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Abstract

Magnetoresistance of a semiconducting ferromagnetic nanostructure with a laterally constrained domain wall is analyzed theoretically in

the limit of sharp domain walls and fully polarized electron gas is considered. The spin–orbit interaction of Rashba type is included into

considerations. It is shown that the magnetoresistance in such a case can be relatively large, which is in a qualitative agreement with recent

experimental observations. It is also shown that spin–orbit interaction can enhance the magnetoresistance. The role of localization

corrections is also briefly discussed.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

There is a growing interest in the magnetoresistance

associated with domain walls (DWs) in metallic ferromag-

nets [1]. Owing to recent progress in nanotechnology, it

became possible now to extract a single DW contribution to

electrical resistance [1–4]. In a series of experiments, the

magnetoresistance associated with DWs was found to be

very large [5–10]. In particular, the experiments on Ni

microjunctions showed that a constrained DW at the contact

between ferromagnetic wires produces an unexpectedly large

contribution to electrical resistance, and consequently leads

to a huge negative magnetoresistance [9]. Very recently, the
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magnetoresistance of up to 2000% has been measured in

semiconducting magnetic nanoconstrictions [10].

It has been shown theoretically [11] that DWs in

magnetic nanoconstrictions can be very sharp, with the

characteristic width L being of atomic scale. This is much

less than typical DW width in bulk materials or thin films.

Theoretical descriptions of transport properties of DWs are

mainly restricted to smooth DWs [12–16], typical for bulk

ferromagnets. Electron scattering from DWs is then rather

weak and the spin of an electron propagating across the wall

follows the magnetization direction almost adiabatically.

The additional resistance calculated in the semiclassical

approximation can be either positive or negative and is

rather small. The condition for validity of the semiclassical

approximation is kFj(,)LH1, where kFj and kF, are the

Fermi wavevectors for the majority and minority electrons,

respectively.

Scattering of electrons from sharp DWs can be, however,

quite strong and the semiclassical approximation is then no
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longer applicable. Large magnetoresistance in magnetic

junctions was found by Tagirov et al. [17], who considered

DW as a potential barrier independent of the electron spin

orientation. Ballistic electron transport through DWs has

also been analyzed by numerical simulation methods [18–

20]. Recently, the ballistic motion through a nanocontact has

been studied by Zhuravlev et al. [21], who found a large

magnetoresistance effect due to the presence of a non-

magnetic region within the constriction considered as a one-

channel wire.

The one-dimensional model of a sharp DW has been

considered in Ref. [22] in the limit of kFj(,)Lb1. It has

been shown there that the problem can be viewed as

transmission through a spin-dependent barrier. It has been

also shown, that the magnetoresistance can be then quite

large and increases with increasing spin polarization of

electrons. Thus, the largest magnetoresistance effect can be

expected in fully spin polarized electron gas [23]. Here we

study such a case in the limit of a sharp DW [22].

Additionally, we take into consideration also spin–orbit

interaction.
2. Model and scattering states

We consider a ferromagnetic narrow channel with a

magnetic DW. The magnetization is a function of the

coordinate z (along the channel),M(z)= [M0 sin u (z), 0,M0

cos u (z)], where u(z)] varies from zero to p for z changing

from z =�V to z=+V. Let the characteristic length scale of

this change be L. Thus, the magnetization is oriented along

the axis z for z <�L, and points in the opposite direction for

z >L. The DW width L in constrained magnetic contacts can

be of an atomic order.

Magnetization leads to a splitting of the spin-up and spin-

down electron bands (we take the quantization axis along z).

We assume the parabolic band model, that is suitable for

description of conduction electrons in semiconductors. Due

to the spatial variation of magnetization M(r), spin-flip

scattering of electrons can take place within the domain

wall. In addition, the spin-up electrons propagating along

the axis z are reflected from the effective potential barrier at

z =0, which occurs when DW is sharp. Correspondingly, the

spin-down electrons moving in the same direction do not

feel any barrier and are not reflected back. Hence, the

strongest effect of DWS on electronic transport can be

expected in the case of full spin polarization of electron gas,

when there are no spin-down electrons at z<0, and no spin-

up electrons at z >0. This takes place when JM0>EF, where

J is the exchange integral, and EF is the Fermi energy in the

absence of magnetization (it characterizes the total electron

density n of the semiconducting material, n =(2mEF)
3/2 /

3p2
H
3, where m is the electron effective mass). We assume

that the requirement of full spin polarization is fulfilled. In

the case of magnetic semiconductors, this means the

depletion of a region near DW.
The condition of sharp DW means that the wall width is

smaller than the electron Fermi wavelength, LjF<1, where

jF is the electron Fermi wavevector. This condition can be

easily fulfilled in semiconductors, especially in the case of

low electron concentration. When DW is laterally con-

strained, the number of quantum transport channels can be

reduced to a small number. In the extreme case only a single

conduction channel is active. The corresponding condition

is LcjF<1, where Lc is the wire width. This condition can

be easily obeyed in semiconductors with low density of

carriers.

We adopt the model of a 1D electron gas in spatially

varying magnetization field due to DW. An important

element we add to the model is the presence of spin–orbit

interaction. Under the condition of full spin polarization, the

spin-flip scattering provides mixing of different spin

channels that is responsible for the transfer of electrons

through the domain wall. Thus, we can expect a strong

influence of the spin–orbit interaction on the total resist-

ance. We assume the spin–orbit interaction in the form of

Rashba term. Such interaction is usually associated with the

asymmetric form of the confining potential leading to size

quantization in quantum wells and wires, and also with the

effect of substrate. In p-type semiconductors, the spin–orbit

interaction can also be related to the complex form of the

Hamiltonian describing holes, but the corresponding model

becomes much more complicated.

Thus, we assume the model Hamiltonian in the form

H ¼ � H
2

2m

d2

dz2
� JMz zð Þrz � JMx zð Þrx þ iarx

d

dz
; ð1Þ

where a is the parameter of spin–orbit interaction, whereas

rx and rz are the Pauli matrices. We choose the axis x

normal to the wire and assume the magnetization in the wall

rotates in the x –z plane. The Rashba spin–orbit interaction

in Eq. (1) corresponds to the axis y perpendicular to the

substrate plane. The magnetization vector rotates then in the

substrate plane. Although the one-dimensional model

describes only a single-channel quantum wire, it is sufficient

to account qualitatively for some of the recent observations.

It can be generalized to the case of a wire with more

conduction channels (the conductance can be then presented

as a sum over conductive channels).

In the following description we use the basis of scattering

states. The asymptotic form of such states (taken sufficiently

far from DW, AzAHL) can be written as

wkR zð Þ ¼ eikz

Dk

Mk

ak

��
þ re�ikz

Dk

Mk

� ak

��

þ rf e
jz

Dj

iaj

Mj

��
; z < � L; ð2Þ

wkR zð Þ ¼ tf e
ikz

Dk

ak
Mk

��
þ te�jz

Dj

Mj

� iaj

��
; z > L; ð3Þ
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where k = [2m(E +M)]1/2 / H and j = [2m(M�E)]1/2 / H,

whereas the other parameters are defined as Mk =M +

(M2+a2k2)1/2, Mj =M +(M2�a2j2)1/2, Dk =(Mk
2+a2k2)1/2,

Dj = (Mj
2+a2j2)1/2, with M = JM0 and E denoting the

electron energy.

Due to spin–orbit interaction, electron states are super-

positions of spin-up and spin-down components. For

simplicity, we call them in the following as spin-up and

spin-down waves, because they reduces to such waves in the

limit of vanishing spin–orbit interaction. Thus, the scatter-

ing state (2), (3) describes the spin-up wave incident from

z =�V to the right, which is partially reflected and also

partially transmitted into the spin-up and spin-down

channels. The coefficients t and tf are the transmission

amplitudes without and with spin reversal, respectively,

whereas r and rf are the corresponding reflection ampli-

tudes. Even though there are no minority carriers far from

the domain wall, the corresponding waves exist in the

vicinity of the domain wall, and decay exponentially to the

bulk. Similar forms also have the scattering states wkL

describing electrons incident from the right to left.

When kLb1, the reflection and transmission coeffi-

cients can be calculated analytically. Upon integrating the

Schrödinger equation Hw =Ew (with the Hamiltonian given

by Eq. (2)) from z =�d to z = +d, and assuming

Lbdbk�1, one obtains

H

2m

dwKi

dz

����
z¼þd

� dwki

dz

����
z¼�d

��
þ krxwk;i z ¼ 0ð Þ ¼ 0 ð4Þ

for each of the scattering states (i=(R,L)), where

k˚
J

H

Z V

�V

dz Mx zð Þ: ð5Þ

Eq. (4) has the form of a spin-dependent condition for

electron transmission through a d-like potential barrier

located at z =0. To obtain this equation we made use of

the condition kLb1. The magnitude of the parameter k in

Eq. (5) can be estimated as k˚JM0L /H =ML /H.

Using the full set of scattering states, together with the

wave function continuity condition, one can find a set of

equations for transmission amplitudes t and tf. Since the

wave conserving spin decays exponentially away from the

wall, only spin-flip amplitude tf determines electric current

in the wire. Let us denote by v=k /m the velocity of incident

electrons, and by m =j /m the corresponding quantity for the

exponentially decaying wave. In the absence of spin–orbit

interaction, a =0, one finds

tf ¼
4ikv

vþ imð Þ2 þ 4k2
: ð6Þ

In the limit of mHv and kbm (low density of carriers

and small spin–orbit interaction) one can find another

limiting formula,

tf ¼ � 4ivk2

m2 k � iamj=Mð Þ : ð7Þ
In the general case, the coefficient tf can be found

analytically but the corresponding formula is rather

cumbersome.

In the limit of kY0 (very thin DW), the transmission

through the wall vanishes, which corresponds to the

complete reflection from the barrier. In the case of

nonzero spin–orbit interaction, we could naively expect

nonvanishing penetration through the wall even in the

limit of thin domain wall. However, the condition of

matching wave functions at z <L and z >L do not allow

penetration of one spin component because both incident

and transmitted waves are certain superpositions of spin-up

and spin-down electrons. Eq. (7) shows that the trans-

mission through the wall decreases with increasing spin–

orbit interaction.
3. Resistance of the domain wall

To calculate the conductance of the system, we use the

Büttiker–Landauer formula, which can be essentially

simplified due to suppression of all channels but spin-flip

through the wall. (The derivation of such a formula for

transmission through the wall in the case of all non-

vanishing channels has been done in Ref. [22].) Thus, one

obtains

G ¼ e2

2pH
jtf j2: ð8Þ

Due to the current conservation, the conductivity is

determined by the propagating (non-decaying) component

of the transmitted wave. Using Eq. (6) one finds

G ¼ 8e2

pH
k2v2

v2 � m2 þ 4k2
� �2 þ 4v2m2

ð9Þ

for vanishing spin–orbit interaction. All the velocities are

taken here at the Fermi level.

In the general case, the calculated dependence of

electrical conductance on the Fermi-energy EF is presented

in Fig. 1. The curves shown there were calculated for the

parameters: m =0.6 m0, M0=0.2 eV, and L=2�10�8 cm.

These parameters correspond to GaMnAs semiconductor

and critical temperature Tc˚200 K. The conductance

monotonically increases with increasing EF, since the barrier

is smaller for electrons of higher energy. The spin–orbit

interaction, however, diminishes the conductance of a

magnetic wire with DW.

The dependence of magnetoresistance on the Fermi

energy EF is presented in Fig. 2 for different values of the

parameter a. The magnetoresistance was calculated with

respect to the state without DW, MR =RDW/R0�1, where

RDW is the resistance of the wire with DW and R0=2pH /e
2

is its resistance in the absence of the wall (only spin-up



Fig. 2. Magnetoresistance of the wire with a domain wall vs. Fermi energy

for different values of a.
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channel is active). For our choice of parameters, the

magnetoresistance is rather high and increases substantially

with spin–orbit interaction.

The magnetoresistance measurements on magnetic

semiconductors are usually performed at low temperatures

because the corresponding Curie temperature is rather low.

At such conditions, one can expect significant contribu-

tion of the localization corrections to conductivity. The

role of localization in the case of smooth DWs (for

kLH1) has been studied before [24,25], and it was

shown that the localization corrections are suppressed by

an effective gauge field of the wall. This means that the

contribution of the wall to resistance is negative, and the

corresponding magnetoresistance is positive. We have

analyzed the role of localization corrections in the case

of sharp DW. Qualitatively, it can be described as the DW

induced suppression of the quantum interference in triplet

Cooperon channel [26]. The singlet channel in ferromag-

nets is strongly suppressed by the internal magnetization

[27]. The suppression of the interference by DWs is

related to dephasing of the wave function of electron

transmitted through the barrier. If the transmission through

the wall is small, the corresponding dephasing length

roughly equals to the distance of electron moving from a

point z (within the constriction) to the domain wall

position (z =0), and the dephasing time is sdw(z)¨z2 /D,

where D is the diffusion coefficient. After averaging over

z of the local localization correction dG(z), we find that

the characteristic dephasing length L0 is the constriction

length itself, dGdw˚�e2L0 /pH. In the case of sharp

DWs, the localization correction diminishes the magneto-
Fig. 1. Conductance of magnetic wire with a domain wall vs. Fermi energy

of electrons. Different curves correspond to different values of the spin–

orbit coupling parameter a.
resistance due to the reflection from the wall, since it has

a different sign.
4. Conclusions

We have presented a theoretical description of the

resistance of a semiconducting magnetic nanojunction with

a constrained DW in the case of full spin polarization of

electron gas. In the limit of jLb1, the electron transport

across the wall was treated effectively as electron tunneling

through a spin-dependent potential barrier. For such a

narrow and constrained DW, the electron spin does not

follow adiabatically the magnetization direction, but its

orientation is rather fixed. However, DW produces some

mixing of the spin channels. The spin–orbit interaction

essentially enhances the magnetoresistance of such a

structure, whereas the localization corrections play an

opposite role. However, the localization corrections can be

totally suppressed by the spin–orbit interaction [27]. This

indicates that the spin–orbit interaction can play an

important role and can lead to large enhancement of the

magnetoresistance effect.

The magnetoresistance effect of a similar origin can

occur in nonmagnetic semiconductors in external mag-

netic field. Splitting of spin-up and spin-down electron

states is then created by the magnetic field. In strongly

disordered semiconductors the magnitude of effective

field acting on electrons is not uniform, which makes

the problem similar to the case of nonuniform magnetic

semiconductors.
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