
Philosophical Magazine,
Vol. 86, Nos. 17–18, 11–21 June 2006, 2623–2630

Spectroscopy of electron correlations in superconductors
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The one-photon two-electron emission process is suggested as a spectroscopic tool
for studying the features of Cooper pairs in superconducting materials with a
pairing mechanism. It is shown that the correlated angle distributions of the
photo-excited electron pair carry detailed information on the Cooper pair wave
function in the momentum space. Utilising circularly polarised photons offers the
possibility of investigating aspects pertinent to the phase of the superconducting
gap function. Phase information are accessed via measuring the circular
dichroism in the two-electron angular and energy distribution, i.e. the difference
in the recorded two-electron photoemission spectra for left and right circularly
polarised photon.

1. Introduction

A variety of experimental tools have been utilized for studying the properties of
superconductive materials. Of particular interest are the magnitude, the symmetry
and the temperature dependence of the superconducting gap. These aspects have
been addressed by a number of methods, most notably neutron and polarization-
resolved Raman spectroscopy [1, 2], infrared photoabsorption spectroscopy [3],
de Haas-van Alphen effect [4], and scanning tunnelling spectroscopy [5–7].
A particularly powerful technique is the photoemission spectroscopy (PES) [8–10]
in which following the irradiation of the material by monochromatic photons, the
emitted electrons are detected and their emission angles and energies are resolved.
In PES only one photoelectron is detected. Hence, a direct study of the two-
particle correlation is not possible with this technique, even though these
correlations may show up as subsidiary structures in the single particle spectra.
Recently we developed the first theory [11] for the two-electron photoemission
(DPE) from superconducting (SC) materials. In DPE an electron pair is emitted
from a sample upon absorbing one ultraviolet photon. The correlation within the
pair is mapped out by fixing the wave vector of one of the detected electrons while
scanning the wave vector of the other [12, 13]. On the basis of the BCS theory [14]
for conventional superconductors it turned out that, under specific conditions that
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are realizable in a DPE experiment, a Cooper pair in a SC sample can be excited
by one vacuum ultra violet photon [1]. The spectra of the excited electron pair
carry direct information on the energy and the angular pair correlation. In
particular, the condensation of Cooper pairs in the two-electron state with a zero
total momentum produces characteristic peaks in the two-particle energy and
angular (momentum-space) correlation functions. These findings establish the
unique potential of DPE for investigating the two-particle properties of the Cooper
pair states and hence shed new light on mechanisms driving superconductivity
in diverse SC materials; in particular we expect DPE to be instrumental in
understanding the details of two-particle correlation in high-temperature SC
(HTSC) compounds [15].

In this work we extend our theory on the electron pair emission from SC
materials to include the case of circularly polarized photons. As shown below the
utilization of polarized photons gives access to information on the phase of the gap
function and allows studying the phase dependence on the inter-particle correlation.
Specifically, employing the plane-wave approximation for the treatment of the
vacuum electron pair states we show that the momentum space wave function of
the Cooper pair can be studied in detail using the DPE method. Firstly, the density of
the Cooper pair state in the relative-momentum space can be mapped through
measuring the correlated angle distribution of electrons within the excited electron
pair. This allows for investigation of the symmetry of SC gap. Secondly, the circular
dichrosim, i.e. the measured difference in the DPE probability between left
and right polarized light, is directly related to the phase of the Cooper pair wave
function in the relative-momentum space. This remarkable feature is of particular
importance for studying those SC materials that exhibit a time-symmetry breaking
superconductivity [10].

The paper is organized as follows. In section 1 we develop a general theory for
the rate of the DPE process in the case of circularly polarized photons. The plane
wave approximation for the photoelectron pair is specified. The expression for
circular dichroic effect is also derived. In section 2 we apply the developed theory
to the case of one-photon Cooper pair emission from SC sample. Then in section 3
we inspect some particular situations, where the density and the phase of Cooper
pair state in the relative-momentum space is studied using DPE method.
Conclusions are made in section 4 and atomic units (a.u.) �h¼ e¼me¼ 1 are used
throughout.

2. General theory

Consider the emission of an electron pair from a clean sample into the vacuum
following the absorption of a single circularly polarized vacuum ultra violet photon.
The cross section of this DPE process is given by

�e /
X
i

�p1, p2

��D12

���i

� ��� ��2� E1 þ E2 � Ei � !ð Þ, ð1Þ

where the asymptotic photoelectron momenta and spins are specified by p1 and p2
(pj� pj�j, j¼ 1,2), respectively, �p1, p2 (�i) is the final (initial) two-electron state with
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energy E1þE2 (Ei), ! is the photon frequency. The coupling of the electron pair to

the photon field is described by the operator D12 as follows:

D12 ¼ �i expðiqr1Þðe � r1Þ þ expðiqr2Þðe � r2Þ
� �

, ð2Þ

where e¼ ex0 þ iey0 is the polarization vector and q is the wave vector [(ex0/ y0�q)¼ 0] in

the case of a right-hand circularly polarized photon. The case of a left-hand circularly

polarized photon derives from (2) upon performing the complex conjugate e! e*.
Operating within the Jacobi coordinates, i.e. transforming to the centre-of-mass

coordinate R¼ (r1þ r2)/2 and the relative coordinate r¼ r1� r2 we can rewrite (2) as

D12 ¼ �i expðiqRÞ cos
qr

2

� �
ðe � rRÞ þ 2i sin

qr

2

� �
ðe � rrÞ

h i
: ð3Þ

Note that in the dipole approximation (q¼ 0) the operator D12 acts only on the

centre-of-mass coordinate R of the electron pair, i.e. the photon field influences only

the centre-of-mass motion of electrons and it does not affect their relative motion.

Here we include in our considerations non-dipolar terms, i.e. we use D12, as given by

equation (3), for the photon-electron coupling.
Now we evaluate the matrix element

Me ¼ �p1, p2

��D12

���i

� �
: ð4Þ

Here we omitted for the sake of brevity the spin indices, because the operator D12

[see equations (2) and (3)] does not depend on the electron spin variables. Thus, the

final and the initial spin states of the electron pair are the same. Using (3) we obtain

Me ¼ e �

Z
dQ

Z
dk��

P, pðQ, kÞ

�
Q

2
þ k

� 	
�i Q� q, k�

q

2

� �
þ

Q

2
� k

� 	
�i Q� q, kþ

q

2

� �
 �
,

ð5Þ

where P¼ p1þ p2 and p¼ (p1� p2)/2 are respectively the total and relative

momentum of electron pair. In the plane wave approximation the relation applies

�P, pðQ, kÞ ¼ �ð3ÞðP�QÞ�ð3Þðp� qÞ: ð6Þ

Hence the matrix elements read

Me ¼ e �
P

2
þ p

� 	
�i P� q, p�

q

2

� �
þ

P

2
� p

� 	
�i P� q, pþ

q

2

� �
 �

ffi ðe � PÞ�i P� q, pð Þ � ðe � pÞ q � rp�i P� q, pð Þ
� 


,

ð7Þ

in deriving this relation we retained only linear terms in |q|/|p| since |q|� |p|. We note

that the value of the inter-particle momentum |p| is chosen by the experiment and is

usually large, for in the case |p|! 0 the two-particle density vanishes due to exchange

and correlation and hence the DPE cross section diminishes. The plane wave

approximation is justified in situations where the electrons have high energies

(compared to the Fermi energy) and screening in the sample is substantial. Such

situations are encountered in the case of ultraviolet photons and metallic and/or SC

targets [16].
To elucidate how information on the phase of the Cooper pair wave function

can be accessed we write the initial two-particle state in the form �i¼ |�i|exp(i�i).
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The matrix elements attain then the form

Me ¼ exp½i’iðP� q, pÞ� ðe � PÞ �i P� q, pð Þ
�� ��� ðe � pÞ q � rp �i P� q, pð Þ

�� ��� 
�
�iðe � pÞ �i P� q, pð Þ

�� �� q � rp’iðP� q, pÞ
� 
�

:
ð8Þ

Inserting this expression in (1) and neglecting higher-order terms with respect to q,
we deduce for the probability of DPE process that

�e / ðe � PÞ
�� ��2X

i

�iðP� q, pÞ
�� ��2� E1 þ E2 � Ei � !ð Þ: ð9Þ

The DPE rate is thus directly proportional to the two-electron spectral function in
the momentum space representation

A12ðP� q, p;E1 þ E2 � !Þ ¼
X
i

�iðP� q, pÞ
�� ��2� E1 þ E2 � Ei � !ð Þ: ð10Þ

Now we define the (normalized) circular dichroism as the (relative) difference in
the DPE cross sections corresponding to the absorption of right-hand and left-hand
circularly polarized photons, i.e.

CD ¼

P
i Mej j2� Me�j j2
� 


�ðE1 þ E2 � Ei � !ÞP
i Mej j2þ Me�j j2
� 


�ðE1 þ E2 � Ei � !Þ
: ð11Þ

Using (1) and (8), we derive for the circular dichroism

CD ¼
2Im½ðe � pÞðe� � PÞ�

ðe � PÞ
�� ��2

P
i �iðP� q, pÞ
�� ��2 q � rp’iðP� q, pÞ

� 

� E1 þ E2 � Ei � !ð ÞP

i �iðP� q, pÞ
�� ��2� E1 þ E2 � Ei � !ð Þ

:

ð12Þ

Here we retained in the denominator only the zero-order terms with respect to q. The
key feature of the result (11, 12) is that the circular dichroism vanishes if the phase of
the two-electron wave function is a uniform function of the relative electron
momentum p. We exploit this fact below when considering the DPE from the Cooper
pair state in a SC sample.

3. DPE from Cooper pair state

Let us consider the DPE process from a SC sample with a clean flat surface. We
assume the target material to possess a two-dimensional electronic structure with the
(super)conducting planes being parallel to the surface. Equation (9) reduces then to
[the vector components parallel (perpendicular) to the surface are labelled with (?)]

�CP
e ¼ P2

? e?j j2 �CPðP? � q?, pkÞ
�� ��2�ð2Þ Pk � qk

� 

� E1 þ E2 � ECP � !ð Þ, ð13Þ

where we took into account that, due to condensation, all the Cooper pairs are in
the same two-electron state (i�CP) with a well-defined energy ECP as well as a
zero total wave vector parallel to the surface. This fact is reflected in the appearance
of the delta-function �(2)(Pk� qk) in equation (13). As inferred from (12) the
DPE probability is determined by the momentum-space density of the Cooper pair in
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the |�CP|
2. This quantity can therefore be mapped out in a DPE experiment by

scanning the electron momenta of the two emitted correlated photoelectrons under
the following conditions: Pk¼ qk and E1þE2¼ECPþ!.

Using the BCS model [14], for the wave function of Cooper pair �CP we
conclude that

�CPðP? � q?, pkÞ ¼
fðP? � q?Þ�pk

2Epk

, Epk ¼ "2pk þ �pk

�� ��2� �1=2
: ð14Þ

Here �pk is the SC gap function and "pk is the energy of the elementary excitations in
the normal (metallic) state. The factor f(P?� q?) accounts for violation of the
Cooper pair total momentum perpendicular to the surface. Inserting (13) in (12) we
obtain

�CP
e ¼ P2

?je?fðP? � q?Þj
2 j�pk j

2

4 "2pk þ j�pk
j2

� � �ð2ÞðPk � qkÞ�ðE1 þ E2 � ECP � !Þ: ð15Þ

Inspecting the structure of this equation we note that the momentum dependence of
the absolute square of the gap function j�pk j

2 and, in particular, its nodes can be
determined by the DPE experiment. This can be done by scanning the relative
momentum of the electron pair parallel to the surface pk amounting to the
measurement of the correlated angular distribution of emitted photoelectrons under
the kinematics: Pk¼ qk and E1þE2¼ECPþ!. It should be noted that the absolute
value of the SC gap j�pk j can be also determined using angle-resolved single-electron
photoemission [17]. However in the latter case, one should compare the angle-
resolved photoelectron spectra in the normal and SC states, respectively, in order to
infer j�pk j. In addition, in contrast to DPE, in SPE no information can be inferred on
the dependence of the phase on the inter-particle correlation.

Now we consider the circular dichroism in the case of DPE from the Cooper pair
state. Equation (11) reduces to

CDðCPÞ ¼ Kðe;P?, pkÞ qk � rpk’CPðpkÞ
� 


, ð16Þ

where

Kðe;P?, pkÞ ¼
2Im½ðek � pkÞe

�
?�

P2
? e?j j2

ð17Þ

is a geometrical (kinematical) factor. Note that the dependence of the phase �CP on
the total pair momentum should be taken into account if there are SC currents in the
sample. Here we suppose that no voltage nor magnetic fields are applied to the
sample so that no (steady) current is present.

Presenting the SC gap function in the form �¼ |�|exp(i�) and using (13), we
obtain in accordance with (15) that

CDðCPÞ ¼ Kðe;P?, pkÞ qk � rpk�pk

� �
: ð18Þ

It is clear from this equation that CD(CP) vanishes if the phase of SC gap function is
a uniform function of the relative pair momentum. This is, for example, the case of
conventional s-wave superconductors. In the DPE experiment the mapping of the
circular dichroic effect (17) can be realised through the measurements of the
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correlated angular distributions of the electrons in the kinematical regime: Pk¼ qk
and E1þE2¼ECPþ!. Regarding equation (17) it is also important to note that it
holds true only if j�pk j 6¼ 0, otherwise CD(CP)¼ 0.

4. Examples

In order to illustrate the theory developed above with concrete examples, we consider
a situation which is of relevance to copper oxide HTSC materials. Namely, we
consider the case of the dx2�y2 -wave pairing symmetry in CuO2 planes [18]

�k ¼ �x2�y2 ½cosðkxaÞ � cosðkyaÞ�, ð19Þ

where a stands for the lattice constant. We suppose that in the DPE set-up the CuO2

planes are parallel to the surface. Such a geometry is usually utilized in the
experimental set-ups of angle-resolved single-electron photoemission studies on
HTSC materials [17]. It can be deduced from (14) that in the case of dx2�y2 -wave
pairing [18] the corresponding DPE cross section vanishes if px¼	py. This
observation provides a test for the symmetry of the SC gap in a DPE experiment.

Since the SC gap (18) is a real function the circular dichroism is identically zero in
this case. However, the admixture of s-wave pairing symmetry [19, 20]

�k ¼ �x2�y2 ½cosðkxaÞ � cosðkyaÞ� þ i�s ð20Þ

induces a circular dichroic effect in the correlated angular electron-pair distributions.
Indeed, using (19) in equation (17) we derive

CDðCPÞ ¼ Kðe;P?, pkÞ
�x2�y2�s½aqx sinðpxaÞ � aqy sinðpyaÞ�

�2
x2�y2

½cosðpxaÞ � cosðpyaÞ�
2
þ�2

s

: ð21Þ

It is seen that the circular dichroism is measured by scanning the relative momentum
of emitted electron pair or by changing the photon impact direction. In particular,
for the photon geometry qx¼ qy one has CD(CP)¼ 0 in the kinematical regime
px¼ py. This corresponds to a vanishing DPE cross section in the case of a pure
dx2�y2 -wave pairing symmetry [18]. However, this situation changes, for example, for
the photon geometry qx 6¼ 0, qy¼ 0.

For comparison we consider another possible scenario: the dx2�y2 -wave pairing
symmetry with admixture of dxy-wave component [20, 21]

�k ¼ �x2�y2 ½cosðkxaÞ � cosðkyaÞ� þ i�xy sinðkxaÞ sinðkyaÞ: ð22Þ

The corresponding result for the circular dichroism is given by

CDðCPÞ ¼ Kðe;P?, pkÞ
�x2�y2�xy½aqx sinðpyaÞ � aqy sinðpxaÞ�½1� cosðpxaÞ cosðpyaÞ�

�2
x2�y2

½cosðpxaÞ � cosðpyaÞ�
2
þ�2

xy½sinðpxaÞ sinðpyaÞ�
2

:

ð23Þ
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This expression is more involved than (21), however the dependence of the circular
dichroism on the photon geometry is similar to that of (21).

The SC gap functions (19), (20), and (22) correspond to the singlet pairing. In the
case of the dx2�y2 þ i(px	 py) superconductor [20] one has the singlet pairing
component with an admixture of the triplet pairing component. For studying this
exotic case using the DPE method, one should utilize in addition to the circular
dichroism measurements the spin-resolved measurements, for the spin state of the
emitted pair is the same as that of Cooper pair.

5. Summary and conclusions

In summary, we have considered theoretically the emission into the vacuum of
correlated electron pairs from a solid sample following the absorption of one
circularly polarized photon. Expressions for the DPE probabilities and for the
circular dichroism have been derived using the plane wave approximation for the
vacuum-state electrons. Using the BCS theory in the case of SC materials with two-
dimensional electronic structure, we were able to relate the DPE cross sections and
the circular dichroism to respectively the absolute value and the phase of the SC gap
function. The different pairing symmetries, which can be of relevance to the HTSC
materials, have been considered and their characteristic effects on the correlated
DPE angular distributions have been determined.

The results of our present analysis show that using the DPE method allows
mapping the absolute value of the SC gap function in the momentum space. The
phase of the SC gap function can be studied by means of the DPE technique via
measuring the circular dichroism in the correlated electron-pair angular distribu-
tions. We expect that the findings of the present study are most relevant to DPE from
HTSC materials, in which case the symmetry of the SC gap function is still under
discussion and the SC mechanisms are still to be established.
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