilbert space H of the curve t→ |Ψ̃(t)〉
at the time t along the path of evolution of |Ψ̃(t)〉 = 〈Ψ(t)|Ψ(tc)〉/(|〈Ψ(t)|Ψ(tc)〉|)|Ψ(t)〉 [11].
For paths lying on the hyperplane ξ

N
= 0, (4) reduces to an equality. Such an equality is

reached only when the left-hand side of (4) acquires an extremum value corresponding to the
shortest paths (called geodesics) in Lξ. So all the paths lying in the hyperplane ξN = 0 are
geodesics. The geodesics on Lξ can be found by extremizing L(CL) with fixed end points.
Because of the structure of the metric g̃ the geodesics on Lξ correspond to the geodesics
determined by the Fubini-Study metric g = (gij) [12] with φ

G
= 0, i.e., all the geodesics on

Lξ lie on the hyperplane ξ
N

= 2φ
G

= 0. Thus we deduce that if a system evolves through
a geodesic on Lξ, then its evolution corresponds to a curve in the hyperplane ξ

N
= 0 and

vice versa [14] (fig. 1). For stationary states, the system evolution corresponds to geodesics of
zero length. Assuming the wave functions at the fixed end points of the path to be in phase
in the Pancharatnam sense, i.e., if 〈Ψ(tc)|Ψ(t′)〉 is a positive real number, one finds that the
geodesic on Lξ connecting ξc and ξ′ is determined by the curve Cgeo = {|Ψ(t)〉 : tc ≤ t ≤
tc + arccos[〈Ψ(tc)|Ψ(t′)〉]} ⊂ H with

|Ψ(t)〉 = |Ψ(tc)〉 cos(t− tc) +

(
|Ψ(t′)〉 − 〈Ψ(tc)|Ψ(t′)〉|Ψ(tc)〉√

1− 〈Ψ(tc)|Ψ(t′)〉2

)
sin(t− tc). (5)

For systems with cyclic evolution the wave function evolves along a cycle of duration T to
|Ψ(t′ = tc + T )〉 = |Ψ(tc)〉 (recall the wave functions at tc and t′ are in phase). From eq. (5)
follows 〈Ψ(tc + T )|Ψ(tc)〉 = cos T = 1 and, consequently, T = 0. This means that for a time
cyclic system all the geodesics are of zero length [14]. For cyclic evolution the hyperplane
ξ

N
= 0 can thus be identified with the stationary states of the system. The deviation of the

path on Lξ from the hyperplane ξ
N

= 0 can then be regarded as a measure of the degree of
stationarity of a time-dependent quantum system that evolves cyclically. Such a deviation
is characterized by ξN = 2φ

G
. Taking into account that for the case of cyclic evolution φ

G

reduces to the Aharonov-Anandan (AA) geometric phase φ
AA

[10, 13], a necessary condition
for the quasistationarity of a cyclic (in time) quantum system can be written as φ

AA
≈ 0 (for

a periodic cycle with its subcycles). This condition is not sufficient, since for some cases in
which ξ(tc) and ξ(t′) correspond to the ends of a long trajectory the system can evolve from
ξ(tc) to ξ(t′) and back to ξ(tc) through approximately the same path [14] (note that in such
cases the condition φ

AA
≈ 0 is fulfilled while the system is far from being quasistationary). In

the most general situation, the necessary condition φ
AA

≈ 0 has to be complemented with the
condition L(CL) ≈ 0 to be sufficient for quasistationarity. Here we focus on the situation [14]
where the condition φ

AA
≈ 0 is a necessary and “sufficient” condition for a cyclic quantum

system to be quasistationary (from now on we only address this case). If any of the conditions
a), b), c), or their combinations is augmented with the requirement that the corresponding
AA geometric phases acquired during a periodic cycle and subcycles approach zero, then the
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system is PQ. The degree of quasistationarity (i.e. the sustainability) of a cyclic system is
quantified as follows: The smaller φ

AA
, the stronger the quasistationarity of the system. This

criterium is a consequence of the lack of cyclic geodesics on Lξ with nonzero length and is
not viable for the case of noncyclic evolution, where a system with φ

G
= 0 can be far from

quasistationarity if it evolves through a long geodesic (curve E in fig. 1).
So we conclude that parameters of external fields that are favorable for inducing PQ are

determined as follows: 1) Find the set S of the field parameters (frequency, field amplitude
strength, . . . ) for which at least one of the conditions a), b), c) is fulfilled. 2) The optimal field
parameters (for inducing PQ) are in the subset of S with the smallest AA geometric phase.

Below we demonstrate the quasistationarity of two particular observables; we stress how-
ever that once the system is driven to a PQ state, any other observable will also be PQ.

Examples. – For an illustration we consider a TLS described by the Hamiltonian HTLS =
−(h̄ω0/2)σz + µV (t)σx, where h̄ω0 is the energy splitting between the two stationary states
|1〉 and |2〉 and µ is the transition dipole. σz,x are the Pauli matrices. The Hamiltonian HTLS

with V (t) = V0 sinωt has been studied in the context of CST induced by a CW laser in a
(SDQW) [5–7]. In this case, HTLS is invariant under (µ → −µ; t → t+ π/ω) and hence the
Floquet modes have well-defined generalized parity. Accordingly, quasienergies cross when
a system parameter is varied. At these crossing points the tunnelling of a state localized in
the left well to the right well is suppressed. In contrast, when the SDQW is subject to an
infinite train of unipolar kicks with amplitudes p and period T applied at t = tc, i.e. when the
interaction potential is Vkick(t) = p

∑∞
j=0 δ(t − tc − jT ), HTLS is no longer invariant under

(µ→ −µ; t→ t+ T/2) and the Floquet modes do not have a well-defined generalized parity.
According to the von Neumann-Wigner theorem [15], the existence of quasienergy crossings is
then no longer guaranteed when a single system parameter is varied. In fact, the quasienergies
exhibit typical avoided crossings. The periodically kicked TLS is solvable analytically (cf.,
e.g., [9, 16]) with quasienergies ε1,2 being ε1 = −h̄ω/(2π) arccos(cosϕ cosϑ); ε2 = −ε1 , where
ϕ = µp/h̄ and ϑ = πω0/ω. Thus, when a single parameter is varied, say ϕ, the condition a),
corresponding to the degeneracy of quasienergies is never met. The system, however, exhibits
CST in the absence of quasienergy degeneracy, as demonstrated numerically [17]. Assuming
the system to have been prepared in a time-dependent state |Ψ(t)〉 = c1(t)|1〉+ c2(t)|2〉 such
that c1,2(0) = ±1/

√
2, then at t = 0 the particle is localized in the left well. If no external

field is applied for t > 0, then PL(t > 0) = (1 + cos(ω0t))/2. Consequently, the particle
oscillates from one well to the other with period T0 = 2π/ω0 and the initial localization is
not sustainable in time. To sustain the initial particle localization, a time-dependent field
capable of inducing quasistationarity is required. Concerning the periodically kicked TLS we
found that for ϕ = (2n+ 1)π/2, |Ψ(t)〉 is cyclic regardless of the value of ϑ. For tc = T/2 the
condition b) is fulfilled and each periodic cycle is a single cycle with a duration T = T . For
tc < T/2 the condition c) is fulfilled and each periodic cycle lasts T = 2T and encompasses
two subcycles with durations 2tc and 2(T − tc). If tc = 0, we find for each periodic cycle

φ
AA

= (π/2)(1− cos[πT/T0]). (6)

Thus, from the requirement φ
AA

≈ 0 we infer that for a periodic train of kicks with amplitudes
such that ϕ = (2n + 1)π/2 (this guarantees periodicity) and a period such that T � T0/π
(this ensures quasistationarity) the system is PQ. I.e., a particle initially localized in one
of the wells remains there while the pulse train is on. If the kicks amplitude is such that
ϕ = (2n + 1)π/2 (with n an integer) then the kicked TLS is always cyclic regardless of
the value of the period T of kicks. In such a situation, the dependence of the probability
PL(t) = |〈Ψ(t)|l〉|2 on the period T of the train of kicks can be mapped into a dependence
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Fig. 2 – Periodically kicked TLS: Probability PL of finding the particle in the left well as a function
of the AA geometric phase φAA and the time. The strength of the kicks is chosen as p = h̄π/(2µ).

on φ
AA

, since each value of T is related to the phase φ
AA

given by (6). Figure 2 shows
PL(t) = |〈Ψ(t)|l〉|2 for the case of the periodically kicked TLS as a function of φ

AA
and the

time (we choose ϕ = µp/h̄ = π/2). Figure 2 evidences that the degree of quasistationarity
increases when the AA phase approaches zero. For φ

AA
≈ π quasistationarity is absent and

the particle oscillates from one well to the other with the field-free period T0.
We performed also numerical calculations for a periodically kicked four-level rotor (FLR)

to describe the orientation of polar molecules induced by unipolar pulses [9]. Within the rigid-
rotor approximation, the dynamics of a polar molecule subjected to a periodic train of short
unipolar pulses is given by [9] ih̄∂tΨFLR(θ, φ, t) = [L2/(2I) − µ0Vkick(t) cos(θ)]ΨFLR(θ, φ, t),
where I = mR2

0 is the moment of inertia at the internuclear equilibrium distance R0 and m
is the reduced mass of the nuclei. L stands for the angular momentum operator, µ0 is the
permanent dipole moment, θ represents the angle between the molecular axis and the applied
field (polarized along the z-axis), φ specifies the corresponding azimuthal angle. Because of the
cylindrical symmetry around the molecular axis, the projection of the angular momentum M

J

onto the field polarization axis is conserved. Assuming the initial condition MJ = 0, the time-
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Fig. 3 – The molecular orientation parameter 〈cos θ〉 vs. time. τ0 is the molecule rotational period. T
and p = h̄ϕm/µ0 are the period and the strength of the fields favorable for cyclic evolution. The small-
est φAA (inset a) corresponds to the strongest sustainable orientation. Horizontal and vertical lines
mark, respectively, the orientation control value 〈cos θ〉(tc) ≈ 0.8 and evolution cycle periods T = lT .
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dependent wave function that describes the quantum dynamics of the molecule (within a four-
level approximation) is expressed as ΨFLR(θ, φ, t) =

∑3
J=0 cJ

(t)Y
J,0(θ, φ). Here Y

J,M
(θ, φ) are

spherical harmonics and c
J
are expansion coefficients obtained by solving for ΨFLR.

The observable of interest is 〈cos θ〉(t) = 〈ΨFLR(θ, φ, t)| cos θ|ΨFLR(θ, φ, t)〉, a quantity
that characterizes the degree of the molecular axis orientation along the applied-field po-
larization direction. The orientation parameter varies in the interval [−1, 1]. Perfect ori-
entation is achieved when 〈cos θ〉(t) reaches extremal values. Assuming the molecule to be
initially prepared such that c

J
(tc) = 1/2, then at t = tc the molecule is well oriented, with

〈cos θ〉(tc) ≈ 0.8. To show how quasistationarity is induced we performed numerical calcula-
tions for a NaI molecule following the same procedure as in [9]. In the absence of external
fields NaI has a rotational period of τ0 ≈ 138 ps. For a train of unipolar pulses we find several
sets of field parameters within the range 0.036 ≤ T ≤ 0.1 and 3 ≤ ϕm = µ0p/h̄ ≤ 7 that
lead to the cyclic evolution of the system. Some of these situations are displayed in fig. 3. In
all cases we find condition c) is responsible for the periodic cyclic evolution. The periodicity
(with a period T = lT ) of 〈cos θ〉 is evident. Figure 3(a) corresponds to the smallest value of
φ

AA
. Therefore, the situation of fig. 3(a) is optimal (i.e., it constitutes a sustainable strong

molecular orientation). With increasing φ
AA

the orientation is lost. For a field-free molecule
(fig. 3(d)) φ

AA
= π applies and the orientation parameter averaged over a rotational period

vanishes, i.e. the initial value of the molecular orientation (∼ 0.8) is not sustainable.

Conclusions. – In summary, we identified necessary and sufficient conditions for the qua-
sistationarity of a non-equilibrium quantum system and pointed out the relationship between
quasistationarity, the Fubini-Study metric, and the Aharonov-Anandan phase. We illustrated
our findings by numerical results for the dynamical localization of an electron in a double
quantum well and for the sustainability of field-induced orientation of polar molecules.
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