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This contribution reviews an ab initio two-step procedure to determine exchange
interactions, spin-wave spectra, and thermodynamic properties of itinerant
magnets. In the first step, the self-consistent electronic structure of a system
is calculated for a collinear spin structure at zero temperature. In the second
step, parameters of an effective classical Heisenberg Hamiltonian are
determined using the magnetic force theorem and the one-electron Green
functions. The Heisenberg Hamiltonian and methods of statistical physics
are employed in subsequent evaluation of magnon dispersion laws, spin-wave
stiffness constants, and Curie/Néel temperatures. The applicability of the
developed scheme is illustrated by selected properties of various systems such
as transition and rare-earth metals, disordered alloys including diluted magnetic
semiconductors, ultrathin films, and surfaces. A comparison to other ab initio
approaches is presented as well.

1. Introduction

The quantitative description of ground-state and finite-temperature properties
of metallic systems represents a long-term challenge for solid state theory.
Practical implementation of density functional theory (DFT) [1–3] led to excellent
parameter-free descriptions of ground-state properties of metallic magnets, including
traditional bulk metals and ordered alloys as well as systems without perfect
three-dimensional periodicity, such as, e.g. disordered alloys, surfaces and thin
films. On the other hand, an accurate quantitative treatment of excited states
and finite-temperature properties of these systems remains a challenge for ab initio
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theory [4–7] despite existing formal extensions of the DFT to time-dependent
phenomena [8] and finite temperatures [9]. The usual local spin-density approxima-
tion (LSDA) [3] fails to capture important features of excited states, in particular
the magnetic excitations responsible for the decrease of the magnetization with
temperature and for the magnetic phase transition.

In developing a practical parameter-free scheme for finite-temperature magnet-
ism, one has to rely on additional assumptions and approximations the validity
of which has to be chosen on the basis of physical arguments. The purpose of this
contribution is to review theoretical backgrounds, numerical aspects, and selected
results of an approach formulated nearly two decades ago [11–12] (see reference [13]
for a recent review), and applied by the present authors to a number of qualitatively
different systems [14–25]. The review is organized as follows: section 2 lists
the underlying physical concepts and approximations of the scheme and section 3
deals with computational details and specific problems related to its numerical
implementation. Examples of applications are given in section 4: bulk transition
metals (section 4.1), rare-earth metals (section 4.2), substitutional impurities
and disordered alloys (section 4.3), diluted magnetic semiconductors (section 4.4),
two-dimensional ferromagnets (section 4.5), and surfaces of bulk ferromagnets
(section 4.6). Comparisons with other authors using the same (or similar) approach
are made throughout section 4, while a critical discussion of the scheme and a brief
comparison to alternative approaches are left to the last section (section 5).

2. Formalism

It is well known that magnetic excitations in itinerant ferromagnets are basically
of two different types, namely, Stoner excitations, in which an electron is excited
from an occupied state of the majority-spin band to an empty state of the minority-
spin band and creates an electron-hole pair of triplet spin, and the spin waves,
or magnons, which correspond to collective transverse fluctuations of the
magnetization direction. Near the bottom of the excitation spectrum, the density
of states of magnons is considerably larger than that of corresponding Stoner
excitations (associated with longitudinal fluctuations of the magnetization), so that
the thermodynamics in the low-temperature regime is completely dominated by
magnons and Stoner excitations can be neglected. Therefore it seems reasonable
to extend this approximation up to the Curie temperature and to derive an ab initio
technique of finite-temperature magnetism by neglecting systematically the Stoner
excitations.

With thermodynamic properties in mind, we are primarily interested in
the long-wavelength magnons with the lowest energy. We adopt the adiabatic
approximation [26] in which the precession of the magnetization due to a spin
wave is neglected when calculating the associated change of electronic energy.
The condition of validity of this approximation is that the precession time of the
magnetization should be large as compared to characteristic times of electronic
motion, i.e. the hopping time of an electron from a given site to a neighbouring
one and the precession time of the spin of an electron subject to the exchange field.
In other words, the spin-wave energies should be small as compared to the
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band width and to the exchange splitting. This approximation becomes exact in

the limit of long-wavelength magnons, so that the spin-wave stiffness constants

calculated in this way are in principle exact.
This procedure corresponds to evaluation of changes of the total energy

of a ferromagnet due to infinitesimal changes of the directions of its local

magnetic moments associated with individual lattice sites R. The directions of the

moments are specified by unit vectors eR. An exact calculation of the total energy

EfeRg of a prescribed spin configuration leads to the constrained DFT [27, 28],

which allows us to obtain the ground-state energy for a system subject to certain

constraints. The latter are naturally incorporated into the DFT in terms of

Lagrange multipliers. In the present case, the constraint consists in imposing a

given configuration of spin-polarization directions, namely, the spin moment of

the R-th atomic (Wigner–Seitz) cell pointing along eR. The Lagrange multipliers

can be interpreted as magnetic fields B
?
R constant inside the cells with

directions perpendicular to the unit vectors eR. Note that intracell non-collinearity

of the spin-polarization is neglected since we are primarily interested in low-energy

excitations due to intercell non-collinearity. In the so-called frozen-magnon

approach, one chooses the constrained spin-polarization configuration to be

the one of a spin wave with wavevector q and computes the spin-wave

energy E(q) directly by employing the generalized Bloch theorem for a spin-spiral

configuration [28, 29].
In a real-space approach, adopted here, one calculates directly the energy change

associated with a constrained rotation of the spin-polarization axes in two cells

eR and eR0 . This represents a highly non-trivial task which requires self-consistent

electronic structure calculations for non-collinear spin-polarized systems without

translational periodicity. We neglect relativistic effects (spin–orbit coupling, dipolar

interaction) in the following. Restriction to infinitesimal changes of the

moment directions, �uR ¼ eR � e
0, perpendicular to the direction of the ground-

state magnetization e
0, leads to an expansion of EfeRg to second order in �uR of

the form [11, 30]

�Ef�uRg ¼
X
RR0

ARR0 �uR � �uR0 : ð1Þ

This expression can be extended to finite changes of the moment directions using

an effective Heisenberg Hamiltonian (EHH)

HefffeRg ¼ �
X
RR0

JRR0 eR � eR0 : ð2Þ

The constants JRR0 in (2), the pair exchange interactions, are parameters of the

EHH which satisfy JRR0 ¼ JR0R and JRR ¼ 0. They are related to the coupling

constants ARR0 of (1) by

ARR0 ¼ �JRR0 þ �RR0

X
R00

JR00R

 !
ð3Þ
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so that an important sum rule

X
R

ARR0 ¼
X
R0

ARR0 ¼ 0 ð4Þ

is satisfied which guarantees that the total energy remains invariant upon a uniform

rotation of the magnetization.
The practical calculations of the exchange interactions JRR0 in ferromagnets

are greatly simplified by employing the magnetic force theorem [10, 11] (a similar

approach was also suggested for magnetic impurities in a non-magnetic host

[31]). The infinitesimal changes of the total energy (1) can be expressed using

changes in one-particle eigenvalues due to non-self-consistent changes of the

effective one-electron potential accompanying the infinitesimal rotations of spin

quantization axes, i.e. without any additional self-consistent calculations besides

that for the collinear ground state. The resulting pair exchange interactions

are given by [11, 30]

JRR0 ¼
1

p
Im

Z EF

�1

dE

Z
�R

dr

Z
�R0

dr0 BxcðrÞG
"
ðr, r0;Eþ

Þ

� Bxcðr
0
ÞG#

ðr
0, r;Eþ

Þ, ð5Þ

where EF denotes the Fermi level, �R denotes the R-th atomic cell, BxcðrÞ is the

exchange-correlation magnetic field, 2BxcðrÞ ¼ V#
ðrÞ � V"

ðrÞ, where V�
ðrÞ is the

self-consistent LSDA potential, � is the spin index (� ¼", #), Eþ
¼ Eþ i0, and

G�
ðr, r0;Eþ

Þ is the one-electron retarded Green function for the same potential.

It should be noted that the parameters JRR0 determined by (5) do not contain

contributions due to constraining magnetic fields necessary to keep a frozen

non-collinear spin structure in a stationary state of the Kohn–Sham equation.

It can be expected that these contributions can be neglected in systems with large

local magnetic moments. The validity of this approximation has been put on a more

quantitative level in recent studies [30, 32, 33] (see also section 5).
Once the exchange parameters JRR0 are obtained, the adiabatic spin-dynamics

[34–38] can be easily determined from the EHH (2). One obtains the result known

from spin-wave theories of localized ferromagnets: for ferromagnetic (FM) crystals

with one atom in the primitive cell (Bravais lattice), the energy E(q) of a zero-

temperature magnon is related to the lattice Fourier transform J(q) of the exchange

interactions JRR0 by

EðqÞ ¼
4

M
Jð0Þ � JðqÞ½ �, JðqÞ ¼

X
R

J0R expðiq � RÞ, ð6Þ

where q denotes a vector in the Brillouin zone (BZ) of the lattice and M denotes

the magnitude of the local moment in units of �B (�B is the Bohr magneton).

For cubic systems and for small q-vectors, EðqÞ � Djqj
2 with the spin-wave

1716 I. Turek et al.



stiffness constant equal to

D ¼
2

3M

X
R

jRj
2 J0R: ð7Þ

Finally, to obtain thermodynamic quantities such as the Curie temperature,

methods of statistical mechanics have to be applied to the EHH (2). The simplest

estimate of the Curie temperature TC is based on a mean-field approximation (MFA)

which leads to

kBT
MFA
C ¼

2

3
J0, J0 ¼

X
R

J0R ¼ Jð0Þ, ð8Þ

where kB is the Boltzmann constant. The quantity J0 denotes an on-site

exchange parameter that reflects the molecular field experienced by a single moment

in the ferromagnet. The limitations of the MFA are well known: it is correct only in

the limit of high temperatures (above TC) and it fails to describe the low-temperature

collective excitations (spin waves). An improved description of finite-temperature

properties is provided by the Green function method within the random phase

approximation (RPA) [39, 40]. The RPA is valid not only for high temperatures,

but also at low temperatures, and it describes correctly the spin waves. In the

intermediate regime (around TC), it represents a rather good approximation which

may be viewed as an interpolation between the high and low temperature regimes.

The RPA formula for the Curie temperature is given by

kBT
RPA
C

� ��1

¼
3

2

1

N

X
q

J0 � JðqÞ
� ��1

, ð9Þ

where N denotes the number of q-vectors used in the BZ-average. It can be shown

that TRPA
C is always smaller than TMFA

C . It should be noted, however, that both the

MFA and the RPA fail to describe correctly the critical behaviour and yield

in particular incorrect critical exponents. Generalizations of the above relations

(8) and (9) to systems with several inequivalent sublattices can be found, e.g. in

references [41, 42]. Finally, the Curie temperature can also be estimated purely

numerically by employing the method of Monte Carlo simulations applied to the

EHH. This approach is in principle exact but its application to real itinerant systems

requires inclusion of a sufficient number of neighbouring shells due to long-ranged

interactions JRR0 (see section 3.2).
It is worth mentioning that, according to the Fröhlich–Simon–Spencer theorem

[43], the classical Heisenberg model in dimension d � 3 has a transition to a FM state

for the finite critical temperature TC > 0. It is interesting that a formula for TC which

follows from the proof is identical with the RPA prescription (9). This means that

the RPA yields a lower bound for TC. The original proof is valid for nearest-

neighbour interactions, but it can be generalized [44] to a model with finite

range of interactions, provided that all the interactions have the same sign

(i.e. there is no frustration).
It should be emphasized here that the approach sketched in this section relies on

a few additional approximations besides the LSDA to the DFT as routinely applied
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to zero-temperature properties of itinerant magnets. The major assumption is
certainly the identification of the classical local moment directions eR with the
only degrees of freedom relevant for the spin-dynamics and the finite-temperature
statistical properties. A thorough discussion of this point goes beyond the scope
of the present review and the reader is referred to the existing literature, covering
both older phenomenological approaches [45, 46] as well as more recent justifications
of the adiabatic spin-dynamics within the DFT [26, 34–38]. Having in mind the
broad variety of systems exhibiting a spontaneous magnetic order, a simple general
criterion for validity of complete neglect of other degrees of freedom, especially the
variations of the local-moment magnitudes due to the Stoner particle–hole excita-
tions (longitudinal spin fluctuations), can hardly be given. However, the assumption
of adiabatic separation of the fast motion of individual electrons and the slow
motion of spin-waves indicates that a necessary prerequisite is the existence of
well-developed (atomic-like) moments the magnitude of which are slightly sensitive
to effects of local magnetic environments and of elevated temperatures. From
a practical point of view, this sensitivity for a particular system can be estimated,
e.g. by performing LSDA-DFT calculations for various collinear configurations,
for spin-spirals [28, 29, 34] or for the disordered-local-moment (DLM) state
with moments pointing in random directions [26, 47]. Ample experience shows
that systems containing Mn and Fe atoms in a high-moment state and rare-earth
magnets are favourable cases whereas the opposite limit contains Ni-based systems,
the weakly ferromagnetic compounds ZrZn2 and Sc3In, etc. The second basic
assumption concerns the pairwise exchange interaction as comprised in the classical
EHH (2). While the use of a classical Hamiltonian is a direct consequence
of the neglect of Stoner excitations and of mapping the DFT total energy, the
full expansion of the total energy around the FM ground state yields an infinite
series [48]. The pair interaction represents just its first term; higher terms of the
expansion (1) (corresponding to triplet, biquadratic, . . . , interactions) can be
calculated as well [48, 49] but they are usually neglected, which is strictly correct
only for long-wavelength magnons. Consequently, the spin-wave stiffness constants
of ferromagnets resulting from the pairwise EHH (2) are exact within the LSDA [33].
The third approximation is related to the use of the magnetic force theorem [10, 11]
in deriving the simple formula for the pair interaction (5). The underlying physical
picture assumes that the direction of the local magnetic moment and of the effective
magnetic field acting on it coincide; this is fully justified, e.g. for two magnetic
impurities in a paramagnetic host metal in the limit of large separation of the
impurity atoms. It has been proved that ferromagnets satisfy this assumption only
if the exchange splitting is not too small as compared to the bandwidth [30] (see also
section 5); a simple check can be based on evaluating the pair interactions (5) from
other reference states (antiferromagnetic, DLM) besides the FM ground state [50].
Similar checks can be performed concerning the role of the neglected Stoner excita-
tions. The imaginary part of frequency-dependent pair exchange interactions
(Kohn–Sham dynamical transverse susceptibility) is related to the decay of magnons
into the Stoner electron–hole continuum [13, 51] while an explicit temperature
dependence of the pair exchange interactions can be obtained from an obvious
modification of (5) (and the corresponding self-consistent electronic structure)
by means of the Fermi–Dirac distribution function. The Stoner excitations can
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properly be described only using the full dynamical transverse susceptibility;

its reliable evaluation is, however, a numerically very difficult task [52].

3. Numerical implementation

3.1. Self-consistent electronic structure

Efficient evaluations of the pair exchange interactions (5) require a first-principle

technique which provides the one-electron Green function in real space. The

results reported here are based on self-consistent LSDA calculations using the

all-electron non-relativistic (scalar-relativistic) tight-binding linear muffin-tin orbital

(TB-LMTO) method and the atomic-sphere approximation (ASA) [53–55], with the

exchange-correlation potential parametrized according to reference [56]. The lattice

parameters of the investigated systems were taken from experiment. The energy

integrals over the occupied part of the valence band were expressed as integrals

over a complex energy variable along a closed path C starting and ending at

the Fermi energy (with the occupied part of the valence band lying inside C).

The integrals were numerically evaluated using the Gaussian quadrature method

[54, 55]. Other Green function techniques, especially the the Korringa–Kohn–

Rostoker (KKR) method [57, 58], are equally suitable in the present context.
Evaluation of the one-electron Green function G�

ðr, r0; zÞ within the ASA reduces

to the auxiliary (or KKR-ASA) Green function matrix g�RL,R0L0 ðzÞ defined in terms of

the potential functions P�
R‘ðzÞ and the structure constants SRL,R0L0 of the LMTO

method as [54, 59]

g�RL,R0L0 ðzÞ ¼
n
P�

ðzÞ � S½ �
�1
o
RL,R0L0

: ð10Þ

In the last equation, L and L0 are the angular momentum indices, L ¼ ð‘,mÞ,

the symbol P�
ðzÞ denotes a diagonal matrix of potential functions defined as

P�
RL,R0L0 ðzÞ ¼ P�

R‘ðzÞ �RL,R0L0 and z is a complex energy variable. The quantities

P�
R‘ðzÞ and g�RL,R0L0 ðzÞ can be expressed in any particular LMTO representation

(canonical, screened); all derived physical quantities are invariant with respect to

this choice. However, the most screened (tight-binding) representation is the best

suited for most calculations and it has been employed in the present implementation.

The energy dependence of the potential functions P�
R‘ðzÞ is parametrized in terms of

three standard potential parameters, i.e. with second-order accuracy [53, 54].

3.2. Parameters of the classical Heisenberg Hamiltonian

Substitution of the Green function G�
ðr, r0; zÞ in the ASA (section 3.1) into (5) yields

an expression suitable for computations [11, 13, 15], namely,

JRR0 ¼
1

4p
Im

Z EF

EB

trL �RðE
þ
Þ g"

RR0 ðE
þ
Þ�R0 ðEþ

Þ g#
R0R

ðEþ
Þ

h i
dE,

�RðzÞ ¼ P"

RðzÞ � P#

RðzÞ, ð11Þ
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where trL denotes the trace over the angular momentum index L, and the energy
integration is performed between the bottom of the valence band EB and the Fermi
energy EF. In practice, this integral is replaced by a complex energy integral along
the contour C described in section 3.1. The quantities g�RR0 ðzÞ (� ¼", #) denote site-
off-diagonal blocks of the auxiliary Green-function matrices with elements g�RL,R0L0 ðzÞ
while �RðzÞ are diagonal matrices related to the potential functions P�

R‘ðzÞ.
The diagonal elements of �RðzÞ play the role of energy- and ‘-dependent exchange
splittings on individual atoms while the expression (11) for the exchange interactions
JRR0 has the form of a bare static transversal susceptibility.

Well converged calculations of the exchange interactions JRR0 for bulk metals with
perfect translational symmetry for distances d ¼ jR� R

0
j up to ten lattice param-

eters a require high accuracy of both contour integrations and the BZ-averages
(inverse lattice Fourier transforms) defining the site-off-diagonal blocks g�RR0 ðzÞ
[54, 55]. In particular, we have used typically a few million k-points in the full BZ
for the energy point on the contour C closest to the Fermi energy, and the number of
k-points was then progressively decreased for more distant energy points [15, 18] while
the number of energy points on the contour was 20 to 40. A typical evaluation of
exchange interactions requires a few hours on P4-based personal computers.

The calculated Heisenberg exchange parameters for bcc Fe (with experimental
value of its lattice parameter a) are shown in figure 1. One can see dominating
FM interactions for the first and second nearest-neighbour shells followed by weaker
interactions of both signs and decreasing magnitudes for bigger distances
d ¼ jR� R

0
j (figure 1, left panel). The same qualitative features were found for

other 3d ferromagnets: fcc Co, fcc Ni [15] and hcp Co [60]. Note that the calculated
exchange interactions depend on the type of the exchange-correlation potential [50]
and on the inclusion of non-spherical parts of one-electron potentials and densities
[61]; these effects can be especially pronounced in some systems, e.g. in fcc Fe with
atomic volume close to a cross-over from a FM high-spin state to a FM low-spin
state [61].
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Figure 1. Exchange interactions JRR0 for bcc Fe as a function of the distance jR� R
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without (left panel) and with (right panel) a prefactor d3.
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An analysis of the exchange interactions JRR0 (11) in the limit of large distances
d ¼ jR� R

0
j has been given in reference [15] for a single-band model using the

stationary-phase approximation [62]. For a weak ferromagnet, one reveals the
characteristic Ruderman–Kittel–Kasuya–Yoshida (RKKY) asymptotic behaviour

JRR0 /
sin k

"

F þ k
#

F

� �
� R� R

0
� �

þ�
h i

jR� R0j3
, ð12Þ

where k�F is a Fermi wavevector in a direction such that the associated group velocity
is parallel to R� R

0, and � denotes a phase factor. The exchange interaction accord-
ing to (12) has an oscillatory character with an envelope decaying as jR� R

0
j
�3.

On the other hand, for a strong ferromagnet with a fully occupied majority band the
corresponding Fermi wavevector is imaginary, namely, k"F ¼ iK"

F, and one obtains an
exponentially damped RKKY behaviour [15, 63]

JRR0 /
sin k

#

F � R� R
0

� �
þ�

h i
exp �K

"

F � R� R
0

� �h i
jR� R0j3

: ð13Þ

The qualitative features of these RKKY-type oscillations will not be changed in
realistic ferromagnets. This is illustrated for bcc Fe (weak ferromagnet) in figure 1
(right panel) which proves undamped oscillations of the quantity jR� R

0
j
3JRR0 .

The complex oscillatory behaviour is due to the existence of both the majority
and minority Fermi surfaces and the presence of various directions in the bcc lattice
which sample different k�F-vectors. It should be noted that due to the sp-d hybridi-
zation no itinerant ferromagnet is a truly strong ferromagnet – the only exceptions
are half-metallic ferromagnets.

3.3. Magnetic properties from the Heisenberg Hamiltonian

The RKKY-like asymptotic behaviour (12) leads to numerical difficulties in calcula-
tions of the magnon spectra and the spin-wave stiffness constants. The lattice Fourier
transform of the exchange interactions (6) is not an absolutely convergent sum and
its convergence with respect to the number of shells included has to be carefully
checked. Note, however, that the lattice sum of jJ0Rj

2 does converge so that J(q) is
defined unambiguously in the L2 sense.

The lattice sum for the spin-wave stiffness constant (7) is not convergent at all,
and the values of D as functions of the cut-off distance dmax exhibit undamped
oscillations for all three cubic 3d ferromagnets [15]. This is a direct consequence of
the RKKY asymptotics of the exchange interactions (12) which in turn reflects Fermi
surface properties of metallic ferromagnets. To resolve this difficulty we suggested
regularizing the original expression (7) by replacing it by the formally equivalent
expression which is, however, numerically convergent

Dð�Þ ¼
2

3M
lim

dmax!1

X
jRj<dmax

jRj
2 J0R expð��jRj=aÞ,

D ¼ lim
�!0

Dð�Þ, ð14Þ
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where a is the lattice parameter. The quantity � plays the role of a damping

parameter which makes the lattice sum absolutely convergent. It can be shown

that the quantity D(�) is a smooth function of the variable � for any value � > 0

and it can be extrapolated to the value �¼ 0. We therefore perform calculations for a

set of values � 2 ð�min, �maxÞ for which D(�) is a smooth function with a well-defined

limit for large dmax. The limit � ! 0 is then determined at the end of calculations by

a quadratic least-square extrapolation method [15]. Note that these convergence

problems are less serious in half-metallic magnets due to the exponential damping

described by (13).
Direct calculations of the Curie temperatures in the MFA according to (8) face

convergence problems similar to the magnon spectra. Alternatively, one can evaluate

the on-site exchange parameter J0 using a sum rule valid also for systems without

translational periodicity [11]:

J0R ¼
X
R0

JRR0

¼ �
1

4p
Im

Z EF

EB

trL �RðE
þ
Þ g"RRðE

þ
Þ � g#RRðE

þ
Þ

h in
þ �RðE

þ
Þ g"RRðE

þ
Þ�RðE

þ
Þ g#RRðE

þ
Þ

o
dE: ð15Þ

This sum rule involves only the site-diagonal blocks of the auxiliary Green functions

and its reliable evaluation for perfect crystals requires only a few thousand k-points

in the irreducible part of the BZ, i.e. the accuracy usual in most self-consistent

LSDA calculations.
Another numerical problem is encountered in computations of the Curie

temperature in the RPA due to the singularity of the averaged function in (9) for

jqj ! 0. We have therefore calculated TRPA
C using the expression

kBT
RPA
C

� ��1

¼ �
3

2
lim
z!0

Gm
ðzÞ,

Gm
ðzÞ ¼

1

N

X
q

z� J0 þ JðqÞ
� ��1

, ð16Þ

where z is a complex energy variable and the quantity Gm
ðzÞ is a magnon Green

function corresponding (up to the prefactor 4/M) to the magnon dispersion law (6).

The magnon Green function was evaluated for energies z in the complex

energy plane and its value for z¼ 0 was obtained using an analytical continuation

technique [64].
The real-space method presented here allows us to get a set of pair interactions

even for very distant atoms only from a single self-consistent calculation. It has

therefore been used independently in a number of papers for very different systems

[65–68]. A widely used alternative approach, the so-called frozen-magnon approach,

relies on constrained DFT calculations for true spin spirals and subsequent deriva-

tion of the coupling constants from the total energies of the spirals [34, 41, 67, 70].

The frozen-magnon approach can be implemented with the magnetic force theorem

[71] or it can be formulated in terms of torques instead of total energies [72].
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The real-space and frozen-magnon approaches are formally equivalent to each other.
The quantities that are directly calculated (the pair exchange interactions JRR0 in the
former case, the magnon energies E(q)s in the latter) are related to each other by a
lattice Fourier transformation (6). For this reason, their advantages and disadvan-
tages refer mainly to their computational efficiency. For calculations of spin-wave
dispersion curves (for a moderate number of q-points) and of the spin-wave stiffness
D, the frozen-magnon approach is superior, since it does not require us to perform
the Fourier transformation and the delicate analysis explained in section 3.3. The
real-space approach seems to be more efficient for calculations of the Curie tempera-
ture, where the MFA estimation can be obtained from (8) and the sum rule (15),
i.e. from a single real-space calculation, whereas a BZ-average of the magnon
energies E(q) is required in the frozen-magnon approach. The real-space technique
is also better when a fine scan over the full BZ is needed like, e.g. in RPA calculations
of the Curie temperature (9), or in searching for instabilities of the FM state (see
section 4.2), since the set of calculated JRR0 for typically 200 shells provides a fast and
accurate parametrization of J(q), which reduces considerably the computational
effort. In general, the real-space approach has obvious advantages for systems
with broken translational symmetry (random alloys, surfaces, thin films, multilayers)
while the reciprocal-space approach is more natural for systems with full
three-dimensional translational symmetry.

4. Applications

4.1. Transition metals

The calculated magnon energy spectrum E(q) for bcc Fe (by employing the pair
exchange interactions for up to 246 shells) is presented in figure 2. Corresponding
plots of E(q) for fcc Co and Ni [15] exhibit parabolic, almost isotropic behaviour
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Figure 2. Magnon dispersion law along high-symmetry lines in the Brillouin zone of bcc Fe
(full line) compared to experiment (filled circles: pure Fe at 10K [73], empty squares:
Fe(12% Si) at room temperature [74]).
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for long wavelengths. On the contrary, in bcc Fe we observe some anisotropy of

E(q), i.e. E(q) increases faster along the �–N direction and more slowly along the �–

P direction. In agreement with references [34, 69, 70] we observe local minima

around the point H along the �–H and H–N directions in the range of short wave-

lengths. They are indications of the so-called Kohn anomalies which are due to long-

range RKKY interactions, similarly as Kohn–Migdal anomalies in phonon spectra

are due to long-range interactions mediated by Friedel oscillations. It should be

mentioned that the minima in the dispersion curve of bcc Fe appear only if the

summation in (6) is done over a sufficiently large number of shells, in the present

case for more than 45 shells.
Present results for dispersion relations compare well with available experimental

data of measured spin-wave spectra for Fe and Ni [73–75]. For low-lying parts of

spectra there is also good agreement of the present results with those of references

[34, 70] obtained using the frozen-magnon approach. There are, however, differences

for higher parts of spectra, in particular for the magnon bandwidth of bcc Fe which

can be identified with the value of E(q) evaluated at the high-symmetry point q ¼ H

in the bcc BZ. The origin of this disagreement is unclear; it may partly be ascribed to

the third-order accuracy of the parametrization of the potential functions P�
R‘ðzÞ in

reference [70], or to the true spin spirals in reference [34] that are more appropriate

for high-energy excitations. We have carefully checked the convergence of the mag-

non dispersion laws E(q) with the number of shells included in (6) and it was found

to be weak for 50–70 shells and more, i.e. for the cut-off distance dmax � 6a.
The results for the spin-stiffness coefficient D calculated for the three cubic FM

metals are summarized in table 1 together with available experimental data [76–79].

There is reasonable agreement between theory and experiment for bcc Fe and fcc Co

but the theoretical values of D are considerably overestimated for fcc Ni. It should be

noted that measurements refer to hcp Co while the present calculations were

performed for fcc Co. A similar agreement between calculated and measured spin-

wave stiffness constants was obtained by Halilov et al. [34] using the frozen-magnon

approach. Our results are also in accordance with those obtained by

van Schilfgaarde and Antropov [70] who used the spin-spiral calculations to over-

come the problem of evaluation of D from (7). On the other hand, this problem was

overlooked in references [11, 51, 65] so that the good agreement of D, calculated

for a small number of coordination shells, with experimental data seems to be for-

tuitous. Finally, the results of Brown et al. [80] obtained by the layer KKR method

Table 1. Calculated spin-wave stiffness constants (Dth) and Curie temperatures
(TMFA

C and TRPA
C ) for FM 3d transition metals and their comparison with

experimental values (Dexp and TC,exp). Calculations were performed with
experimental values of lattice parameters.

Metal Dth [meV � Å2] Dexp [meV � Å2] TMFA
C ½K� TRPA

C ½K� TC, exp ½K�

Fe bcc 250� 7 280, 330 1414 950� 2 1044–1045
Co fcc 663� 6 580, 510 1645 1311� 4 1388–1398
Ni fcc 756� 29 555, 422 397 350� 2 624–631
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in the frozen-potential approximation are underestimated for all metals and the best
agreement is obtained for Ni.

Calculated values of Curie temperatures for both MFA and RPA as well as
corresponding experimental data are summarized in table 1. The MFA-values of
Curie temperatures are overestimated for Fe and Co, but underestimated for Ni in
agreement with other calculations [34, 70]. On the other hand, the results obtained
using the RPA are in good agreement with experiment for both fcc Co and bcc Fe,
while the results for fcc Ni are even more underestimated. This is in agreement with
the fact mentioned in section 2, namely that TRPA

C < TMFA
C . The present results for

Fe and Ni agree reasonably with results of reference [81] using the spin-fluctuation
theory and an improved statistical treatment in the framework of the Onsager
cavity-field method.

In summary, we have found that calculated Curie temperatures and spin-wave
stiffness constants agree well with experiment for Fe and Co, while less satisfactory
results are obtained for Ni, where the role of the Stoner excitations is much more
important as compared to Fe and Co. In addition, the adiabatic approximation is
less justified for Ni, and, possibly, correlation effects beyond the LSDA play the
more important role for this ferromagnet.

4.2. Rare-earth metals

Rare-earth (RE) metals represent a class of systems where the concept of atomic-like
local moments is well justified due to highly localized 4f orbitals. The standard
LSDA, however, fails to describe correctly their ground-state properties [82].
We have treated two RE metals, namely, hcp Gd [18] and bcc Eu [19], in a simplified
manner taking the 4f states as a part of the atomic core (with the majority 4f level
occupied by seven electrons and the minority 4f level empty). The other valence
orbitals were included in the standard LSDA. This ‘open-core’ approach was
often employed in self-consistent spin-polarized calculations of RE-based systems
during the last decade [83–86]; its justification has recently been given by means of
first-principles self-interaction corrected calculations for RE metals [87].

The exchange interactions in Gd and Eu derived from self-consistent calculations
in a FM state are shown in figure 3. Their distance-dependence is qualitatively
similar to the 3d transition metals; the magnitudes of the dominating RE nearest-
neighbour interactions are, however, smaller by a factor of five, cf. figure 1.
Moreover, there is a profound difference between the two 4f metals concerning the
contribution of the oscillating interactions between more distant atoms to the on-site
exchange parameter J0; well converged results of J0 are obtained for cut-off distances
dmax > 5a used in the real-space sum in (8) (a is the lattice parameter). In hcp Gd, the
distant-pair interactions are not strong enough to destroy the FM spin structure,
as indicated by a positive converged value of J 0 (J 0

¼ 3:25mRy) [18]. Note that
the negative exchange interaction between the second Gd nearest neighbours is in
qualitative agreement with experiment [88]. On the other hand, the contribution
of more distant sites to J 0 is very important in the case of bcc Eu and it yields for
the converged quantity a negligible resulting value (J 0

¼ �0:03mRy) [19]. Such a
situation indicates an instability of the FM state with respect to a more complicated
spin structure. This feature agrees qualitatively with the experimentally observed
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spin-spiral structure, the wavevector of which lies along the �–H direction in the
bcc BZ [89, 90].

Calculations of the magnon spectra and the Curie temperature for hcp Gd
require a trivial generalization of equations (6) and (9) to the case of two equivalent
atoms in the hcp unit cell [42, 91]. The resulting Curie temperatures are given in
table 2 together with the experimental value [92] while a comparison of the calculated
magnon dispersion law with experiment [92] is presented in figure 4. The theoretical
magnon spectra included the finite temperature of the experiment (T ¼ 78 K) which
leads within the RPA to a simple rescaling of the magnon energies proportionally to
the temperature-dependent average magnetization [39]. The latter dependence was
calculated in the RPA from the classical EHH [91].

The calculated magnon energies are higher than experimental. A recent theore-
tical study by Halilov et al. [69, 85] revealed that this effect can be partly explained
by assumed intraatomic collinearity between the localized 4f-moment and the val-
ence part of the local moment. Inclusion of a possible intraatomic non-collinearity
between the localized and itinerant moments leads to a softening of the magnon
energies, reducing them by a factor of 1.5 in the upper part of the spectrum.
However, the lower part of the spectrum that is more important for an RPA estima-
tion of the Curie temperature is less influenced by the non-collinearity. On the other
hand, the calculated Curie temperatures both in the MFA and in the RPA agree very

Table 2. Calculated magnetic transition temperatures (TMFA and TRPA)
and their comparison with experimental values (Texp) for hcp Gd (Curie
temperature) and bcc Eu (Néel temperature). Calculations were performed

with experimental values of lattice parameters.

Metal TMFA [K] TRPA [K] Texp [K]

Gd hcp 334 301 293
Eu bcc 151 111 91
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Figure 3. Exchange interactions JRR0 for hcp Gd (left panel) and bcc Eu (right panel) as
functions of the distance jR� R

0
j ¼ d. The crosses and squares in the left panel refer to pairs

of sites R, R0 lying in even (AA) and odd (AB) hcp(0001) planes, respectively.
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well with experiment (table 2). Bearing in mind the number of approximations used,

the fortuitous cancellation of inaccuracies of different origins cannot be excluded;

nevertheless, the degree of agreement of TCs in table 2 proves that the present

approach based on interatomic exchange interactions represents a better starting

point to RE magnetism than a theory based on intraatomic exchange integrals

formulated in reference [93]. The latter scheme provided values of the Curie

temperature for Gd in a wide interval 172–1002K, depending on further approxima-

tions employed.
Determination of the magnetic ground state of Eu from the EHH (2) is a difficult

task in view of the high-dimensional manifold of a priori possible states as well as

a number of qualitatively different spin structures encountered in RE-based

systems [92]. Here we consider only spin spirals specified by a single q-vector as

�eR ¼ sinðq � RÞ, 0, cosðq � RÞð Þ, ð17Þ

since the spin structure observed for bcc Eu at low temperatures belongs to this

class [89, 90]. The minimum of the Hamiltonian Heff (2) corresponds then to the

maximum of the lattice Fourier transform J(q) (6). A scan over the whole BZ reveals

that the absolute maximum of J(q) is obtained for a vector q ¼ Q on the �–H line,

namely, at Q ¼ ð1:63, 0, 0Þ a�1, see figure 5. The magnitude of Q determines the

angle ! between magnetic moments in the neighbouring (100) atomic layers.

In the present case, it is equal to ! ¼ 47�, in surprising agreement with experimental

results which report the spin-spiral q-vector inside the �–H line and the angle per

layer equal to !exp ¼ 49� [89] and !exp ¼ 47:6� 1:2� [90].
The resulting maximum J(Q) can be used to get the Néel temperature in the

MFA in complete analogy to (8) [92]:

kBT
MFA
N ¼

2

3
JðQÞ, ð18Þ
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Figure 4. Magnon dispersion law along high-symmetry lines in the Brillouin zone of hcp Gd
calculated for T ¼ 78 K (full lines) and compared to experiment (filled circles – reference [92]).
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whereas the RPA leads to the following modification of (9) [19, 39]:

kBT
RPA
N

� ��1

¼
3

4

1

N

X
q

JðQÞ � JðqÞ½ �
�1

þ Wðq,QÞ½ �
�1

� �
,

Wðq,QÞ ¼ JðQÞ �
1

2
JðqþQÞ �

1

2
Jðq�QÞ: ð19Þ

Both theoretical values and the experimental Néel temperature are given in

table 2. The MFA-value is substantially higher than experiment while the RPA

reduces the theoretical value of TN significantly so that good agreement with experi-

ment is obtained. Note that the present results are based on exchange interactions

derived from a FM state which is not the true ground state; an extraction of the

pair exchange interactions from the spin-spiral state (17) has not been done yet.

The magnetic ground state and exchange interactions in bcc Eu have recently been

studied using self-consistent full-potential calculations and the LSDAþU scheme

for spin spirals [94]. The obtained values of J(q) compare reasonably well with the

present results for q-vectors not far from the �-point while bigger differences are

encountered at the BZ-boundary; these findings are consistent with the expected

validity of the present approach in the long-wavelength limit. The Néel temperatures

derived in reference [94], TMFA
N ¼ 170K and TRPA

N ¼ 112K, agree very well with the

values based on EHH (table 2).

4.3. Substitutional impurities and disordered alloys

The present real-space approach to exchange interactions can be generalized to

substitutionally disordered alloys either by using a supercell technique or by combin-

ing it with the coherent-potential approximation (CPA). Both alternatives have their

own merits and drawbacks. The CPA takes properly into account the effects of finite

lifetime of electronic states due to disorder but it has difficulties in including effects

of varying local environments as well as of short-range order (both chemical and

magnetic) on electronic properties.
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Figure 5. The lattice Fourier transform J(q) of the exchange interactions in bcc Eu along
high-symmetry lines in the Brillouin zone.
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In the following, we sketch the modification of the expression for the exchange

interactions (11) to a random alloy within the LMTO-CPA formalism [54, 55, 95].

We assume that the lattice sites R are randomly occupied by alloy components

Q ¼ A,B, . . . , with concentrations c
Q
R . We neglect any correlations between occupa-

tions of different lattice sites and we neglect local environment effects, i.e. the LSDA

self-consistent potentials inside the R-th cell depend solely on the occupation of the

site R by an atom Q ¼ A,B, . . . .
The CPA-configurational average of the auxiliary Green function (10) can be

written as

gRR0 ðzÞ
	 


¼ �gRR0 ðzÞ ¼ PðzÞ � S½ �
�1

� �
RR0 , ð20Þ

where the spin index � is omitted, S is the structure constant matrix and PðzÞ is

a non-random site-diagonal matrix of coherent potential functions PRðzÞ attached

to individual lattice sites which describe effective atoms forming an effective CPA

medium. The coherent potential functions satisfy a set of self-consistency conditions

(Soven equation) which guarantees that average single-site scattering due to real

atoms with respect to the effective medium vanishes.
The CPA leads also to conditional averages of individual blocks of the Green

functions. The site-diagonal block gRRðzÞ of the Green function averaged over all

alloy configurations with site R occupied by an atom Q is given by

�g
Q
RRðzÞ ¼ �gRRðzÞf

Q
R ðzÞ ¼ ~f

Q

R ðzÞ �gRRðzÞ, ð21Þ

where the prefactors f
Q
R ðzÞ and ~f

Q

R ðzÞ are defined as

f
Q
R ðzÞ ¼ 1þ P

Q
R ðzÞ � PRðzÞ

h i
�gRRðzÞ

n o�1

,

~f
Q

R ðzÞ ¼ 1þ �gRRðzÞ P
Q
R ðzÞ � PRðzÞ

h in o�1

: ð22Þ

Similarly, the site-off-diagonal block gRR0 ðzÞ averaged over all alloy configurations

with two sites R 6¼ R
0 occupied respectively by atomic species Q and Q0 is given by

�g
QQ0

RR0 ðzÞ ¼ ~f
Q

R ðzÞ �gRR0 ðzÞf
Q0

R0 ðzÞ: ð23Þ

Derivation of the conditionally averaged pair exchange interaction between two

sites R 6¼ R
0 occupied respectively by components Q and Q0 can be performed simi-

larly as in the case without substitutional randomness by employing the magnetic

force theorem [11] and the so-called vertex-cancellation theorem [96, 97]. This leads

to the expression (see also [98])

�J
QQ0

RR0 ¼
1

4p
Im

Z EF

EB

trL �
Q
RðE

þ
Þ �g

QQ0,"
RR0 ðEþ

Þ�
Q0

R0 ðE
þ
Þ �g

Q0Q,#
R0R

ðEþ
Þ

h i
dE,

�
Q
RðzÞ ¼ P

Q,"
R ðzÞ � P

Q,#
R ðzÞ, ð24Þ
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which is fully analogous to (11). The conditional average of the on-site exchange

interaction (15) yields a formula

�J
0,Q
R ¼ �

1

4p
Im

Z EF

EB

trL �
Q
RðE

þ
Þ �g

Q,"
RR ðE

þ
Þ � �g

Q,#
RR ðEþ

Þ

h in
þ �

Q
RðE

þ
Þ �g

Q,"
RR ðEþ

Þ�
Q
RðE

þ
Þ �g

Q,#
RR ðE

þ
Þ

o
dE: ð25Þ

It should be noted, however, that the sum rule for the averaged pair and on-site

interactions,

�J
0,Q
R ¼

X
R0Q0

�J
QQ0

RR0 c
Q0

R0 , ð26Þ

which can easily be obtained from the corresponding sum rule (15), valid for any

configuration of the alloy, is not exactly satisfied by the expressions (24) and (25).

According to our experience, the two sides of (26) deviate up to 15% for typical

binary transition-metal alloys (FeV, FeAl). This violation of an important sum rule

indicates that vertex corrections must be taken into account in averaging exchange

interactions in random alloys. On the other hand, the small relative difference of

both sides of the sum rule (26) proves that the role of vertex corrections for exchange

interactions is less significant than in transport properties, as argued in reference [99].

It can be expected that the vertex corrections are less important for the pair exchange

interactions (especially between more distant sites) than for the on-site exchange

interactions, but a thorough analysis of this point remains to be performed. A recent

study using a supercell approach for random fcc Fe0.5Ni0.5 alloys proves that the

CPA-averaged exchange interactions (24) agree reasonably well with averages from

a 16-atom supercell [100].
Let us now consider the case of two isolated impurities in a non-magnetic host.

The exchange interaction between two impurity sites R 6¼ R
0 can be calculated

exactly and compared to the low-concentration limit of the CPA expression (24).

The latter case corresponds to a binary alloy with cAR ! 0 and cBR ! 1 for all

lattice sites, with spin-polarized impurity potential functions Pimp,�
R ðzÞ ¼ PA,�

R ðzÞ

and the coherent potential functions P
�
RðzÞ ! P0

RðzÞ where P0
RðzÞ ¼ PB

RðzÞ are the

non-spin-polarized host potential functions. The average Green function is

replaced by that of the non-magnetic non-random host, �g�RR0 ðzÞ ! g0RR0 ðzÞ. The

impurity–impurity exchange interactions are given by

JRR0 ¼
1

4p
Im

Z EF

EB

trL ~�RðE
þ
Þ g0RR0 ðEþ

Þ ~�R0 ðEþ
Þ g0R0RðE

þ
Þ

� �
dE,

~�RðzÞ ¼ �"RðzÞ � �#RðzÞ,

��RðzÞ ¼ Pimp,�
R ðzÞ � P0

RðzÞ
h in

1þ g0RRðzÞ Pimp,�
R ðzÞ � P0

RðzÞ
h io�1

, ð27Þ

where the ��RðzÞ denote single-site t-matrices of the impurity atoms. A conventional

RKKY expression is obtained by replacing the t-matrices ��RðzÞ in ~�RðzÞ by the

impurity potential functions Pimp,�
R ðzÞ. This is justified in the limit of a weak
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scattering, whereas the formula (27) is correct also for strong impurity scatterings
and it modifies the phase and amplitude of the oscillations of the exchange interac-
tions as compared to the conventional RKKY formula [101].

The calculated exchange interactions for two Fe impurities in an fcc Au host are
shown in figure 6 (inset in the left panel). The values of JRR0 for impurities along
the nearest-neighbour direction [110] (which gives the dominating contribution to
exchange interactions in this case) were multiplied by the cube of the interatomic
distance in order to illustrate the RKKY asymptotics for large distances (figure 6,
inset in the right panel). However, it takes a few oscillations (a preasymptotic regime)
before the asymptotic value of the oscillation amplitudes is reached. Very similar
behaviour is obtained also for a textbook example of two Mn impurities in an fcc
Cu host. The main difference is the character of the leading nearest-neighbour
interactions: they are FM for Fe impurities in the Au host, but antiferromagnetic
for two neighbouring Mn atoms in Cu.

The formalism can also be applied to magnetic impurities in spin-polarized
hosts such as 3d FM metals Fe, Co and Ni. Here the main interest concerns the
exchange coupling of the impurity local moment to the bulk magnetization.
The on-site exchange parameter for the impurity atoms, obtained from (25) in
the low-concentration limit, represents a natural tool in searching for stable spin
configurations, as documented in the case of 3d impurities in Fe, Co and Ni by a
detailed study [102].

A direct calculation of the exchange interaction for two impurities embedded in a
non-magnetic non-random crystal gives an exact result (the so-called two-potential
formula [103]) containing matrix quantities that describe multiple scatterings of
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RR0 as a function of the distance

jR� R
0
j ¼ d in Au-rich random fcc Au1�xFex alloys: bare interactions for all
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electrons between the two impurity sites; their absence in (27) reflects a systematic
neglect of such multiple-scattering processes in the CPA. Their role is, however,
of little importance for exchange interactions between more distant atoms.

An example of pair exchange interactions in a concentrated alloy is shown in
figure 7 for Fe–Fe pairs in a disordered bcc Fe0.8Al0.2 system. The interactions are
qualitatively similar to those in pure bcc Fe (figure 1), but a more careful analysis of
the long-distance behaviour reveals exponentially damped RKKY-like oscillations
(figure 7, right panel). This feature can be explained by damping of electron states
due to the alloy disorder which leads to an exponential decay of site-off-diagonal
blocks of the averaged Green functions �g�RR0 ðzÞ with increasing distance jR� R

0
j.

It should be mentioned that this exponential damping refers only to averaged
exchange interactions in contrast to those in each alloy configuration which exhibit
a much slower decay for large interatomic separations (see reference [99] and
references therein).

The exponential damping is also encountered in spin-glass systems such as AuFe
or CuMn; its presence is visible even for a very small but finite concentration of
magnetic impurities. The bare exchange interactions for two Fe atoms in fcc-Au and
in random Au0.95Fe0.05 alloy are shown in figure 6 (left panel). We observe the
dominating FM nearest-neighbour interactions and a pronounced frustration of
further exchange interactions. The magnetic frustration, defined as the competition
between antiferromagnetic and FM interactions, and the substitutional (chemical)
disorder are the essential ingredients of a spin glass. A detailed analysis [25] shows
that the frustration in AuFe alloys vanishes gradually as the Fe-content increases
and the system reaches a FM phase. Our results suggest that the exchange interac-
tions in fcc-AuFe spin-glass alloys are much shorter-ranged than expected from
ordinary RKKY interactions (see figure 6, right panel). As compared to the case
of the very dilute limit, where the asymptotic RKKY behaviour was verified numeri-
cally (see the inset), already for 5% of Fe impurities there is a pronounced expo-
nential damping of calculated exchange interactions. Because the damping increases
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further with increasing Fe-content, the short-range theories [104] seem to be more

appropriate for a study of the spin-glass properties in the AuFe metallic system.

A more detailed discussion of the calculated exchange interactions in the AuFe spin

glass can be found elsewhere [25].
Similar results, namely the damped RKKY interactions, were obtained in studies

of the paramagnetic spin susceptibility and compositional correlation function in the

DLM state [105] of the CuMn [106, 107] and AuFe [108] spin glasses. This agreement

represents a rewarding feature since the latter approach [105] is not based on any

particular model of magnetic interactions.
Calculation of the magnon spectra and related quantities from the EHH for

disordered alloys represents a non-trivial task since the corresponding equation of

motion for the two-time Green function for spin operators, obtained from the stan-

dard decoupling procedure for higher-order Green functions [39], contains a more

complicated type of disorder than purely diagonal disorder. The magnons (and also

phonons) in random alloys are featured by the simultaneous presence of diagonal,

off-diagonal and environmental disorder; the latter is closely related to the

Goldstone theorem for these excitations. An extension of the CPA to this case has

been studied since the early 1970s. Two recent approaches are based on a cumulant

expansion [109] and on an augmented-space formalism [110]; the former scheme is

combined with the RPA and provides a value for the Curie temperature. Both

formulations are rather complicated which allowed to perform numerical calcula-

tions for environmental disorder limited to nearest neighbours only, but they seem

promising for future studies with true long-range interactions. The disorder can be

taken into account exactly by Monte Carlo simulations using large simulation cells

which can describe fluctuations beyond any effective-medium approach [24]; the

combined effect of magnetic and chemical fluctuations can also be included within

a real-space RPA [111].
The critical temperature of a random alloy in the MFA can be obtained in a way

similar to that leading to (8). Let us restrict ourselves to the case of a homogeneous

random alloy (with all lattice sites equivalent). In analogy to previous on-site

exchange parameters (8, 26), one can introduce quantities

�J
0,QQ0

¼
X
R

�J
QQ0

RR0 , K
QQ0

¼ �J
0,QQ0

cQ
0

, ð28Þ

where KQQ0

are effective exchange parameters among magnetic moments of the alloy

constituents. The critical temperature is then equal to

kBT
MFA
cr ¼

2

3
�max, ð29Þ

where �max is the maximal eigenvalue of the matrix K
QQ0

. This type of estimation has

been used for diluted magnetic semiconductors as described in section 4.4.
The expression for the alloy spin-wave stiffness constant is similar to (7), namely,

D ¼
2

3 �M

X
R

jRj
2 �J0R, �JRR0 ¼

X
QQ0

c
Q
R c

Q0

R0
�J
QQ0

RR0 , ð30Þ
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where �M and �JRR0 denote the average alloy magnetic moment (per site) and the

averaged exchange pair interactions, respectively [98]. The sum in (30) is absolutely

convergent due to the exponential damping of the pair exchange interactions for

jR� R
0
j !1.

4.4. Diluted magnetic semiconductors

Diluted magnetic semiconductors (DMS) represent a new class of materials with

potential technological applications in spintronics. They have recently attracted

much interest because of the hole-mediated ferromagnetism [112–114]. Curie

temperatures higher than room temperature are desirable for practical applications,

whereas the currently prepared samples exhibit TCs only slightly above 150K [115].

The most frequently studied DMS is a III-V-based compound (Ga1�xMnx)As in the

zinc-blende structure with Mn-concentration in the range 0 < x < 0:1. Since Mn

atoms are in a high-spin state in these systems, the above described formalism is

well suited for reliable quantitative investigations of the exchange interactions and

the Curie temperatures.
The (Ga,Mn)As compound is a substitutionally disordered system with Mn

atoms replacing Ga atoms on the cation sublattice. Application of the TB-LMTO-

CPA formalism to this system employs so-called empty spheres located at interstitial

positions of GaAs semiconductor for matters of space filling, so that the zinc-blende

structure is described in terms of four fcc sublattices with substitutional disorder

only on the cation sublattice. The pair exchange interactions between Mn atoms
�J
MnMn
RR0 in the (Ga1�xMnx)As alloy with x¼ 0.05 are shown in figure 8 (left panel)

[17, 22, 60]; interactions between the other components are much smaller and neg-

ligible concerning their possible influence on magnetic properties. The first nearest-

neighbour interaction is positive and bigger than the (mostly positive) interactions
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between more distant Mn atoms. Analysis of the behaviour of �J
MnMn
RR0 for large

interatomic distances reveals exponentially damped RKKY-like oscillations [22]

which have two origins: the effect of alloying which introduces an exponential damp-

ing in the site-off-diagonal blocks of the averaged Green functions (see section 4.3),

and an additional exponential damping due to a half-metallic character of the system

[22, 112], i.e. the alloy Fermi energy lies in a band gap of the minority band

(see section 3.2).
The calculated Curie temperature in MFA for the (Ga0.95Mn0.05)As alloy is

around 300K, i.e. substantially higher than the experimental values [113, 115,

116]. There are several possible reasons for this discrepancy, namely, (i) the struc-

tural imperfections of the compound which reduce the number of holes in the

valence band, (ii) the simplified treatment of the lattice disorder in the EHH (within

the MFA), (iii) effects of electron correlations not included in the LSDA, (iv) varia-

tions of the pair exchange interactions due to random configurations (local environ-

ment effect) that are not captured by the present CPA-averaged interactions (24),

and (v) non-negligible atomic short-range order.
The most probable candidates for structural imperfections are native defects,

such as As-antisite atoms [112] and Mn-interstitial atoms [117]. The effect of

lattice disorder on the Curie temperature can be included essentially exactly in the

framework of supercell approaches [24, 111].
In the following, we demonstrate the effect of As-antisites on the

exchange interactions of (Ga,Mn)As compounds [21, 22]. The combined effect of

Mn-impurities and As-antisites can be simulated within the CPA using an alloy

(Ga1�x�yMnxAsy)As with y denoting the As-antisite concentration. The influence

of As-antisites on the Mn–Mn exchange interactions is shown in figure 8 (left panel):

the positive values of �J
MnMn
RR0 are reduced due to the As-antisites; the most dramatic

reduction is found for the dominating coupling between the nearest neighbours.

The dependence of the nearest-neighbour Mn–Mn interaction on x and y is shown

in figure 8 (right panel). For a fixed Mn-concentration x, the interaction decreases

monotonically with increasing content of As-antisites y, ending finally at negative

values. This change of sign correlates nicely with the predicted instability of the FM

state with respect to formation of a state featured by disordered directions of the

Mn-moments [17, 118]. A simple physical explanation of these effects is based on the

component-resolved densities of states at the Fermi level [118, 119]. In alloys without

As-antisites, a very narrow impurity band due to Mn atoms with negative moments

is formed just at EF, indicating that a flip of the Mn local moment is energetically

unfavorable. The presence of As-antisites leads to an upward shift of EF and

a complete filling of the impurity band, which reduces the large energy cost of

Mn-moment reversal.
The Curie temperatures were estimated in the MFA [17, 22] as described in

section 4.3. However, in view of the much bigger Mn–Mn interactions as compared

to interactions between other constituent atoms, the Curie temperature comes out

equal to

kBT
MFA
C ¼

2

3
x
X
R0

�J
MnMn
RR0 , ð31Þ
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where the lattice sites R,R0 are confined to the cation fcc sublattice and x denotes the
Mn-concentration. The TMFA

C for a fixed x is monotonically decreasing with increas-
ing As-antisite concentration y (see also figure 10, right panel), in analogy to the
y-dependence of the first nearest-neighbour Mn–Mn interaction (figure 8,
right panel). The TC for a fixed y exhibits a non-monotonic dependence on the
Mn-content x reaching a flat maximum for x > 0:1. The latter behaviour results
from an interplay of two effects: an increase of TMFA

C with increasing x, see (31),
and the non-trivial dependence of the first nearest-neighbour Mn–Mn interaction as
a function of (x, y), see figure 8 (right panel). Note, however, that the next-neighbour
exchange couplings also contribute significantly to the Curie temperature, see (31).
Alternative ab initio mean-field estimations of the TCs of DMSs have been
presented in [17, 71, 120]; applications to group-IV DMSs (GeMn) can be found
in [22, 23].

A combination of the frozen-magnon and supercell approaches was used to
study Curie temperatures in (Ga,Mn)As (without structural defects) in the MFA
and the RPA [71]. It yielded a non-monotonic dependence of the TC on the
Mn-concentration with the RPA values about 20% smaller than the MFA values;
the latter compare well with the present results [22]. It should be noted, however,
that the supercell approach was limited to a few special Mn-concentrations
(x ¼ 0:03125, 0:0625, 0:125, 0:25) and that the first nearest-neighbour Mn–Mn inter-
actions could not be determined due to the special atomic order of the supercells.

Probably the most reliable way of obtaining the Curie temperature from param-
eters of the EHH for a random system is the Monte Carlo (MC) simulation [121]; its
recent applications indicate that previous MFA estimations of the TCs of DMSs
should be taken with care [24, 122]. The MC simulations take into account on an
equal footing both correlations of thermal fluctuations of the spin variables and the
randomness of the alloy configurations. The latter is especially important for small
concentrations of magnetic atoms where effects of magnetic percolation become
important for the critical behaviour. This point is illustrated in figures 9 and 10
for the (Ga,Mn)As and (Ga,Mn)N alloys. The Mn–Mn exchange interactions in
the former have broader spatial range than in the latter, see figure 9. This difference
can be ascribed to the exponential damping of the exchange interactions due to the
half-metallic nature of the DMSs and due to different band gaps: the band gap of
the parent semiconductor GaN is wider than that of GaAs. The resulting Curie
temperatures are plotted in figure 10. For the (Ga1�x�yMnxAsy)As system, the
MFA overestimates the MC-values by a factor of two, but it yields at least roughly
correct concentration trends of the TC. The experimental data of Edmonds
et al. [115, 116] for about 5% (8%) of Mn in GaAs hosts vary in the range
48–118K (55–170K) depending on the sample preparation. The lower (upper) values
correspond to as-grown (well annealed) samples with essential (negligible) presence
of compensating defects, such as As-antisites and/or Mn-interstitials. The results
of MC simulations in figure 10 (left panel) agree well with the measured data for
annealed samples. On the other hand, the MFA fails completely for the
(Ga1�xMnx)N system by predicting a non-monotonic behaviour of the TMFA

C with
a maximum above 300K around x � 0:04, in contrast to the MC simulations that
lead to a magnetic gap for small Mn-concentrations followed by a slow increase of
TMC
C with increasing x. These results demonstrate that percolation becomes more
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important for systems with exchange interactions strongly localized in real space;
calculations based on the KKR-CPA method [122] as well as on the real-space RPA
[111] confirm these conclusions. More details on MC simulations including results
for a (Zn,Cr)Te system have been published elsewhere [24].
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Let us briefly discuss other possible sources of discrepancy between theoretical
and experimental values of the Curie temperatures of the DMS. It has been shown
by using the LSDAþU method that strong electron correlations due to the Mn-3d
orbitals are important for the electronic structure and exchange interactions
[22, 123–125]. In particular, the value of U ¼ 4 eV (bringing the calculated local
densities of states in reasonable agreement with measured photoemission spectra)
reduces the exchange interactions and the Curie temperature for the Ga0.95Mn0.05As
system, but leads to their increase in the case of Ga0.95Mn0.05N alloy [22, 124];
a study of concentration trends for the two systems can be found in Ref. [126].
In both cases, the occupied Mn-3d peaks of the majority spin are shifted downwards
as compared to the LSDA; the different behaviour of the two systems can be
ascribed to differences in the electronic structure of Mn atoms in the host semicon-
ductors: Mn in GaAs is a shallow acceptor strongly interacting with the valence
band, whereas Mn in GaN is a deep acceptor leading to an impurity level inside
the band gap [125].

A recent study simulating the disorder in DMS in terms of large (128–250 atom)
supercells and special quasirandom structures has addressed the role of local environ-
ment effects on exchange interactions and the Curie temperatures in (Ga,Mn)As,
(Ga,Cr)As and (Ga,Cr)N alloys [127]. The results reveal strong sensitivity of
pair interactions to varying local environments; the TC of Ga0.92Mn0.08As with
environment-specific interactions is about 50K smaller than that with configuration-
ally averaged interactions. The Curie temperature of this alloy has also been found to
strongly depend on the degree of atomic short-range order: a tendency to clustering
of Mn atoms on the cation sublattice leads to a decrease (of about 100K) of TC.
The latter fact has been explained on the basis of percolation: increased clustering
weakens links in magnetic percolation paths [127]. The opposite trend, namely an
increase of TC due to enhanced probability of Mn–Mn pairs on neighbouring cation
sites, has been reported in a similar study of (Ga,Mn)As and (Ga,Mn)N alloys [128].
Since the techniques employed in the papers [127, 128] differ in a number of details,
more work will be necessary to clarify the origin of their different conclusions as well
as to solve a number of open problems related to the effects of disorder in DMS [114].

4.5. Two-dimensional ferromagnets

Magnetism of epitaxial ultrathin transition-metal films on non-magnetic noble- or
transition-metal substrates has been studied intensively during the last two decades
[129, 130]. The main differences with respect to bulk magnetism lie both in ground-
state properties, where systematic DFT calculations predicted non-zero local
moments also for other elements besides the five 3d transition metals (Cr, Mn, Fe,
Co, Ni) [131, 132], and in finite-temperature behaviour, where the reduced dimen-
sionality leads to a different universality class as compared to the bulk. In the limit of
one-monolayer thickness of the film, one can realize a true two-dimensional magnet
on a non-magnetic substrate. Equally interesting is the behaviour of magnetic prop-
erties with increasing film thickness, as can be documented by the intensively studied
Fe films on an fcc Cu(001) substrate that display a variety of structures and magnetic
configurations [133, 134]. Their understanding in terms of ab initio techniques is a
difficult task even concerning the ground-state properties [135].
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The above formalism can easily be generalized to the two-dimensional case since

the basic expression for the pair exchange interactions (11) is formulated in the real

space. The magnetic properties resulting from a two-dimensional EHH can be

obtained in a similar way as in the bulk case, see (6–9), with the reciprocal-space

vector q replaced by a two-dimensional vector qk in the surface Brillouin zone (SBZ)

and with the real-space sums restricted to lattice sites R,R0 of the magnetic film.

The site-off-diagonal blocks g�RR0 ðzÞ of the Green function in (11) are determined

using the surface Green function technique [54, 55], while the definition of �RðzÞ

remains unchanged. The magnon energies are given by

EðqkÞ ¼
4

M
Jð0kÞ � JðqkÞ
� �

þ�an,

JðqkÞ ¼
X
R

J0R expðiqk � RÞ, ð32Þ

where �an is the magnetic anisotropy energy which is a consequence of relativistic

effects (spin–orbit interaction, magnetostatic dipole–dipole interaction). The Curie

temperature in the MFA is given by (8) while the RPA leads to the expression

kBT
RPA
C

� ��1

¼
6

M

1

Nk

X
qk

1

EðqkÞ
, ð33Þ

where Nk is the number of qk-vectors used in the SBZ-average.
The calculated pair exchange interactions JRR0 in an Fe-monolayer on an fcc

Cu(001) substrate are shown in figure 11 (left) as a function of the distance

d ¼ jR� R
0
j. The first nearest-neighbour interaction dominates and the next-

neighbour interactions exhibit an RKKY-like oscillatory behaviour with an envelope

decaying proportionally to d�2, in contrast to the bulk decay proportional to d�3

(see inset and compare with figure 1). The complex character of the distance-

dependence of JRR0 arises when interactions from all shells are displayed together

similarly as in the bulk case. The expected oscillatory behaviour is resolved for pairs

along a specific direction as illustrated in figure 11 (right). Note, however, that the

present case is not strictly two-dimensional due to the indirect exchange interactions

via the Cu-substrate; this fact is reflected by the RKKY-amplitude of JRR0 decaying

slightly faster than d�2.
The indirect interaction between the magnetic atoms, which is mediated by

the non-magnetic atoms, has important consequences for magnetic properties of

magnetic films placed on a non-magnetic substrate and covered by a non-magnetic

cap-layer of finite thickness. As reported in a recent experiment [136], the Curie

temperature of fcc(001)-Fe ultrathin films on a Cu(001) substrate varies in a

non-monotonic manner as a function of the Cu cap-layer thickness. Such behaviour

clearly cannot be explained within a localized picture of magnetism.
Motivated by this finding we performed a systematic study of Fe- and

Co-monolayers on an fcc Cu(001) substrate capped by another Cu-layer of varying

thickness [14, 16]. Figure 12 presents the magnon spectra in two limiting cases,

namely, for an uncovered Fe-overlayer on Cu(001) and for an Fe-monolayer

embedded in bulk Cu, and figure 13 shows the full dependence of the magnetic
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moments and the first nearest-neighbour exchange interactions on the cap-layer
thickness. The magnon spectra and the magnon densities of states exhibit all the
typical features of two-dimensional bands with the nearest-neighbour interactions
which are here only slightly modified by non-vanishing interactions in the next shells.
The magnetic moments drop substantially on capping while their sensitivity to

0

1

2

1 2 3 4 5 6 7

JF
e,

F
e  

(m
R

y)

d/a

Fe-overlayer on Cu(001)

−1

0

1

2

1 2 3 4 5 6 7

(d
/a

)2  J
F

e,
F

e  (
m

R
y)

d/a

−1

−0.5

0

0.5

1

0 5 10 15 20 25

(d
/a

)2  
JF

e,
F

e  
(m

R
y)

d/a along [110]-direction

Figure 11. Exchange interactions JRR0 between Fe-moments in an Fe-overlayer on an fcc
Cu(001) substrate as a function of the distance jR� R

0
j ¼ d: interactions for all neighbours

(left panel; the inset shows interactions multiplied by d2) and interactions multiplied by d2 for
Fe atoms along the nearest-neighbour direction [110] (right panel).

0

100

200

300

400

500

E
ne

rg
y 

[m
eV

]

M X MΓ

Fe

DOS

Figure 12. Magnon dispersion laws (left panel) and corresponding densities of states
(right panel) for an Fe-layer embedded in fcc Cu (full lines) and an Fe-overlayer on fcc
Cu(001) (dashed lines). We have set here �an ¼ 0 in (32).

1740 I. Turek et al.



increasing cap-layer thickness is rather small. On the other hand, the behaviour of
the nearest-neighbour exchange interaction is more complicated and it reflects inter-
ference effects in the Cu-cap layer. The oscillations visible in right panel of figure 13
are due to quantum-well states in the Cu-cap layer formed between the vacuum and
the magnetic layer which, in turn, influence properties of the magnetic layer. Note
that the values of the nearest-neighbour exchange interaction are significantly
enhanced (roughly by a factor of two or more) as compared to their bulk counter-
parts (cf. figure 1).

Calculations of the Curie temperatures of the two-dimensional ferromagnets
represent a more difficult task than in the bulk case. The MFA Curie temperatures
of the monolayers are typically of the same order of magnitude as the corresponding
bulk temperatures [14] due to the fact that the reduced coordination is approximately
compensated by the increase of the exchange interactions. This observation is
in strong disagreement with experimental data for ultrathin films which yield the
Curie temperatures of the order 150–200K. This failure is due to the fact that the
MFA violates the Mermin–Wagner theorem [137] due to the neglect of collective
transverse fluctuations (spin waves) and it is thus inappropriate for two-dimensional
systems.

Application of the RPA to the Curie temperature of a two-dimensional isotropic
EHH, (32, 33) with �an ¼ 0, yields a vanishing TRPA

C in agreement with the
Mermin–Wagner theorem. Finite values of TRPA

C require non-zero values of the
magnetic anisotropy energy �an which is taken here as an adjustable parameter.
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This is not a serious problem as the RPA Curie temperature has only a weak
logarithmic dependence upon �an [138], and it is thus sufficient to know the order
of magnitude of �an. The latter is typically of the order of the dipolar energy
2pðM�BÞ

2=V, where V is the atomic volume. In calculations we used
�Co

an ¼ 0:052mRy and �Fe
an ¼ 0:140mRy.

The calculated RPA Curie temperatures are shown in figure 14 (left panel). They
are strongly reduced as compared to the corresponding bulk values thereby improv-
ing on the MFA results. Nevertheless, they are still too large as compared to experi-
ment. It is unclear whether this is due to some inaccuracy of the theory or to some
imperfections of the samples used in experiments. On the other hand, such important
experimental facts as the strong influence of the metallic coverage on the Curie
temperature and the oscillations of the Curie temperature with the cap thickness
[136] are well explained by the present theory. A more detailed analysis of the data
reveals that the oscillations of the TRPA

C follow rather closely the behaviour of the
spin-stiffness constants, see figure 14 (right panel). The similarity of both trends
is due to the fact that the TRPA

C for a two-dimensional system is determined
predominantly by low-energy magnons.

It should be noted that analogous oscillatory behaviour of the Curie temperature
as a function of the non-magnetic spacer thickness has also been observed
for fcc(001)-Co/Cu/Ni trilayers [139]. The latter system has been investigated
theoretically in terms of the on-site exchange parameters J0R [140].
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4.6. Surfaces of ferromagnets

The surface of solids represents a playground for many novel, physically interesting
phenomena not present in the bulk. At the same time, far from the surface the bulk
behaviour is recovered. The knowlegde of exchange interactions at the system
surface is the first necessary step towards a quantitative study of such properties
as magnon spectra and critical temperatures. Corresponding experimental data for
surfaces are very limited because reliable separation of the surface- and bulk-related
features is a challenging problem. In such a situation the corresponding theoretical
study is of a great importance, in particular in the framework of the parameter-free
approach.

Reduced coordination at surfaces of transition-metal ferromagnets leads to an
enhancement of zero-temperature surface magnetic moments over their bulk values
[132]. For the FM hcp Gd, an enhancement of its Curie temperature at the (0001)
surface over the bulk value was observed [141]. Theoretical explanation of the latter
fact was provided by total-energy calculations using an LSDAþU approach [142].
An important role was ascribed to a small inward relaxation of the top surface layer.
However, more recent works have thrown serious doubts on these conclusions,
both on the side of experiment [143] and theory [86].

We have recently performed calculations for low-index surfaces of bcc Fe,
hcp Co, and hcp Gd [20] focused on layer-resolved local quantities like the magnetic
moments and the on-site exchange parameters J0R (15). Note, however, that for
inhomogeneous systems, such as surfaces, a direct relation between the Curie
temperatures and the on-site exchange parameters J0R cannot be given. Hence, the
latter quantities reflect merely the strength of the exchange interaction and its spatial
variations in layered systems [140].

Figure 15 presents the results for Fe- and Co-surfaces. It is seen that the well-
known surface enhancement of the moments is accompanied by a more complicated
layer-dependence of the on-site exchange parameters exhibiting a minimum in the
top surface layer and a maximum in the first subsurface layer. A qualitative explana-
tion follows from (11, 15) which show that J0R reflects the exchange splitting on the
R-th site as well as the splittings and number of its neighbours. Hence, the reduction
of J0R in the top surface layer is due to the reduced coordination, whereas the max-
imum in the first subsurface position is due to the full (bulk-like) coordination of
these sites and the enhanced surface local moments, see figure 15. Note that the
layer-dependence of the on-site exchange parameters and its explanation are anal-
ogous to the case of hyperfine magnetic fields at the nuclei of iron atoms [15, 144].

The Gd(0001) surface was treated in the ‘open-core’ approach mentioned in
section 4.2; the results are presented in figure 16. Two models of the surface structure
were used: with lattice sites occupying the ideal truncated bulk positions (unrelaxed
structure) and with a 3% contraction of the interlayer separation between the two
topmost atomic layers (inward relaxation). The magnitude of the contraction was set
according to LEED measurements [145] and previous full-potential calculations [86].
The layer-resolved magnetic moments exhibit a small surface enhancement followed
by Friedel-like oscillations around the bulk value. These oscillations can be resolved
also in the layer-dependences of the on-site exchange parameters J0R which, however,
start with reduced values in the top surface layer due to the reduced coordination,
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Figure 16. Layer-resolved magnetic moments (left panel) and on-site exchange parameters
J0R (right panel) at the (0001) surface of hcp Gd as calculated with the lattice sites in the ideal
truncated bulk positions and with the top surface layer relaxed towards the bulk. The layer
numbering starts from the top surface layer, denoted by 0.
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as discussed for Fe- and Co-surfaces. The maximum of the on-site exchange param-
eters is found in the second subsurface layer, in contrast to the transition-metal
surfaces, which can be explained by the reduced Gd-moments in the first subsurface
layer. The surface relaxation does not modify the investigated layer-dependences
substantially: it leads to a small reduction of the local moments and the on-site
exchange parameters in the first two top surface layers and a tiny enhancement in
the second subsurface layer as compared to the ideal surface.

One can conclude that the surface enhancement of the local magnetic moments
of the three FM metals is not accompanied by an analogous trend of on-site
exchange parameters which might be an indication of a surface-induced
enhancement of Curie temperatures. However, a calculation of the pair exchange
interactions and an improved treatment of the EHH beyond the MFA remain
important tasks for the future.

5. Discussion and outlook

Exchange interactions and related quantities can be extracted from self-consistent
electronic structure calculations in a number of different ways; each of them has
its own advantages and disadvantages. The simplest approach lies in obtaining the
exchange interactions from total-energy differences calculated directly for various
(usually collinear) spin configurations [86, 146, 147]. The usefulness of such schemes
is, however, rather limited mainly due to the finite number of configurations used
for the mapping. This fact together with the asymptotic behaviour of the exchange
interactions (12, 13) make the simple mapping procedures suitable especially
for non-metallic systems (half-metals, insulators) with short-ranged exchange
interactions [147, 148].

The central idea of mapping the infinitesimal changes of single-particle energies
onto an effective classical Hamiltonian for localized spins has been used also for a
quantitative description of effects beyond the bilinear isotropic exchange interaction
in (2). Higher terms in the expansion of the single-particle energies with respect to
rotation angles give rise to a biquadratic exchange interaction, important especially
in metallic multilayers [48]. Inclusion of relativistic effects, leading to the anisotropic
exchange interaction and Dzialoshinskii–Moriya interaction, has been discussed for
bulk systems [51, 149] and thin films [150]. In both cases, the gap in the spin-wave
spectrum for zero wavevector can be calculated with accuracy better than used in
section 4.5 for the quantity �an in (32). The magnetic force theorem and expressions
for effective interaction parameters have recently been formulated also for highly
correlated systems treated beyond the LSDA [151].

It should be noted, however, that certain aspects of finite-temperature itinerant
magnetism cannot be reproduced by effective Hamiltonians with one unit vector eR
per lattice site only. An ab initio study based on a model Hamiltonian with bilinear,
biquadratic and bicubic terms depending on the magnitude of local magnetic
moments was formulated in reference [49]. The parametrization of the model was
obtained from self-consistent calculations for a number of spin-spiral states.
The calculated Curie temperature of bcc Fe agrees well with experiment while the
Curie temperatures of fcc Co and fcc Ni were underestimated by about 20–25%.
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Another ab initio approach based on effective Hamiltonians acting on more than
one magnetic vector per atom was worked out in references [69, 85]. It is based on
the well-defined spatial separability of the sp- and d-components of the spin density
in late 3d transition metals thus leading to two spin vectors per atom. Results of
this approach for the magnon spectrum of fcc Ni seem to describe qualitatively well
finer details in the experimental data around 100–150meV (sometimes denoted as
an ‘optical’ magnon), which are a manifestation of non-adiabatic effects [69]. In the
case of heavy RE-metals (Gd through Tm), three moment vectors per site were
considered: the conduction electron (spd ) spin moment vector and the 4f electron
spin and orbital moment vectors. The effective Hamiltonian in the latter case
contains also intrasite spin-orbit coupling interaction and crystal-field terms.
A first-principles approach to crystal-field parameters in RE-based systems can be
found in references [83, 152].

As mentioned in section 2, the pair exchange interactions according to (5) do not
contain contributions from constraining magnetic fields which appear as Lagrange
multipliers in the constrained DFT. The accuracy of (5) has been recently addressed
by several authors [30, 32, 33]. It has been shown that the pair interactions (5)
obtained from the magnetic force theorem are appropriate for the dynamical
response function (magnon spectrum) within the adiabatic time-dependent DFT,
whereas a modification of the pair exchange interactions is desirable for the static
response and related quantities [33]. In the latter case, the changes of the moment
directions �uR and the constraining fields �B?

R satisfy linear relations [30]

MR �uR ¼
X
R0

KRR0 �uR0 þ �RR0 �B?
R0

� �
, ð34Þ

where MR denotes the magnitude of the R-th local moment in units of �B and where
the exchange-correlation response function KRR0 and the bare transverse susceptibil-
ity �RR0 are given by

KRR0 ¼
2

p
Im

Z EF

�1

dE

Z
�R

dr

Z
�R0

dr0 G"
ðr, r0;Eþ

ÞBxcðr
0
ÞG#

ðr
0, r;Eþ

Þ,

�RR0 ¼
2

p
Im

Z EF

�1

dE

Z
�R

dr

Z
�R0

dr0 G"
ðr, r0;Eþ

ÞG#
ðr

0, r;Eþ
Þ: ð35Þ

As a consequence of non-zero constraining fields, the exchange parameters JRR0

(5) get renormalized values given explicitly by [30]

JrenRR0 ¼ JRR0 �
1

2
ðM� KT

ÞX�1
ðM� KÞ

� �
RR0 , ð36Þ

where M,K,X denote, respectively, matrices with elements MR �RR0 , KRR0 , �RR0 , and
where KT denotes the transpose of K. The evaluation of JrenRR0 (36) for real systems
remains to be performed.

Physical insight into the nature of this renormalization can be obtained for
Bravais lattices assuming a sufficiently rigid magnetization within an atomic cell
[30]. In such a case, the renormalization of the pair interactions (36) leads to a simple
renormalization of the magnon energies E(q) which is significant for high-energy
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magnons EðqÞ > �ex, where �ex denotes an average exchange splitting. In particular,

the spin-wave stiffness constant D does not undergo any renormalization.

The Curie temperature evaluated in the RPA (9) becomes renormalized according

to the formula

kBT
RPA, ren
C

� ��1

¼ kBT
RPA
C

� ��1

�
6

M�ex

, ð37Þ

which means that the renormalized Curie temperatures are enhanced as compared

to the unrenormalized ones. The values for the bulk cubic 3d ferromagnets are

summarized in table 3. It can be seen that the renormalization of exchange param-

eters improves considerably the agreement between theory and experiment for Fe

and Ni (see also [33]), in contrast to Co, where the unrenormalized Curie tempera-

ture is closer to experiment than the renormalized one. A quantitative analysis for

bulk Gd shows that the effect of constraining fields is completely negligible [32].
As is well known, the exact magnon dispersion law is obtained from poles of

the dynamical transverse susceptibility while the effective exchange interactions are

closely related to the static transverse susceptibility [32, 33]. Susceptibility calcula-

tions within the DFT are, however, quite involved even for systems with perfect

three-dimensional translational symmetry [52, 153], which calls for additional

approximations. The calculations can be simplified using again the adiabatic approx-

imation and the ASA as done in reference [72]. The spin-wave spectrum of bcc Fe

calculated from the susceptibility agrees very well with that from a frozen-magnon

approach, whereas differences between the two approaches are found in results for

fcc Co and fcc Ni [72]. However, for a correct reproduction of the ‘optical’ magnon

branch of fcc Ni (including the lifetime effects), full susceptibility calculations [52]

are inevitable.
Susceptibility calculations have been employed in another successful approach to

finite-temperature magnetism, based on the DLM state [26, 47] the electronic struc-

ture of which is treated in the CPA. In contrast to the previous techniques starting

from the magnetic ground state and its excitations, the DLM theory is focused on

the paramagnetic state whereby no particular form of an effective spin Hamiltonian

has to be assumed. The transition temperature is derived from divergence of the

susceptibility of the DLM state which is related to a direct correlation function.

An efficient evaluation of the latter quantity represents the most difficult part of

the computations. This mean-field technique has been applied to bulk bcc Fe and fcc

Ni [81]; an especially good agreement between the calculated and experimental

Table 3. Curie temperature calculated within the RPA by using the bare
(TRPA

C ) and renormalized (TRPA,ren
C ) exchange interactions and their

comparison with experimental values (TC,exp).

Metal TRPA
C [K] TRPA,ren

C [K] TC,exp [K]

Fe bcc 950 1057 1044–1045
Co fcc 1311 1771 1388–1398
Ni fcc 350 634 624–631
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Curie temperatures has been achieved by including effects of correlations in terms of
Onsager cavity fields. Applications to thin transition-metal films have been restricted
to the mean-field level [154, 155]; the results for the Curie temperatures reproduce a
number of experimentally observed trends with respect to the thickness of magnetic
films and of non-magnetic capping layers. In the case of Fe and Co monolayers on a
Cu(001) substrate, however, the theory predicts unrealistically high Curie tempera-
tures, in full agreement with the MFA values from the EHH, see section 4.5 and
reference [14].

The DLM state was also combined with the Heisenberg Hamiltonian [156, 157].
The pair exchange interactions were derived within the CPA from band-energy
changes between the parallel and antiparallel orientations of two particular magnetic
moments assuming that the moments on other sites are randomly oriented.
Application of this approach to bulk bcc Fe led to exchange interactions different
from those presented in section 3.2: the first nearest-neighbour interaction from the
DLM state is about three times bigger than the value shown in figure 1. As a
consequence, the Curie temperature, estimated within the spherical model (equiva-
lent to the RPA), amounts to TC ¼ 2700K [156], substantially higher than the
experimental and theoretical values in table 1. A very recent analysis [50] of this
approach clarified the main reason for this overestimation: if the fully renormalized
form of the exchange parameters [156, 157] is replaced by an unrenormalized one
(corresponding to an infinitesimal rotation of magnetic moments described by the
second-order term in an expansion of band-energy changes with respect to the
CPA-medium), the resulting Curie temperatures come out in the range TC¼

1090–1330K, i.e. only slightly higher than experiment. This comparison indicates
that the two particular configurations of a pair of atomic moments (parallel and
antiparallel) used for a quantitative analysis in Ref. [156] are too specific and should
not be used for metallic systems. This conclusion is further corroborated by the
original mean-field treatment of magnetic susceptibility of the DLM state of bcc
Fe that yields the Curie temperature of 1250K [26].

The most important feature of the described ab initio approach to exchange
interactions lies in its real-space formulation, which opens the way to study long-
range interactions encountered in itinerant magnets including systems without three-
dimensional translational invariance (random alloys, low-dimensional magnets). The
inherent limitation to cases with large local magnetic moments makes the approach
especially suitable for applications to systems such as transition-metal surfaces and
thin films, diluted magnetic semiconductors, rare-earth metals and compounds, etc.
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[23] J. Kudrnovský, I. Turek, V. Drchal, et al., J. Magn. Magn. Mater. 272–276 1995 (2004).
[24] L. Bergqvist, O. Eriksson, J. Kudrnovský, et al., Phys. Rev. Lett. 93 137202 (2004).
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[86] P. Kurz, G. Bihlmayer and S. Blügel, J. Phys.: Condens. Matter 14 6353 (2002).
[87] P. Strange, A. Svane, W.M. Temmerman, et al., Nature 399 756 (1999).
[88] P.A. Lindgard, Phys. Rev. B 17 2348 (1978).

1750 I. Turek et al.



[89] N.G. Nereson, C.E. Olsen and G.P. Arnold, Phys. Rev. 135 A176 (1964).
[90] A.H. Millhouse and K.A. McEwen, Solid State Commun. 13 339 (1973).
[91] P. Franek, Substitutional disorder in systems with correlated f-electrons. Master’s thesis,

Charles University, Prague (2003).
[92] J. Jensen and A.R. Mackintosh, Rare Earth Magnetism (Clarendon, Oxford, 1991).
[93] M.S.S. Brooks and B. Johansson, in Handbook of Magnetic Materials, edited by

K.H.J. Buschow, Vol. 7, Chapter 3 (North-Holland, Amsterdam, 1993), p. 139.
[94] J. Kunes̆ and R. Laskowski, Phys. Rev. B 70 174415 (2004).
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[112] H. Akai, Phys. Rev. Lett. 81 3002 (1998).
[113] H. Ohno, J. Magn. Magn. Mater. 200 110 (1999).
[114] C. Timm, J. Phys.: Condens. Matter 15 R1865 (2003).
[115] K.W. Edmonds, et al., Phys. Rev. Lett. 92 037201 (2004).
[116] K.W. Edmonds, et al., Appl. Phys. Lett. 81 4991 (2002).
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