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The phenomenon of dynamical, field-induced freezing of quantum evolution is discussed. It occurs when a
time-dependent state is dynamically driven in such a way that the evolution of the corresponding wave function
is effectively localized within a small region in the projective Hilbert space. As a consequence, the dynamics
of the system is frozen and the expectation values of all physical observables hardly change with time.
Necessary and sufficient conditions for inducing dynamical freezing are inferred from a general analysis of the
geometry of quantum evolution. The relevance of the dynamical freezing for a sustainable in time, dynamical
control is discussed and exemplified by a study of the coherent control of the kicked rotor motion.
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Localization phenomena in quantum systems are in the
focus of intensive investigations due to their conceptual and
technical significance. For example, the so-called Anderson
localization �AL� �1�, a phenomenon that has been at the
heart of the study of transport properties in mesoscopic sys-
tems, occurs in disordered solids, and refers to the localiza-
tion of the charge carrier’s wave function in the configura-
tion space. Dynamical localization �DL�, on the other hand,
implies localization in the phase space �2,3�. Although there
are some formal similarities between AL and DL, unlike the
former, DL has an intrinsic dynamical origin. The periodi-
cally kicked rotor �2,3� constitutes a paradigmatic model for
studying DL. In a classical scenario the periodically kicked
rotor �e.g., a rotational pendulum periodically kicked by an
external force� becomes chaotic after application of a few
kicks �2,3� and its motion becomes diffusive. In the quantum
regime, however, the classical diffusive motion is suppressed
by quantum interference effects that, eventually, lead to lo-
calization in the phase space.

In the present Brief Report we discuss a different phe-
nomenon that we term dynamical freezing �DF�. It refers to a
dynamical, field-induced localization of the wave function of
the system within a small region of the corresponding pro-
jective Hilbert space. Thus, if ��t0� represents the time-
dependent wave function of a system at a given time t= t0,
our interest concerns the possibility of freezing the
subsequent evolution of the system by guaranteeing that
��t� t0� remains close �up to a phase and for a long enough
time� to ��t0�. A geometric quantity that serves as a measure
of the angle in Hilbert space between the rays corresponding
to ��t0� and ��t� is the Bargmann angle ��t� �4�, defined as
��cos���t�� � = ����t0� ���t���. In terms of the Bargmann angle,
DF occurs when the system evolves in such a way that
�cos���t�� � �1 for t� t0. Obviously, such a situation occurs
always for stationary systems but this is a trivial case in
which we are not interested here. For time-dependent sys-
tems, however, such a situation does not occur spontaneously
but, as shown here, can be achieved by applying an appro-
priate time-dependent external field. The purpose of the
present report is to study the geometric origin of the DF.
From such a study we then determine necessary and suffi-
cient conditions for dynamically freezing a time-dependent

quantum state as well as the field parameters capable of in-
ducing DF.

We consider nonrelativistic, nonstationary systems that
are well described as a coherent superposition of a finite
number N of unperturbed nondegenerate stationary state vec-
tors �n�, i.e., the time-dependent state vector is cast as
���t��=	n=1

N cn�t� �n�. The evolution of the system is deter-
mined by the N-dimensional complex vector C�t��CN,
whose components are the expansion coefficients cn�t�. In
the �n� representation the Hamiltonian of the system can be
written as H=	n=1

N EnPnn+	m,n=1
N �m �V�r , t� �n�Pmn, where En

is the eigenenergy associated with �n�, Pmn= �m��n�, and
V�r , t� describes coupling to the time-dependent external
field.

For a system with unitary evolution, the corresponding
Hamiltonian is Hermitian and can therefore be decomposed
as H=q�t�I+H�t�, where q�t�=N−1Tr�H�, I is the N�N unit
matrix, and H�t� belongs to the su�N� algebra. The first
summand in the decomposition can be eliminated upon a
gauge transformation, hence the physics of the system is
governed by H�t�. Since H�t��su�N�, it can be expanded in
the ND=dim�su�N�� generators �i of su�N�, i.e.,

H�t� =
1

2	
i=1

ND

ai�t��i. �1�

Choosing the generators �i such that Tr��i� j�=�ij �here �ij is
the Kronecker symbol�, the expansion coefficients in �1� can
be cast as ai�t�=Tr�H�t��i�.

For our purposes it is convenient to make a transforma-
tion from the complex Hilbert space CN to a real space. This
is done by introducing the �Bloch� coherence vector �5–7�
B�t� via the following map �:

C�t� � CN : ��C�t�� = B�t� = C†�t��C�t� � RND, �2�

where �= ��1 ,�2 , . . . ,�ND
�. Thus, B�t� is a vector whose

components are the expectation values of the ND generators
of su�N�.

In terms of the coherence vector, the density matrix 	�t� is
determined by �5–7�
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	�t� =
I

N
+

1

2	
i=1

ND

Bi�t��i. �3�

Taking into account that C�t� obeys the time-dependent
Schrödinger equation with the Hamiltonian �1� and consid-
ering the transformation �2�, one obtains the following equa-
tion of motion for the coherence vector,

dB

dt
= 
�t�B�t� , �4�

where 
�t� is an ND�ND real matrix with elements

kl�t�= iTr(��k ,�l�H�t�) / �2� �. The formal solution
of �4� can be written as B�t�=��t , t0�B�t0�, with ��t , t0�
= T̂ exp�
t0

t 
�t��dt�� and T̂ being the time-ordering operator.
Since ��t , t0��SO�ND�, its action preserves the scalar
product and the length of the coherence vector
�B�t� � =�2�N−1� /N is a constant of motion. On the other
hand 0Tr�	�t�	�t���1 �recall we are considering pure
states� and one obtains from �3� the following constraint
�6,7�:

− 2

N
 B�t� · B�t�� 

2�N − 1�
N

, " t,t�. �5�

Within the coherence vector formalism the DF of the sys-
tem evolution occurs when a time-dependent external field
forces the coherence vector B�t� to remain in the vicinity of
its initial value B�t0�, i.e., if the relation B�t��B�t0� holds
during a long enough time.

One of the geometric quantities that characterizes the
quantum evolution of a system is the quantum distance
L�t , t0�=
t0

t ds. Here ds=2�1− ����t� ���t+dt���2 is the in-
finitesimal distance as measured by the Fubini-Study metric
�8–10�. If during the time interval �t0 , t� the state of the sys-
tem describes a curve in the Hilbert space CN, then L�t , t0� is
the distance traveled during the interval �t0 , t�. To precise this
statement we use �2� and �4� to obtain �after some algebra�
an expression for the quantum distance in terms of the co-
herence vector

L�t,t0� = �
t0

t dB�t��
dt�

dt�. �6�

The quantum distance coincides thus with the Euclidean
length of the curve described by B�t� during its evolution.

In what follows we limit our analysis to the case of
systems with periodic cyclic evolution �PCE� �for a discus-
sion on how to induce periodic cyclic evolution, see
Ref. �11�, where conditions for determining the field param-
eters capable of inducing PCE were found�. In such
a case the time-dependent state vector returns to its initial
value �up to a phase� after each evolution cycle, i.e.,
���t0+kT��=exp�i�k� ���t0��, where T is the duration of
each periodic cycle, k=0,1 ,2 , . . . ,npc �with npc the number
of periodic cycles�, and �k is the total phase acquired during
the kth periodic evolution cycle. Note that if the system un-

dergoes a PCE then the coherence vector becomes periodic,
B�t0+kT�=B�t0� and for each cycle B�t� describes a closed
trajectory �B.

For the case N=2, i.e., a two-level system �TLS�, the
evolution of the system in the coherence vector space is char-
acterized by the curve that B�t� describes on the two-
dimensional unit sphere S2 �also called the Poincaré sphere�
embedded in the Euclidean three-dimensional space R3.
We recall that the quantum distance L�t0+T , t0� traveled
during an evolution cycle is determined by the Euclidean
length of the corresponding closed trajectory �B described
by B�t� on the Poincaré sphere �see Eq. �6��. Hence, a suffi-
cient condition for the occurrence of DF is the quantum dis-
tance traveled during each periodic evolution cycle to be
small �see Fig. 1�a��, i.e., L�=L�t0+kT , t0+ �k−1�T��0 for
k=1,2 , . . . ,npc �11�. Obviously, this condition is not neces-

FIG. 1. �Color online� Schematics of the cyclic evolution of the
coherence vector B�t� on the Poncaré sphere. L and �AA=� /2 �with
� being the solid angle subtended by the closed trajectory of B�t� at
the center of the sphere� are the quantum distance and the AA
phase, respectively. �a� Dynamical freezing with L�0, �AA�0. �b�
Dynamical freezing with L�0, �AA�0. �c� L�0, �AA�0 but dy-
namical freezing does not occur. Comparison of �a� and �b� shows
that L�0 is sufficient but not necessary. On the other hand, it is
clear from �a� and �c� that �AA�0 is necessary but not sufficient.
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sary for the DF, since for evolutions corresponding to mul-
tiple turns of the coherence vector in the vicinity of B�t0� the
quantum distance can be rather long while the motion of the
coherence vector is still frozen �see Fig. 1�b��. This sufficient
condition for DF is also inferred in a straightforward way for
an N-level system.

Another geometric quantity of particular relevance for
studying the quantum evolution of cyclic in time systems is
the Aharonov-Anandan geometric phase �8–10�. During an
evolution cycle the wave function of the system acquires a
total phase �=�D+�AA, where �D and �AA represent the
dynamical and the Aharonov-Anandan �AA� phases, respec-
tively. For a given physical system the dynamical phase is
only defined up to a gauge transformation and, therefore, is
not uniquely determined. On the contrary, the AA phase is
gauge invariant and constitutes a uniquely determined prop-
erty of the physical system, i.e., �AA is a geometric quantity
in the sense that it does not depend on the choice of the
Hamiltonian but only on the trajectory of the coherence vec-
tor. The AA phase acquired during an evolution cycle consti-
tutes a measure of the area subtended by the corresponding
closed trajectory �B described by B�t�. For the case of a TLS
we have �AA=� /2 �8�, where � is the solid angle subtended
by �B at the center of the Poincaré sphere. From this analysis
one deduces that a necessary condition for achieving DF is
�AA�0 �see Figs. 1�a� and 1�b��. Such a condition, however,
is not sufficient �12�. This results clear from the example
shown in Fig. 1�c�. In such a case, although the condition
�AA�0 is fulfilled, the maximum deviation of B�t� from its
initial value can be significantly large �cf. Fig. 1�c��. We note
that, in general, the solid angle interpretation of �AA breaks
down for N�2 �13�. Nevertheless, �AA is still a measure of
the area enclosed by the closed trajectory described by B�t�
and the above-mentioned necessary condition is also valid
for a general N-level system.

As a measure of the maximum deviation of B�t� from its
initial value B�t0� during a periodic cycle, we introduce the
parameter

� = max
t��t0,t0+T�

„�B�t� − B�t0��… . �7�

This parameter characterizes the degree of freezing: the
smaller the value of �, the stronger the DF. Then, a necessary
and sufficient condition for DF can be written as ��1 �note
that 0�2, as a consequence of the constraint �5��.

Taking into account that the length of the coherence vec-
tor is a constant of motion one finds

�B�t� − B�t0�� = 2�B�t���1 − cos„��t�… , �8�

where the correlation angle ��t�= � (B�t� ,B�t0�). From the
map �2� one finds that the correlation and Bargmann angles
are related through the expression cos���t��= (N�cos���t���2

−1) / �N−1�. Combining this relation with Eqs. �7� and �8�, it
follows that

� = max
t��t0,t0+T�

„2�sin���t���… . �9�

The field parameters capable of inducing optimal DF
are those for which � is minimized. Alternatively to �,

one can also use the mean correlation angle
���T=arccos��1/T�
t0

t0+Tcos���t��dt� or Y�t�= �cos���t��� as
measures of the degree of DF.

The main goal of a quantum dynamical control process
consists in promoting the system from its initial state to a
target state for which at certain time t= t0 the expectation
value of an observable O of interest reaches a predefined
�target� value �O��t0�= �O�t that is not accessible within the
stationary states of the system. A step further consists in
maintaining the values of �O��t� close to its target expecta-
tion value �O�t for a desired time interval �t0 , t��, i.e., to
make the control process sustainable in time. This issue is
crucial for applications. For example, in most cases chemical
reactions are sensitive to the relative orientation of the reac-
tants. The relative orientation �the observable of interest in
this case� can be coherently controlled but for the reaction
yield the control process has to be sustainable, i.e., the rela-
tive orientation has to persists for a time not shorter than the
reaction time.

The representation of a given observable O �determined
by the operator ô� in the representation of the N stationary
levels of the unperturbed system reads O=	m,n

N OmnPmn,
where Omn= �m � ô �n�. Within the coherence vector approach,
the expectation value

�O��t� =
1

N
	
n=1

N

Onn +
1

2
W · B�t� , �10�

where W is a vector with elements wi=Tr�O�i�. Under dy-
namical freezing conditions, the motion of B�t� during the
time interval �t0 , t�� is localized in the vicinity of B�t0�. Then,
as one can easily see from �10�, the expectation value of any
observable �in fact, of all physical observables� remains
close to its corresponding value at t= t0, i.e., the value
�O��t0� is sustained during the time interval �t0 , t��. Thus, the

FIG. 2. Periodic cyclic evolution of the cosine of the Bargmann
angle Y���= �cos������� for a KR with �=0.5. �a� K=0, T /T=25,
�AA=1, L=1, �=2. �b� K=0.07, T /T=47, �AA=0.49, L=2.4,
�=1.86. �c� K=0.31, T /T=105, �AA=0.34, L=10.6, �=0.98. �d�
K=0.59, T /T=63, �AA=0.17, L=9.3, �=0.74. �e� K=1.77,
T /T=96, �AA=0.21, L=34.1, �=1.23. �f� K=5.3, T /T=155,
�AA=0.55, L=357.5, �=1.83.

BRIEF REPORTS PHYSICAL REVIEW A 73, 024102 �2006�

024102-3



DF is of crucial importance for the coherent sustainability of
a control process.

For a numerical illustration of our theoretical predictions
we consider the dynamics of a periodically kicked
rotor �KR�. The quantum KR has experimentally been real-
ized by exposing cold atoms to a pulsed standing wave of
light �14�. It has also been considered as a useful model in
condensed matter physics �15� and molecular physics �16�.
The time-dependent Schrödinger equation of the param-
etrized, periodically KR reads i���=H����, where �3�
H���=�2−K cos �	 j=0

� ���− j�, � is the time in units of the
period T of the kicks, �= i���, �=��T / �2I� �with I being the
moment of inertia�, and K=V0T /� �V0 is the strength of the
kicking field�. We consider that the rotor is initially �before
the application of the kicks� in a time-dependent state
���t��=	ncn�t0� �n� �with �n� denoting the states of the
rotor in absence of the field� such that c0�0�=1/�2,
c±1�0�=1/2, and cn�0�=0 for �n � �2 �17�. The evolution
operator over a period of the kicking field is given by
U��=1,0�=e−i�2

eiK cos �. We fix the value of T and determine
the kick strengths �i.e., the values of K� for which the system
undergoes a cyclic evolution �for details on how to find the
field parameters leading to the PCE of a time-dependent sys-
tem, see Ref. �11��. We then calculate the quantum distance
traveled during an evolution cycle by integrating the Fubini-
Study metric from �=0 to �=T /T. The corresponding
AA geometric phase is obtained as �AA=�−�D, where �
= ���0� ���T /T�� and �D= �−1/ � �
0

T/T����� �H��� ������d�
are the total and dynamical phases, respectively. In Fig. 2 we
show the time dependence of the cosine of the Bargmann

angle Y���= �cos������� for some values of K for which the
system undergoes PCE. The values T �the duration of a pe-
riodic cycle� are also given for each case. The corresponding
Aharonov-Anandan geometric phase �AA �in units of ��, the
quantum distance L �in units of 2��, and the values � of the
degree of DF were computed over a periodic cycle and are
specified in the figure caption. Under field-free evolution
�see Fig. 2�a��, �AA=1 �recall phases are given in units of ��,
i.e., the necessary condition for DF is not fulfilled and the
system oscillates between orthogonal states with the rota-
tional period of the rotor T /T=2� /�2�25. While �AA is
relatively small in Figs. 2�c�–2�e�, the sufficiency condition
L�0 does not occur �18�. In Figs. 2�a�, 2�b�, and 2�f� DF is
not achieved since the necessary and sufficient condition
��1 is not fulfilled. However, as the value of � decreases
the DF becomes stronger �compare Figs. 2�c�–2�e�� and for
�=0.74 �see Fig. 2�d�� the time evolution of the system is
optimally frozen and the deviation of Y��� from 1 is less than
1% at any time. In such a situation the main value of any
observable varies very little in time. In fact, we calculated
the main values of various observables �e.g., ���, ��2�,
�cos ��, ���� for the case shown in Fig. 2�d� and we found
�not shown here� that, indeed, during the system’s time evo-
lution the main values of these observables remain very close
to their respective initial values.

In summary, the phenomenon of dynamical freezing was
studied. Necessary and sufficient conditions for inducing dy-
namical freezing were deduced from the geometrical analysis
of the quantum evolution. Numerical evidence of the dy-
namical freezing of a kicked quantum rotor was presented.
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