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We consider the motion of a sharp domain wall in magnetic nanowires with electric current. The width of 
the domain wall is much smaller than the electron wavelength, which is typical for magnetic semiconduc-
tors. We calculate the distributions of the spin density and the spin current related to different modes of 
the scattering states. The accumulated transverse components of the spin density and the spin current os-
cillate in the vicinity of the wall and they essentially affect its dynamics, whereas the longitudinal part of 
the spin current is responsible for another component of the spin torque creating a force for the current-
induced motion of the domain wall along the nanowire. We also analyze the dynamics of the sharp do-
main wall using the standard Landau–Lifshits–Gilbert formalism and the two-component spin torque cal-
culated for this model. 

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1 Introduction 

Studies on the dynamics of domain walls (DWs) in magnetic nanostructures are motivated by perspec-

tive applications in spintronic devices. A contemporary important aspect is the efficient controllability of 

the motion of DWs by means of external magnetic field or electric current flow, as has been demon-

strated by several recent experiments [1–3]. In general, the theoretical formulation of a domain wall 

motion has long been established [4–6]. These treatments deal with 3D or 2D ferromagnets and are 

based on a model of classical ferromagnets with separated magnetic and electronic dynamics. 

 Nowadays research on the DW dynamics is focused on the problem of current-induced magnetic wall 

motion in nanowires and nanoconstrictions [1, 2, 7]. In the presence of an electric current, the domain 

wall can move due to the spin torque transmitted to magnetic system from the spin-polarized electron 

gas, in addition to the linear momentum directly transmitted from electrons to the wall. The question of 

how to calculate the spin torque is of a prime importance in the theory of domain-wall motion. However, 

a relatively small number of recent works have addressed this problem [8–10]. 
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 In principle, the DW motion can be described by the Landau–Lifshitz equations, which have a well-

known static solution for the DW. However, the search for a corresponding dynamic solution is a  

nontrivial task, particularly in the presence of an external force. Hence one is obliged to resort to ap-

proximate schemes for description of the DW dynamics. Most of these schemes are not strictly mathe-

matically justified but they rely on physically reasonable arguments. The simplest approach assumes an 

approximate moving-wall solution which has exactly the same shape as dictated by the static solution. 

The range of validity of this assumption is an open question and it is up to numerical simulations proba-

bly [11, 12] to judge its reliability. Most recently, new approaches to this problem have been presented 

[8, 10], concerning both the calculation of torque and the solution of dynamical equations of motion for 

the DW. 

 In this present work we concentrate on the issues of the spin torque and on the wall dynamics in a 

magnetic nanowire with a DW. Our treatment assumes a small extension of the DW on the scale of the 

Fermi wave length of the carriers (electrons or holes), and hence the theory is applicable to magnetic 

semiconductors with a small Fermi momentum. 

2 Current-induced spin torque and the domain wall motion 

We consider a magnetic wire with a single DW and model it as a 1D system with spin. Furthermore, an 

electric current is transmitted through the wall. We calculate the torque acting locally on the magnetiza-

tion considering the DW as a static object. This means we assume that the electrons are scattered from 

frozen magnetic moments within the wall, transmitting the spin torque from the spin-polarized electrons 

to the magnetic moments – a process which sets the DW in motion. This treatment is valid when the 

characteristic velocity of the magnetic moments is much smaller than that of the electrons in the wire. 

 Our main assumption is that the width of DW is much smaller than the wavelength of electrons at the 

Fermi level for both majority and minority electrons, 1
F
k δ

≠,Ø
� , where 

F
k

≠
 and 

F
k

Ø
 are the Fermi mo-

mentum of spin up and down electrons, respectively, and δ  is the DW width. We consider a thin 

nanowire, for which only one size quantization level of electrons is relevant, which requires the condi-

tion 1
F
k d

≠,Ø
� , where d  is the diameter of the wire. These conditions are readily realized in magnetic 

semiconductor wires. 

 The corresponding Hamiltonian includes the interaction of electrons with magnetic moments 
i

M  lo- 

cated at the points 
i
x , int

( )
i i

i

H g x xδ= ◊ -Â Ms , where g  is the coupling constant. For definiteness, we  

take the vectors 
i

M  in the x, y-plane, and directed along the x-axis for 2x δ< - /  and in the opposite di-

rection for 2x δ> / . In view of the imposed condition 1
F
k δ

≠,Ø
� , we can calculate the wave functions 

(scattering states), as a scattering problem with spin-dependent δ -potential [13]. Then we can find the 

spin and spin–current profiles 
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corresponding to the scattering states with incoming spin up and spin down electrons, respectively. 

 For the calculation of the spin density and spin currents induced by the electric current in a magnetic 

nanowire, we utilize the linear response approach to weak perturbation created by the voltage drop. Then 

the charge and spin currents, as well as the spin density, can be presented as the weighted sums of cur-

rents for different spin-polarized scattering states at the Fermi level. The expression for the charge cur-

rent 
0
j  has the usual form obtained from the Büttiker–Landauer formula, whereas for the induced spin 

current and for the accumulated spin we find 
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Here φD  is the voltage bias. Using (1), (2) and the formulas for scattering states [13], we find that the 

components of spin current perpendicular to the x-axis, are oscillating functions. The oscillation period 
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is determined by the inverse momentum at the Fermi level. Hence, the oscillation period of the transverse 

component of spin current is much larger than the domain wall width. We recall that in 3D systems, the 

transverse component of the spin current decays due to an additional integration over momentum in the 

DW plane. In metallic ferromagnets, the decay is very fast due to the large Fermi momentum of elec-

trons. However, there is a nonvanishing spin transfer for the transverse component in the 3D case, too. 

 To calculate the torque acting locally on a magnetic moment inside the DW, we use the formula 

 0 (0)
i i

gM

�
= - ¥ ,T n S  (3) 

which follows from the equation of motion of the magnetic moment, where 
i
n  is the unit vector along the 

moment 
i

M . Here we can neglect the variation with x of the accumulated spin density ( )xS  taking it as 

(0)S  because the variation of spin density is smooth on the length scale δ . Here 
0

M  is the magnitude of 

moment. 

 Finally, we find the torque acting on a single localized moment in the domain wall. The result can be 

presented in the following form 

 ( )[ ]0
,

i i i i

j

e
η ζ= ¥ ¥ + ¥T n n s n s  (4) 

where s is the unit vector along the magnetization M  at xÆ -• , and the coefficients η and ζ  are con-

stant. The dependence of 
0

gη/  and 
0

gζ /  on the parameters 2

eff0
2mgMg� �= /  and ( ) ( )p k k k k

Ø Ø≠ ≠
= - / +  is 

presented in Fig. 1a and b, where we denoted 
eff i

i

=ÂM M , and 2

0 0
2g mgM �= / . As we see, both 

coefficients strongly depend on the parameters of the ferromagnet and parameters of the wall. In case of 

small coupling 
0

g� , we obtain ζ η� , i.e., the torque is mostly related to the second component in Eq. (4). 

In the opposite case of large 
0

g� , the first term in (4) dominates. 

 To study the effect of the torque on the DW motion, we consider the Hamiltonian of magnetic system 

with two anisotropy constants 
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where a is the exchange interaction. We can add the torque (4) to the corresponding Landau–Lifshitz 

equations of motion for the moments described by magnetic Hamiltonian (5). 

 

      

Fig. 1 Dependence of factors η  and ζ  on the effective coupling 
0

g�  for different electron polarization p . 

a) b) 
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 The problem of solving the dynamical equations of motion can be simplified in the limit of 
1 2
λ λ� . In 

this case, we find that it has the form of 
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where ( )x tϕ ,  is the angle between ( )x t,n  and the x-axis. 
 If ζ η� , this equation has a moving kink-like solution ( ) ( )x t x vtϕ ϕ, = -  with a constant velocity. 
We found that for 

0
0j = , the minimum of energy (more exactly, minimum of the quantum mechanical 

action) corresponds to the static DW. In the limit of small velocity, 2 2

1
v aγ λ� , the DW behaves like a 

particle of mass 2

0 1d
m β γ λ= / , where 1 2

0 2
( )aβ λ /

= /  is the inverse width of DW, and γ  is the gyromag-
netic factor. For 

0
0j π , there is an instability for the current exceeding the critical value of 

1 2

0cr 1 2
( 2) /j eγ λ λ η/

= / . It means that the moving DW is energetically more favorable. 
 The analysis of possible solutions for the case of not too small ζ  shows that this component of the 

torque accelerates the DW but we did not find a simple solution except for the case of very small veloci-

ties, because the shape of the DW depends on its velocity v. 

3 Conclusions 

The considered model of the magnetic nanowire is applicable for semiconducting systems. We calculated 
the components of spin torque acting on a thin DW in the magnetic nanowire subject to an applied elec-
tric current. The different components induce a rotation of the magnetic moments in different directions. 
 We also considered the dynamics of the domain wall in the presence of applied electric current. We 
demonstrated that a moving magnetic kink, similar to the static DW, can be a solution of the equations 
for the magnetic dynamics only under some special conditions. We identified these conditions in the case 
of a large ratio of magnetic anisotropy constants. In the limit of small velocities, the solution is not a kink 
since its width decreases with increasing velocity. In the limit of small velocity, the domain wall moves 
like a particle of a mass determined by the exchange interaction and by the anisotropies. One of the spin 
torque components ζ , dominating at the small coupling, acts as a driving force for the domain wall, 
accelerating the wall, provided that there is no pinning to impurities. 
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