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Abstract

We theoretically analyze the electron dynamics in a superlattice (SL) driven by a highly asymmetric electromagnetic pulse. We show that the
time asymmetry of the pulse results in indirect population of higher minibands and leads to the appearance of a direct current. At low temperatures
and low filling of the lowest miniband the current generated in the SL has an oscillating behavior as a function of the pulse strength with minima
occurring when the wave vector transferred by the pulse matches an integer of half the reciprocal lattice constant.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Considerable efforts in condensed matter research are de-
voted to the study of semiconductor superlattices (SLs) due to
their importance for quantum cascade lasers [1,2] and to their
fundamental significance for fabricating materials with desir-
able band-structure properties [3,4].

Recently, the novel phenomena of the quantum ratchet effect
[5–7] and the rectification of alternating fields due to wave mix-
ing [8,9] in unbiased periodic systems have been investigated.
A paradigm of a quantum ratchet is the motion of a quantum
Brownian particle in an asymmetric, periodic ratchet poten-
tial in the presence of quantum Brownian fluctuations. If the
ratchet potential is tilted alternately by an unbiased adiabatic
switching, quantum mechanics (in contrast to the classical ex-
pectation) predicts the existence of a finite direct current (DC)
[5–7]. For the appearance of such a DC, the asymmetry of the
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periodic potential and the presence of a quantum noise are cru-
cial. Other schemes for rectifying unbiased alternating fields in
SLs in the nonadiabatic regime have also been proposed [8–11].
In particular, it has been shown that the use of a wave mixing
of an alternating electric field and its second harmonic in a sin-
gle miniband of an unbiased SL can lead to the generation of
a DC which is a result of dissipation effects [8,9] and/or of the
nonparabolicity of the electron energy bands [9].

In the present Letter we theoretically analyze the effect of
direct current generation in unbiased semiconductor SLs upon
irradiation by so-called half-cycle pulses (HCPs). HCPs are
nearly unipolar electromagnetic pulses whose electric field re-
sembles one-half of an optical oscillation cycle with duration τd

followed by a much longer decaying tail of duration τt , oppo-
site polarity, and of much smaller amplitude (for details on the
experimentally realized HCPs see Refs. [12–15]). In contrast
to the previously proposed procedures, the current generation
effect investigated here does not rely on dissipation nor nonpar-
abolicity effects but on the highly asymmetric nature of such
pulses. It has been shown that in the far field the time integral
of the electric field over the whole duration of the HCP van-
ishes but in the near field the integral over the positive part of
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the pulse can be much larger than the integral over the long
negative tail [14,15]. Here we consider this specific case of the
HCP shape and the ballistic regime, when τd is much shorter
than the carrier relaxation time. If, in addition, τd < τsys, where
τsys denotes the shortest time scale characterizing the dynamics
of charge carriers (a more detailed explanation of this quantity
for the case of charge carriers in a SL is given in Section 3),
the HCP imparts a net (directed) wave vector change to the
electronic system. This peculiarity of the matter-HCP interac-
tion is the foundation of a variety of phenomena occurring in
HCP-driven atoms [13,16], molecules [17,18] and mesoscopic
heterostructures [19,20] that cannot be achieved by utilizing
multicycle pulses. In the present case of HCP-driven SLs we
expect the pulse to deliver to the carriers in the SL a definite
amount of unidirectional wave vector that is determined by the
time-integral over the pulse electric field whilst the HCP polar-
ity governs the direction of the wave-vector transfer. This type
of interaction yields excited states with a broken time-reversal
symmetry and hence a finite DC emerges. This anticipation is
quantified below and the magnitude of the generated current
is calculated numerically. One should mention that other as-
pects of the interaction of ultrashort monopolar electromagnetic
pulses with thin SL layers were theoretically studied in the past
and several nonlinear effects concerning transmission proper-
ties were predicted [21–23].

The Letter is organized as follows. In Section 2 we present
a simplified model for the SL and calculate the overlaps be-
tween the eigenstates of the SL. These overlaps are then used
in Sections 3 and 4 for obtaining the population changes in the
minibands and the current induced by the HCP, respectively.
The total current consists of a DC part, which is constant in
time (neglecting relaxation), and an oscillating interminiband
part. For the case of a low filling of the lowest miniband the
dependence of the DC on the strength of the HCP has minima
when the wave vector p transferred by the pulse equals an in-
teger of half the reciprocal lattice constant. In the event that the
lowest miniband is completely filled, higher minibands should
be populated for creating a net current and, therefore, there is a
finite critical value of p below which the induced DC is almost
zero. Conclusions are made in Section 5.

2. Energy spectrum and eigenfunctions of the model
superlattice

We consider a one-dimensional SL with a spatial period a.
According to the Bloch theorem the corresponding eigenfunc-
tions are expressible in the following form

(1)ψq(x) = 1√
L

uq(x)eiqx,

where uq(x) are the Bloch amplitudes, which are spatially pe-
riodic functions with period a. The wave vector q varies within
the range −π/a < q < π/a. Denoting by N the total number
of unit cells, the length of the SL is determined by L = aN .

The overall physical conclusions and results discussed in this
Letter do not depend on the particular shape of the potential bar-
riers defining the SL. For the sake of simplicity and clarity we
Fig. 1. Periodic potential consisting of Dirac delta functions (Dirac comb). The
period of the SL is denoted by a and Ω represents the strength of a single peak.

Fig. 2. Energy miniband structure for the parameters: a = 15 nm,
m = 0.067m0, Ω = 23h̄2/(ma). The strength of the barrier Ω is chosen as
to ensure a good agreement for the energy width of the first miniband and
the gap between the second and the first minibands calculated within the Kro-
nig–Penney model [26].

assume here that the SL is formed by a periodic distribution of
potential barriers having the shape of Dirac delta functions (see
Fig. 1), separated by a distance a from each other. By appropri-
ately adjusting the strength of the delta peaks, as done below,
the band structure of such a model system reflects well the band
structure of real semiconductor SLs.

The energy spectrum E = h̄2k2/(2m) (here m is the electron
effective mass) of the SL is given by the well-known relation
[24,25]

(2)cos(ka) + mΩ

kh̄2
sin(ka) = cos(qa),

which for each value of q has solutions kn(q) belonging to the
different minibands which are labeled here with the index n.
The structure of the three lowest minibands of our SL is shown
in Fig. 2 for a case in which a good agreement with the respec-
tive minibands of an Al0.32Ga0.68As/GaAs SL is achieved.

The Bloch amplitudes in the range x ∈ [0, a] can be written
in the following form [25]

un,q(x) = An,q

[(
eiqa − e−ika

)
eikx + (

eika − eiqa
)
e−ikx

]
(3)× e−iqx,
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where the normalization coefficients

An,q = 1

2

{[
1 − cos(ka) cos(qa)

]

(4)+ sin(ka)

ka

[
cos(qa) − cos(ka)

]}−1/2

are such that the integral over the unit cell of |un,q(x)|2
equals a. For the case x /∈ [0, a], the Bloch amplitudes are
found from Eq. (3) by making use of the translation invari-
ance symmetry, i.e., un,q(x + la) = un,q(x), with l being an
integer number. Here and in what follows we write k instead of
kn(q), for simplicity of notations.

The overlaps between two different Bloch amplitudes are de-
fined as

(5)T
n,q

n′,q ′ = 1

a

a∫
0

dx u∗
n′,q ′(x)un,q(x).

From Eqs. (3) and (5) one obtains

T
n,q

n′,q ′ = 4

a
An,qAn′,q ′

×
{

(k − k′) sin[(k − k′)a]
(k − k′)2 − (q − q ′)2

− (k + k′) sin[(k + k′)a]
(k + k′)2 − (q − q ′)2

− k′ sin[(k + q ′)a]
(k − q + q ′)2 − k′2

− k′ sin[(k − q ′)a]
(k + q − q ′)2 − k′2

+ k sin[(q + k′)a]
k2 − (q + k′ − q ′)2

− k sin[(q − k′)a]
k2 − (q − k′ − q ′)2

(6)

− (q − q ′) sin[(q − q ′)a]
(k − k′)2 − (q − q ′)2

+ (q − q ′) sin[(q − q ′)a]
(k + k′)2 − (q − q ′)2

}
.

Here and in what follows kn′(q ′) is written simply as k′.

3. Electron excitations in a SL driven by a HCP

A key feature of a HCP that makes its action on an elec-
tron system different from the action of multicycle symmetric
pulses, is mostly pronounced when the duration of the HCP
is much shorter than the characteristic times τsys of the elec-
tron system. In such a case the so-called impulsive approx-
imation (IA) [27,28] applies and the action of the HCP on
an electron can be described as the transfer of a wave vec-
tor p = e

h̄

∫ τd

−∞ E(t)dt , where E(t) is the electric field of the
HCP, e is the electron charge and τd is the duration of the HCP.
We stress that because of the asymmetric nature of the HCP,
p acquires, in the near field, a finite value (even when the up-
per integration limit is extended to infinity) [15]. For example
if we assume, as done here, that the pulse shape is given by
E(t) = E0 sin2(πt/τd) for 0 < t < τd and E(t) = 0 otherwise
then p = eE0τd/(2h̄).

Accessing the impulsive regime in a SL requires τd < τsys
where τsys = h̄/max{Eqf ,nf

− Eqi,ni
} is determined by the

transition from the lowest occupied initial electron state with
energy Eqi,ni

to the highest excited final state with energy
Eqf ,nf

. As shown below, the stronger the HCP the higher the
minibands that are excited. Therefore, generally the applicabil-
ity of the IA depends not only on the duration of the pulse but
also on the pulse strength. For the miniband structure displayed
in Fig. 2 one obtains for excitations involving interband transi-
tions between neighboring bands τsys ≈ 8 fs and for transitions
from the first to the third miniband τsys ≈ 3 fs. Thus, femtosec-
ond HCPs are generally required for accessing the impulsive
regime when interband transitions are involved. We remark, that
currently available HCPs [12,13] are much longer than those
required here. However, the realization of HCPs with duration
even shorter than 1 femtosecond is already discussed in the lit-
erature [29]. Another way to overcome this limitation is to use
SLs with larger spatial periods. Furthermore, for excitations in-
volving intraband transitions only, τsys can be in the desired
range.

Within the IA, the single-particle wave functions just before
(t = 0−) and right after (t = 0+) the application of the HCP are
related through the following matching condition [27]

(7)Ψ
(
x, t = 0+) = Ψ

(
x, t = 0−)

eipx,

where p is the wave vector transferred by the pulse. The time-
dependent wave function Ψn,q(x, t) corresponding to a particle
being initially (i.e., before the application of the HCP) in the
nth band with wave vector q can be written as follows

(8)Ψn,q(x, t) =
∑
n′,q ′

C
n,q

n′,q ′(t)e
− i

h̄
En′,q′ tψn′,q ′(x).

We note that the sum over q ′ corresponds to the case of a finite
SL and can be approximated by an integral if the SL contains a
large number N of unit cells.

From Eqs. (1), (7), and (8), we obtain

(9)C
n,q

n′,q ′(t) = δn,n′δq,q ′ , for t < 0,

C
n,q

n′,q ′(t) =
∑
Gj

δq ′,q+p+Gj

1

a

a∫
0

dx u∗
n′,q ′(x)un,q(x)e−iGj x,

(10)for t > 0.

The sum over all the possible reciprocal lattice vectors Gj =
j 2π

a
(j ∈ Z) is restricted by the condition that q ′ = q + p + Gj

belongs to the first Brillouin zone (BZ). Comparing Eq. (10)
with Eq. (5) we can write

(11)C
n,q

n′,q ′(t) = T
n,q

n′,q+p
, for t > 0.

Eq. (6) is then used for these coefficients, where the wave vector
q + p can also be now outside the first BZ (notice that Eqs.
(1) and (4) do not change by shifting the wave vector q by a
reciprocal lattice vector Gj ).

The magnitudes |Cn,q

n′,q ′(t)|2 of the transition coefficients
yield the probabilities for an electron being initially in the nth
miniband with wave vector q to be detected in the n′th mini-
band with the wave vector q ′ after application of the HCP. In
Figs. 3(a), (b), and (c) we show the probability of an elec-
tron from the lowest (first) miniband with wave vector q to
be found in the first, second and third minibands, respectively,
after application of a HCP. The strength of the pulse is such
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that it transfers a wave vector p to the electron (recall that the
wave vector q ′ of the excited state is fixed by the constraint
that q ′ = q + p + Gj should be in the first BZ). Note that,
in contrast to conventional direct optical transitions induced by
continuous wave lasers and standard laser pulses, HCPs induce
indirect transitions between different minibands of a SL which
involves a large wave-vector transfer, as evident from Fig. 3.
Notice that for a semiconductor SL with a = 15 nm in order
to reach pa = π the peak electrical field of a HCP with 1 fs
duration should be on the order of 1 MV/cm. For a semicon-
ductor SL with a spatial period of a = 150 nm and a HCP with
100 fs duration the peak electrical field should be on the order
of 1 kV/cm.

One can also see from Fig. 3 that upon application of the
HCP the reflection symmetry with respect to the center q = 0 of
the first BZ breaks down. Consequently, an asymmetric popula-
tion with respect to q ′ = 0 will also develop (this is particularly
clear when pa = 2nπ (n ∈ Z), for in this case the constraint that
q ′ = q + p + Gj must belong to the first BZ leads to q ′ = q),
suggesting that a finite current could be generated by the pulse
in dependence of the initial population of the minibands. Fur-
thermore, opposite polarities (p and −p) of the pulse lead to
the same populations on the opposite sides of the first BZ, i.e.,
by reversing the polarity of the pulse the direction of the in-
duced current must also be reversed. Note, however, that the
reverse of the pulse polarity should leave invariant the absolute
value of the current, since we assumed a SL with inversion sym-
metry. This fact is reflected in the invariance of Figs. 3(a), (b),
and (c) under the transformation (p → −p,q → −q).

Fig. 3. Probability right after the application of a HCP for an electron to be in:
(a) first, (b) second, (c) third miniband. Initially the particle resides in the first
miniband and has wave vector q . The probability is shown as a function of qa

and the scaled pulse strength pa. The same value of Ω as in Fig. 2 was used.
4. Current generation

In this section we investigate in detail the characteristics and
properties of the current created by a HCP in a SL.

The charge current in,q(t) carried by a particle that is de-
scribed by the wave function Ψn,q(x, t) (see Eqs. (8)–(10)) is
determined by

in,q(t) = 1

L

L/2∫
−L/2

dx
ieh̄

2m

(
Ψn,q(x, t)

d

dx
Ψ ∗

n,q(x, t)

(12)− Ψ ∗
n,q(x, t)

d

dx
Ψn,q(x, t)

)
.

One can change the integration over the SL length L to an inte-
gration over the unit cell in Eq. (12) and perform a summation
over all cells by using the periodicity of the Bloch amplitudes.
Then, taking into account that before application of the HCP
the particles are in stationary states given by Eqs. (1)–(4), one
obtains the following expression for the current carried by a par-
ticle with wave vector q in the nth miniband before the pulse
application,

(13)i(0)
n,q = 1

L

eh̄q

meff
n (q)

,

where we have introduced the effective mass

(14)meff
n (q) = m

q

4kA2
n,q sin(ka) sin(qa)

.

The dependence of the effective mass on the wave vector q is
displayed in Fig. 4 for the three lowest minibands. For the cen-
ter of the BZ (q = 0) the value of the effective mass given by
Eq. (14) coincides with the value calculated by the definition

(15)meff
n (q) =

(
∂2En(q)

∂q2

)−1

.

It is worth noting that Eq. (13) can also be obtained by using
i
(0)
n,q = ev

(0)
n,q/L, where v

(0)
n,q = h̄−1∂qEn(q) is the velocity and

En(q) is the energy of the particle.

Fig. 4. Dependence of the effective mass on the wave vector q for the three
lowest minibands. The same parameters as in Fig. 2 were used.
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One can also find from Eqs. (1), (7), and (12) that the corre-
sponding single particle current right after the pulse application
(t = 0+) is determined by

(16)in,q

(
t = 0+) = i(0)

n,q + eh̄p

mL
,

i.e., each electron in the SL has gained an additional momen-
tum h̄p from the HCP. On the other hand, neglecting relaxation
effects, and using Eqs. (8), (11), and (12) we get for t > 0 the
following relation

in,q(t > 0) =
∑
n′

∣∣T n,q

n′,q+p

∣∣2
jn′,n′(q + p)

+
∑

n′,n′′(n′ 	=n′′)
T

n,q

n′,q+p
T

n,q

n′′,q+p
jn′,n′′(q + p)

(17)× cos

[
(En′,q+p − En′′,q+p)t

h̄

]
,

where

jn,n′(q) = 8eh̄

Lma
An,qAn′,q

kk′

k2 − k′2
sin(qa)

(18)× (
cos(k′a) − cos(ka)

)
.

The first sum in the right-hand side of Eq. (17) corresponds
to stationary-like contributions (note by comparing Eqs. (13)
and (18) that jn,n(q) = i

(0)
n,q ) while the second sum accounts for

interference effects.
The total current, created by the carriers having in the initial

state distribution function fn,q(μ,T ) (here fn,q(μ,T ) is the
Fermi–Dirac distribution function multiplied by two to account
for the twofold spin degeneracy), where μ = μ(N) is the chem-
ical potential determined by the number of electrons N and T

is the temperature, is given by

(19)I (t) =
∑
n,q

fn,q(μ,T )in,q(t).

The substitution of Eqs. (13) and (14) into (19) gives a zero
value for the net current before the pulse application. Making
use of Eqs. (16) and (19) one obtains, however, that the net
current right after the application of the HCP acquires the finite
value

(20)I
(
t = 0+) = eh̄p

m
n1D,

where

(21)n1D = 1

L

∑
n,q

fn,q(μ,T )

denotes the one-dimensional electron density. Furthermore, one
obtains from Eqs. (17) and (19) that the total current for t > 0
is given by

(22)I (t > 0) = IDC + IAC(t),

where the DC part of the total current is the sum of intramini-
band [iintra(p)] and interminiband [iinter(p)] current contribu-
tions, i.e.,

(23)IDC = iintra(p) + iinter(p)
with

(24)iintra(p) =
∑
n,q

fn,q(μ,T )
∣∣T n,q

n,q+p

∣∣2
i
(0)
n,q+p,

(25)iinter(p) =
∑

n,n′,q(n	=n′)
fn,q(μ,T )

∣∣T n,q

n′,q+p

∣∣2
i
(0)

n′,q+p
.

On the other hand, the AC part of the total current can be written
as

IAC(t) =
∑

n,n′,n′′,q(n′ 	=n′′)
fn,q(μ,T )T

n,q

n′,q+p
T

n,q

n′′,q+p
jn′,n′′(q + p)

(26)× cos

[
(En′,q+p − En′′,q+p)t

h̄

]
.

The above expression demonstrates that the AC component of
the total current arises, exclusively, from interference effects
involving interminiband transitions.

It is not difficult to prove that Eqs. (16) and (22) give the
same result for t = 0+. For subsequent time moments the AC
contribution IAC(t) to the total current oscillates in time hav-
ing zero average value. Consequently, the net charge transfer is
caused only by the constant DC contribution IDC.

In Fig. 5 we show the dependence of the current generated
right after the pulse I (t = 0+) on the transferred wave vector p

for different values of the initial filling n1D of the lowest mini-
band. The thin dotted line represents the exact (within the IA)
result computed using Eq. (20). The other lines correspond to
an approximation neglecting excitations beyond the four low-
est minibands. As one can clearly see, for the shown range of
the transferred wave vector p the result of the four-minibands
approximation is in good accord with the linear behavior of the

Fig. 5. Current I (t = 0+) (in units of I0n1Da, where I0 is defined by Eq. (27))
generated right after the pulse excitation as a function of the wave vector trans-
ferred by the HCP. The thin dotted line shows the linear dependence given
by Eq. (20). All other lines show results of approximative calculations using
Eqs. (22)–(26), and accounting only for the four lowest minibands. Full line
shows the case of the low initial filling of the first miniband with n1Da = 0.2,
dashed line shows the case of the half-filled first miniband with n1Da = 1,
and the dotted line corresponds to the filled first miniband with n1Da = 2. The
strength of the delta-peaks of the superlattice is Ω = 23h̄2/(ma). Temperature
T = 0.
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Fig. 6. Dependence of the normalized direct current Ĩ = IDC/(I0n1Da) on the normalized transferred wave vector pa. The strength of the delta peaks of the SL is:
(a) Ω = 23h̄2/(ma), (b) Ω = 10h̄2/(ma). Full, dashed, and dotted lines correspond, respectively, to low filling (n1Da = 0.2), half-filling (n1Da = 1), and complete
filling (n1Da = 2) of the first miniband at zero temperature.
exact result. Consequently, within the range of parameters as-
sumed here, it is enough to consider transitions between the
four lowest minibands to accurately describe the system. This
justifies the validity of the four-minibands approximation used
for obtaining all the results presented below.

In order to investigate the dependence of the DC on the
strength of the HCP, which is characterized by the transferred
wave vector p, we consider the case of T = 0 and suppose
that initially (i.e., before application of the pulse) only the first
miniband is populated. In Fig. 6 we show the dependence of
the normalized DC Ĩ = IDC/(I0n1Da) on the normalized trans-
ferred wave vector pa. Here

(27)I0 = eh̄

ma2
,

and n1Da is the factor characterizing the filling of the first mini-
band (n1Da = 2 for the first miniband being completely filled;
the factor 2 appears here because of two-fold spin degener-
acy). For a SL with a = 15 nm and m = 0.067m0 we have
I0 ≈ 1.2 µA. Remember that here for the sake of simplicity we
consider strictly one-dimensional SLs. The DC in a SL having
spatial extension in the plane perpendicular to the axis of the
SL (x-axis in Fig. 1) is the larger the large is this extension. By
calculating the dependence of the DC on the transferred wave
vector we took into account all transitions of the four lowest
minibands. In Fig. 6(a) we used Ω = 23h̄2/(ma) that corre-
sponds to the energy band structure of Fig. 2. For comparison
in Fig. 6(b) we show the same dependence but for a lower effec-
tive energy barrier height Ω = 10h̄2/(ma). The dependence is
similar but the current has larger values. Generally, in the case
of high energy barriers, which is close to the situation of single
atoms, the DC is low, and in the case of small energy barriers,
which is close to the situation of free electrons, the DC con-
verges to the current created just after the pulse (see Eq. (20)).

From the constraint that q ′ = q +p +Gj must belong to the
first BZ (see Section 3) we conclude that q ′ = q if p = 2nπ/a

(n ∈ Z) and q ′ = q −sgn(q)π/a if p = (2n+1)π/a. Therefore,
for an initially small population of the lowest miniband (i.e., if
all the carriers have small q-values before the pulse application)
a HCP with pa = 2nπ transfers the electrons to the vicinity of
the center of the BZ and the initial reflection symmetry (with
respect to q = 0) of the minibands population is approximately
recovered after the application of the pulse. On the other hand
if pa = (2n + 1)π the electrons are transferred to the vicinity
of the boundaries of the BZ, where the effective mass rapidly
increases (see Fig. 4). Consequently, the induced DC exhibits
minima at pa = nπ (n ∈ Z), as evidenced by Fig. 6. Further-
more, when the transferred wave vector pa increases higher
minibands become involved and the reflection asymmetry be-
haves as discussed and illustrated by Figs. 3(a), (b), and (c).
Hence, the values of the minima of the induced DC increase as
the integer values of pa/π increase (see Fig. 6).

In contrast to the situation discussed above, when the filling
of the lowest miniband is increased the transfer of electrons at
integer values of pa/π is no longer limited to the central and
boundary regions of the BZ but involves transitions, in general,
along the entire BZ (this is particularly true in the case when the
lowest miniband is completely filled). These processes involv-
ing initial q values along the entire BZ lead to an appreciable
enhancement of the population asymmetry of the minibands
(see Fig. 3). As a consequence, the minima of the induced DC
at integer values of pa/π are progressively smoothed out when
increasing the lowest miniband population and completely dis-
appear in the case of a full miniband. This behavior is quite
apparent in Fig. 6. One can also appreciate that if the mini-
band is initially filled then there is a critical value pc for the
transferred wave vector needed to generate a current (see dot-
ted lines in Fig. 6). Below this critical value the current also
increases when the transferred wave vector increases but much
slower than above pc. This is due to the fact that in such a case
in order to create a current electrons should be transferred into
the second or higher minibands. The existence of a range of
transferred wave vectors around zero for which no excitations
of the second or higher bands take place (see Fig. 3) results then
in a finite value of pc.

We note that although interband excitations are not generally
required for generating the DC, they are responsible for the non-
linear response of the system. Indeed, looking at Eqs. (22)–(26)
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and comparing Fig. 5 with Fig. 6 one can see that the nonlinear
dependence of the DC current on the transferred wave vector for
any filling of the lowest miniband is a consequence of interband
excitations (in the absence of the interband excitations iinter and
IAC would be zero and the DC current IDC would coincide with
the current right after application of the HCP I (t = 0+)).

5. Conclusions

We have calculated the probabilities of the transitions and
the net charge current generated by half-cycle pulses in a super-
lattice under conditions in which the impulsive approximation
is valid. The calculation is performed for times, which are much
shorter than the relaxation time of carriers in a typical semicon-
ductor superlattice (it is usually on the picosecond time scale).
Application of appropriately designed half-cycle pulses results
in indirect transitions and in a generation of a direct charge cur-
rent, which is constant on a time scale smaller than the carriers
relaxation time.
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