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The current-induced motion of a magnetic domain wall in a quasi-one-dimensional ferromagnet with both
easy-axis and easy-plane anisotropies is studied theoretically. We analyze the spin-transfer-induced torque on a
sharp domain wall upon the flow of a dc electric current in the wire. The torque is shown to have two
components; one of them acts as a driving force on the domain wall. The other torque component leads to
changes to the domain-wall shape in that it forces the magnetic moments to diverge from the easy plane.
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I. INTRODUCTION

The increased interest in the dynamics of domain walls
�DWs� in magnetic nanostructures is fueled by possible ap-
plications in spintronic devices. Several recent experiments
have demonstrated the controllability of the DW position by
means of either external magnetic fields or electric
currents.1–5 On the theoretical side, several theoretical treat-
ments have been put forward to deal with the driven DW
dynamics.6–8 The magnetic dynamics within these models is
usually viewed as classical and a separation of the magnetic
and electronic degrees of freedom is then assumed.

Current research efforts are devoted to the study of the
current-induced DW motion in nanowires and nanoconstric-
tions. In the presence of an electric current, the DW can be
set in motion by the spin torque exerted on the magnetic
system by the spin-polarized electron gas. In addition �linear�
momentum can be transferred directly to the DW by the
scattering of the charge carriers. Few recent papers9–14 ad-
dress the spin torque and the DW motion.

The problem of the DW motion is described by the
Landau-Lifshitz equations, which have well-known static so-
lutions. Deriving dynamic solutions is a nontrivial task, par-
ticularly in the presence of an external force. This problem is
usually circumvented pragmatically by assuming physically
reasonable approximations which are not strictly justified
mathematically. The simplest approach is to consider the
moving wall to be described by the static shape solution. The
validity range of this approximation is unclear and one has to
resort to numerical simulations to assess its reliability.15

As well known, a DW moving in response to a steady
magnetic field can be described by the Walker solution.16,17

This solution is exact and is based on the assumption of a
constant deviation of the magnetization from the plane per-
pendicular to the field. However, it describes correctly the
DW motion only for magnetic fields smaller than some criti-
cal value, Hc.

18 It is not clear whether the Walker solution is
appropriate for a DW dragged by an electric current, for the

current-induced torque tends to push the moments out of the
plane.

Several recent approaches addressing the torque calcula-
tions as well as the solution of the dynamical equations of
motion for the DW were developed recently9,10,19 and are
partially revised in this work. We consider the spin torque
and the wall dynamics in a magnetic nanowire with a
DW which is sharp on the scale set by the wave length of
the relevant charge carriers. Our approach is particularly
appropriate for magnetic semiconductors with low charge
carrier �electrons or holes� concentrations �small Fermi
momentum�.20

In Sec. II we consider the torque due to spin transfer. The
DW motion is discussed in Sec. III, whereas Sec. IV contains
final conclusions and discussions.

II. CURRENT-INDUCED SPIN TORQUE

We consider the spin torque transferred to the DW in the
presence of a steady current of spin-polarized charge carri-
ers. Our main objective is to demonstrate the existence of
two components of the torque that rotate a magnetic moment
in different directions.

We adopt a one-dimensional model for the charge carri-
ers, with a pointlike interaction between the electron spin �
and the magnetic moment M�x� located at a point x along the
wire,

Hint = g� · M�x� , �1�

where g is the coupling constant. Here the one dimensional-
ity of the electronic system means that we consider the elec-
trons within a wire with transversal dimensions smaller than
the electron wavelength �, so that only the lowest electron
subband is relevant. Strictly speaking, the coupling of the
localized moment to the carriers’ spin depends on the coor-
dinates y and z that characterize the location of the moment
within the wire, g�y ,z����0�y ,z��2, where �0�y ,z� is the
wave function of the transverse motion of electrons in the
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lowest subband. For simplicity, in the following we neglect
this dependence, assuming an average coupling, g�y ,z�→g
=A−1�g�y ,z�dy dz, where A is the cross section of the wire.

When considering scattering of electrons from a magnetic
moment M�x� we assume that the magnetic moment is fro-
zen at the point x on the scale of the characteristic times of
electron motion. This assumption renders possible the calcu-
lation of the torque as in the case of a static DW. The calcu-
lated torque is then used to investigate the DW dynamics.
Our assumption relies on an adiabatic approximation insofar
as we require the time scale for the motion of the magnetic
subsystem to be slow as compared to that of the electrons.

To calculate the torque in the case of a sharp DW, we start
from a model describing electron scattering from a localized
moment in nonmagnetic and magnetic wires. The results ob-
tained for the simplified models are then used to calculate the
torque acting locally on the moments within the DW.

A. Single magnetic moment in a nonmagnetic wire

Let us consider first the scattering of electrons in a non-
magnetic one-dimensional system �nonmagnetic nanowire�.
The electrons are scattered from a single frozen magnetic
moment M0 situated at the point x=0, i.e., M�x�=M0��x�.
Here we denote the coordinate along the wire as x. In the
absence of spin-orbit interaction, it is convenient to use a
separate coordinate system �x� ,y� ,z�� for the spin space. We
calculate the total scattering amplitude �not just in the first
Born approximation� of an electron with arbitrary spin polar-
ization, coming from x=−� and elastically scattered into an-
other spin polarization.

Assuming the quantization axis z� along the moment M0,
we can write the spinor wave function of the electrons as

��x� = �eikx�a

b
� + e−ikx� ra

r*b
� , x � 0

eikx� ta

t*b
� , x � 0, 	 �2�

where the coefficients a and b correspond to an arbitrary spin
polarization of the incident electron wave, r and t are the
reflection and the transmission coefficients in the spin-up
channel, respectively,

r = −
i�

1 + i�
, t =

1

1 + i�
, �3�

�=gM0m /k	2, and M0 is the magnitude of the localized
magnetic moment.

Using Eqs. �2� and �3� we can calculate the corresponding
spin density in the wire,

S
�x� = �†�x��
��x� . �4�

The relevant spin density components are

Sx��x � 0� = sx�
1 + �2 + 2�4

�1 + �2�2 + sy�
2�3

�1 + �2�2

− 2 cos�2kx��sx�
�2

1 + �2 + sy�
�

1 + �2� , �5�

Sy��x � 0� = sy�
1 + �2 + 2�4

�1 + �2�2 − sx�
2�3

�1 + �2�2

+ 2 cos�2kx��− sy�
�2

1 + �2 + sx�
�

1 + �2� , �6�

Sz��x � 0� = sz��1 + 2�2

1 + �2 − cos�2kx�
2�2

1 + �2�
− sin�2kx�

2�

1 + �2 , �7�

where s
 is the unit vector along the spin polarization of the
incident wave. Similarly, for x�0 we obtain

Sx��x � 0� = sx�
1 − �2

�1 + �2�2 − sy�
2�

�1 + �2�2 , �8�

Sy��x � 0� = sy�
1 − �2

�1 + �2�2 + sx�
2�

�1 + �2�2 , �9�

Sz��x � 0� = sz�
1

1 + �2 . �10�

From Eqs. �5�–�10� follows that the spin density induced
by the spin-polarized wave incoming from x=−�, oscillates
for x�0 with the period  /k, and is constant for x�0.

The spin current is defined as

j

s �x� =

i	

2m

��x�

†�x���
��x� − �†�x��
�x��x� �11�

�
=x� ,y� ,z��, and can also be calculated using Eqs. �2� and
�3�. We find that the spin current is constant for x�0 and
x�0, with a jump of its x� and y� components at x=0.

The spin torque acting on the moment M0 can be calcu-
lated as the transferred spin current at the point x=0

T
 = j

s �− �� − j


s �+ �� . �12�

Using Eqs. �2�, �3�, �11�, and �12� we obtain

Tx� =
j0

e
�sx�

4�2

1 + �2 + sy�
2��1 − �2�

1 + �2 � , �13�

Ty� =
j0

e
�sy�

4�2

1 + �2 − sx�
2��1 − �2�

1 + �2 � , �14�

and Tz�=0, where e is the electron charge �e�0�, j0 is the
electric current associated with the scattering state

j0 =
ie	

2m

��x�

†�x����x� − �†�x��x��x� =
ev

1 + �2 , �15�

and v=	k /m is the velocity. Note that the x� and y� axes are
perpendicular to M0, so the torque components �13� and �14�
are not related in any way to the direction of the current j0.

Using Eqs. �5�–�10�, the results �13� and �14� can also be
obtained from the equation of motion for the magnetic mo-
ment M0,
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T
 = −
gM0

	
�
��n�S��0� , �16�

where n is the unit vector along M0, and �
�� is the unit
antisymmetric tensor.

In a general coordinate system for the electron spin �not
necessarily with the axis z� along M0�, Eqs. �13� and �14�
become

T
 =
j0

e
����
� − n
n��s� + ��
��n�s�� , �17�

where

� =
4�2

1 + �2 , � = −
2��1 − �2�

1 + �2 . �18�

In Eqs. �17� and �18�, there are two components of the
torque—both transverse to the localized moment. One tends
to align the moment along the direction of the spin polariza-
tion of the incoming electrons, whereas the other is perpen-
dicular to the spin polarization of the incident wave. In the
first Born approximation for the scattering amplitude, valid
for ��1, only the second term in Eq. �17� survives, which
tends to rotate the moment M0 to the direction perpendicular
to the vector s �and also to n�.

The spin torque acting on a single magnetic moment can
be found either as a change of the spin current due to scat-
tering from the localized moment or from the calculation of
the interaction of accumulated spin with the localized mo-
ment. In the following, to calculate the torque in the domain
wall, we will use both methods but the second one �coupling
to the accumulated spin� is more convenient in the case of a
sharp DW.

In the case of a smooth DW, it can be more convenient to
consider the propagation of a spin-polarized wave with sub-
sequent scattering from the magnetic moments. Alternatively,
one can calculate the torque as the divergence of the spin
current.

B. Scattering from a single magnetic moment
in a magnetic wire

Now we calculate the torque in the case of a magnetic
wire with magnetization M oriented along the axis x for x
�0 �left of the wall� and in the opposite direction for x�0
�right of the wall�. We assume now that the �x� ,y� ,z�� coor-

dinate system coincides with the �x ,y ,z� one. As before, we
introduce an additional frozen magnetic moment M0
=M0�nx ,ny ,0� located at the point x=0. For definiteness, let
the vector M0 lie in the x-y plane.

The corresponding Hamiltonian can be written as

H = −
	2

2m

d2

dx2 + gM�x sgn�x� + gM0n · ���x� . �19�

We consider the torque created by spin-polarized electron
waves coming from the left �with the spin polarization along
the axis x labeled as “↑”�. We choose the quantization axis
along the axis z. Then, the wave function containing the
reflected and the transmitted waves of opposite polarization
is

�↑�x�

=�
eik↑x + r↑e

−ik↑x

�2
�1

1
� +

r↑fe
−ik↓x

�2
� 1

− 1
� for x � 0,

t↑e
ik↓x

�2
�1

1
� +

t↑fe
ik↑x

�2
� 1

− 1
� for x � 0, 	

�20�

where k↑,↓= �2m���gM��1/2 /	, and � is the energy. Note
that the spin-up electrons are the spin-minority, while the
spin-down electrons are the spin-majority ones.

Using the continuity of the wave function at x=0 and the
discontinuity in slope of the function at x=0, resulting from

−
	2

2m
��d�

dx
�

+�
− �d�

dx
�

−�
� + gM0�nx�x + ny�y���0� = 0,

�21�

we find the transmission coefficients for the spin-up polar-
ized wave

t↑ =
2k↑�k↑ + k↓ − igonx�

�k↑ + k↓�2 + g0
2 , �22�

t↑f = −
2gonyk↑

�k↑ + k↓�2 + g0
2 , �23�

and the reflection factors r↑= t↑−1, r↑f = t↑f, where g0
=2gmM0 /	2.

Using Eqs. �11� and �20�, we find that the spin current
associated with the incoming spin-up wave is

j↑x
s �x� = �v↑�1 − �r↑�2� + v↓�r↑f�2, x � 0,

v↓�t↑�2 − v↑�t↑f�2, x � 0,
� �24�

j↑y
s �x� = �t↑f Im�v↑�eik+x − r↑e

−ik−x� + v↓�e−ik+x + r↑
*eik−x�� , x � 0,

t↑f Im�− v↑t↑
*eik−x + v↓t↑e

−ik−x� , x � 0,
� �25�
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j↑z
s �x� = �t↑f Re�v↑�eik+x − r↑e

−ik−x� − v↓�e−ik+x + r↑
*eik−x�� , x � 0,

t↑f Re�v↑t↑
*eik−x + v↓t↑e

−ik−x� , x � 0,
� �26�

where k±=k↑±k↓ and v↑,↓=	k↑,↓ /m.
Hence, the transverse components of the spin currents,

j↑y
s �x� and j↑z

s �x�, are nonzero for x�0 and for x�0. As we
see from Eqs. �24�–�26�, the transverse components of the
spin current are oscillating functions of x. The nonconserva-
tion of spin currents in the magnetic wire is related to indi-
rect magnetic interactions accompanying the inhomogeneous
distribution of the spin density. In the nonmagnetic case, cor-
responding to the limit of k−→0, it reduces to the conserva-
tion of spin current at x�0 and x�0, as in the previous
section.

The spin transfer �12� gives now the torque

T↑x = 2v↑ Re t↑ + �v↑ + v↓���t↑f�2 − �t↑�2� , �27�

T↑y = − 2t↑f�v↑ + v↓�Im t↑, �28�

T↑z = 2t↑f�v↑ − �v↑ + v↓�Re t↑� . �29�

For the coordinate system assumed, when the vector M0
lies in the x-y plane, the transverse components of the torque
acting on the moment M0 are

T↑� = − nyT↑x + nxT↑y , �30�

which tends to rotate the moment in the x-y plane, and T↑z
which tends to rotate it out of the plane. The label � in Eq.
�30� means the torque projection on the direction perpen-
dicular to the moment M0 in the x-y plane.

Scattering of incident electrons with the spin polarization
opposite to the axis x �labeled as ↓� can be considered in a
similar way. The corresponding scattering state has the form
of Eq. �20� with k↑↔k↓ and interchanged spin states. The
relevant transmission coefficients are

t↓ =
2k↓�k↑ + k↓ + igonx�

�k↑ + k↓�2 + g0
2 , �31�

t↓f =
2gonyk↓

�k↑ + k↓�2 + g0
2 , �32�

where the change g0↔−g0 is equivalent to the flip of mo-
ment M0. The components of the associated spin current j↓


s

have the following form:

j↓x
s �x� = �− v↓�1 − �r↓�2� − v↓�r↓f�2, x � 0,

− v↑�t↓�2 + v↓�t↓f�2, x � 0,
� �33�

j↓y
s �x� = �− t↓f Im�v↓�eik+x − r↓e

−ik−x� + v↑�e−ik+x + r↓
*eik−x�� , x � 0,

t↓f Im�v↓t↓
*eik−x − v↑t↓e

−ik−x� , x � 0,
� �34�

j↓z
s �x� = �t↓fRe�v↓�eik+x − r↓e

−ik−x� − v↑�e−ik+x + r↓
*eik−x�� , x � 0,

t↓f Im�v↓t↓
*eik−x + v↑t↓e

−ik−x� , x � 0.
� �35�

As in the case of the ↑-incident wave, Eq. �12� can be
used to calculate T↓. The relevant formula is similar to Eqs.
�27�–�29�. We note, that the components of T↑ and T↓ can
also be calculated from Eq. �16�, taking into account the net
spin at x=0,

S↑,↓x�0� =
4k↑,↓

2 ��k↑ + k↓�2 + g0
2�nx

2 − ny
2��

��k↑ + k↓�2 + g0
2�2 , �36�

S↑,↓y�0� =
8g0

2k↑,↓
2 nxny

��k↑ + k↓�2 + g0
2�2 , �37�

S↑,↓z�0� = �
8g0k↑,↓

2 �k↑ + k↓�ny

��k↑ + k↓�2 + g0
2�2 . �38�

The above formulas will be used later to calculate the torque
exerted on a DW.

In the case of a fully spin-polarized electron gas, only the
spin current components Eqs. �33�–�35� are relevant �corre-
sponding to the majority electrons�. Accordingly, in these
equations we should substitute k↑→ i�↑, where �↑ is real.

The eigenfunctions of the Hamiltonian �19� correspond to
the spin-polarized incoming electron waves �spin-up and
spin-down�. An arbitrary-polarized incoming wave is not the
eigenfunction of the Hamiltonian. Nevertheless, we can still
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consider the scattering of electron waves with different spin
polarizations. For example, such a state can be created by
means of an injection from the tip, and its lifetime � can be
long enough on the scale of the characteristic time of the DW
motion. In this case, a superposition of states with different
incoming spin-polarized waves can be used to calculate the
torque.

C. Magnetic wire with a thin domain wall

In the case of a thin metallic wire, when kF↑,↓d�1 �d is
the wire diameter and kF↑,↓ are the Fermi momenta of minor-
ity and majority electrons�, we can assume that only one
quantization level is filled with electrons.

Consider a magnetic wire with a single DW correspond-
ing to the magnetization M along the axis x for x�−w and
opposite to the axis x for x�w. Here 2w is the DW width,
and we chose the spin coordinate system like in the previous
section, with the x axis along the wire.

Upon applying a small voltage, an electric current can
flow in the wire. We assume the current in the negative x axis
direction �i.e., the electron flux is along x�. If the only im-
perfection in the wire is the DW, one can assume a jump ��
in the electrostatic potential at the wall, and both the charge
and the spin currents can be calculated as integrals over the
energies in the interval between �FR and �FL=�FR+e��,
where �FL and �FR are the Fermi levels on the left and right
sides. In the limit of a small voltage, �e�����F, the trans-
port is linear and is associated with electrons at the Fermi
level.

We assume the electrons approaching the domain wall
from the left are spin-polarized according to the magnetiza-
tion direction in the left part of the wire. The incoming elec-
trons are scattered from a large number of magnetic mo-
ments in the wall. We consider this scattering using the point
interaction of an electron with each of the localized mo-
ments. This corresponds to the picture with an array of well-
separated magnetic moments as in a magnetic semiconductor
doped with magnetic impurities. Accordingly, an electron
transmitted through the wall is multiply scattered by many
magnetic moments.

To calculate the transmission of electrons through the
DW, we take the perturbation created by the total magnetic

moment M̃�x�=�iMi��x−xi�, where Mi is the localized mo-
ment at the point x=xi, and all of the moments Mi are located
within a region of the wall width, �xi��w, which in turn is
assumed to be small as compared to the wavelength of elec-
trons, kF↑,↓w�1.

Electron scattering from the total moment M̃�x� located
within a region much smaller than the electron wavelength
can be described using the spin-dependent delta-function po-
tential model.12 Then, in the limit of small voltage, the cur-
rent takes the form

j0 �
e2��

2	
��t̃↑f�2 +

v↓

v↑
�t̃↑�2 + �t̃↓f�2 +

v↑

v↓
�t̃↓�2� , �39�

where the tilde means the transmission coefficients for the
scattering of electrons from the effective moment12 Mef f

��−w
+wM̃�x�dx. This is the Büttiker-Landauer formula for con-

ductivity, which can be obtained in the linear response ap-
proximation using the basis of scattering states. There are
two contributions in Eq. �39� related to the incoming waves
with spin-up and spin-down polarizations, and with the cor-
responding Fermi momenta k↑,↓�kF↑,↓.

In the DW with the magnetization profile of Fig. 1, the
effective moment Mef f is along the y axis. The transmission
coefficients t̃↑, t̃↑f and t̃↓, t̃↓f have the form of Eqs. �22�, �23�,
�31�, and �32�, respectively, with nx=0, ny =1, and with sub-
stitution g0→ g̃0�2mgMef f /	

2. The magnitude of Meff is
Meff ��−w

w My�x�dx.
The spin current can be also calculated in the linear re-

sponse approximation using the scattering states.12 It in-
cludes the sum of partial spin currents

js�x� =
e��

2	
� j̃↑

s�x�
v↑

+
j̃↓

s�x�
v↓

� , �40�

where the components of j̃↑,↓
s can be found using Eqs.

�24�–�26� and �33�–�35� with the substitution t↑,↓ , t↑,↓f

→ t̃↑,↓ , t̃↑,↓f. The appearance of v↑ and v↓ in the denominators
of Eq. �40� is related to the one-dimensional �1D� density of
states for spin-up and spin-down electrons. The spin current
components perpendicular to the axis x are oscillating func-
tions. As we see from Eqs. �24�–�26� and �33�–�35�, the
wavelength of the oscillations is determined by the inverse
momentum at the Fermi level. Hence, the oscillation wave-
length of the transverse component of the spin current is
much larger than the DW width.

It is worth noting that in three-dimensional systems, the
transverse component of the spin current decays due to the
integration over momentum in the DW plane. In metallic
ferromagnets, the decay is very fast due to the large electron
Fermi momentum. However, there is an additional nonvan-
ishing spin transfer for the transverse component in the 3D
case.

We can also calculate the net spin density induced by the
external current j0. It can be found as the expectation value
of the spin �
 in the scattering state of the incoming elec-
trons, integrated over all energies between �F and �F+e��,
as in the calculation of the charge and spin currents. We
obtain

FIG. 1. Schematic picture of the domain wall.
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S�0� =
e��

2	
� S̃↑�0�

v↑
+

S̃↓�0�
v↓

� , �41�

where S̃↑,↓�0� can be found using Eqs. �36�–�38� with nx=0
and the substitution g0→ g̃0, which corresponds to the scat-
tering from the effective magnetic moment Mef f.

Finally, we find the torque acting on a single localized
moment in the domain wall. For this purpose we use Eq. �16�
with S�0� from �41�, describing the spin accumulation cre-
ated by scattering from the domain wall as a whole. In its

turn, S̃↑,↓�0� is calculated as explained after Eq. �41� using
�36�–�38�. The result can be presented in the general form

T =
j0

e
��n � �n � s� + �n � s� . �42�

where

� =
g0g̃0�k↓

2 − k↑
2�

2k↑k↓�k↑ + k↓�2 + g̃0
2�k↑

2 + k↓
2�

, �43�

� = −
g0�k↑ + k↓�2��k↑ + k↓�2 − g̃0

2�
2�2k↑k↓�k↑ + k↓�2 + g̃0

2�k↑
2 + k↓

2��
, �44�

and s is the unit vector along the spin polarization corre-
sponding to magnetization M at x�−w. The dependence of
the coefficients � and � on the parameters g̃0 and on the
electron gas polarization P= �k↓−k↑� / �k↑+k↓� is presented in
Figs. 2 and 3. As we see, both coefficients strongly depend
on the parameters describing the ferromagnet and on the pa-
rameters of the wall. In the case of small coupling g̃0, we
obtain ���, i.e., the torque is mostly related to the second
component in Eq. �42�. In contrast, if g̃0 is larger, the first
term in Eq. �42� dominates.

D. Spin torque in p-type magnetic semiconductors

Electrical conductivity of magnetic semiconductors like
GaxMn1−xAs is usually of the p type. The valence band of
these semiconductors can be described by a matrix Hamil-
tonian, which includes the spin-orbit interaction.21 Thus, a
calculation of the hole transmission through the DW requires
a model, which takes into account complex band structure of
such compounds.

In this paper we use the Luttinger model for the energy
spectrum of holes with the angular momentum J= 3

2 ,22 and
neglect anisotropy of the energy spectrum. To simplify cal-
culations, we assume the quantization axis along the wire
�axis z�. In the quasi-one-dimensional case, with the domain
wall in the y-z plane, the Hamiltonian of holes takes then the
form

H =
	2

2m0
��1 +

5�2

2
� d2

dz2 −
	2�2

m0
Jz

2 d2

dz2

− g�JyMy�z� + JzMz�z�� , �45�

where m0 is the free electron mass, �1 and �2 are the Lut-
tinger parameters, and J
 are the matrices of the total angular
momentum 3

2 . Note that we are using �45� to describe the
holes as unfilled electron states in the valence band. The
correct statistics of holes corresponds to the negative energy
as compared to that of electrons.

As in the previous section, we take the magnetization M
along the axis z for z�−w and in the opposite direction for
z�w, while in the region −w�z�w the moment changes its
orientation rotating in the y-z plane. For z�−w, the holes
can be described by the energy spectrum consisting of four
parabolic bands labeled by the angular momentum projection
Jz,

FIG. 2. �Color online� Dependence of the factor � on the effec-
tive coupling g̃0 for different values of the electron polarization P.

FIG. 3. �Color online� Coefficient � vs coupling constant g̃0 for
different values of P.
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E±3/2�k� = −
	2k2

2mt
�

3gM

2
, �46�

E±1/2�k� = −
	2k2

2ml
�

gM

2
, �47�

where mt=m0 / ��1−2�2� and ml=m0 / ��1+2�2� are the
masses of heavy and light holes, respectively. In accordance
with Eqs. �46� and �47�, the energy band of the heavy holes
with the moment projection Jz=− 3

2 is above all the other
bands. In the region z�0, the spectrum is the same but with
the opposite signs of Jz.

We assume that the holes are fully polarized so that the
hole density is rather small. Correspondingly, we assume that
the chemical potential 
 is located between gM /2 and
3gM /2, i.e., gM /2�
�3gM /2.

The scattering state of Jz=− 3
2 holes, corresponding to the

wave incoming from z=−�, is

�†�z� = �r3
*e�3z,r2

*e�2z,r1
*e�1z,e−ikz + r*eikz�, z � − w ,

�48�

�†�z� = �t*e−ikz,t1
*e−�1z,t2

*e−�2z,t3
*e−�3z�, z � + w , �49�

where r ,r1 , . . . ,r3 and t , t1 , . . . , t3 are the reflection and trans-
mission coefficients, respectively. The momentum k of the
heavy hole is taken at the Fermi surface, −	2k2 /2mt
+3gM /2=�. The other momenta �i correspond to the
decaying components of the wave function, �1= �2ml��
−gM /2� /	2�1/2, �2= �2ml��+gM /2� /	2�1/2, and �3= �2mt��
+3gM /2� /	2�1/2. Note that the transmission coefficient t in
this notation corresponds to the transmission from the state
with moment Jz=− 3

2 to the state Jz=3/2.
In the limit of w→0, the matching condition can be pre-

sented in the matrix form

diag�mt
−1,ml

−1,ml
−1,mt

−1���d�

dz
�
�

− �d�

dz
�

−�
� − �0Jy��0� = 0,

�50�

where �0=2gMef f /	
2.

Using Eq. �50� and the continuity of the wave function at
z=0, we can calculate eight reflection and transmission co-
efficients. The accumulated spin density S�0� induced by the
current flowing along the axis z can be calculated as in the
previous section, but with the opposite sign because the ac-
cumulation of polarized holes means a loss of real particles
�electrons�. We find

Sx�0� = −
e��

2	vt
Im��3t1

*t + 2t2
*t1 + �3t3

*t2� , �51�

Sy�0� = −
e��

2	vt
Re��3t1

*t + 2t2
*t1 + �3t3

*t2� , �52�

Sz�0� = −
e��

4	vt
�3�t�2 + �t1�2 − �t2�2 − 3�t3�2� , �53�

where vt=	k /mt is the velocity of heavy holes at the Fermi
level, e��=�FR−�FL�0, and �FL and �FR are the Fermi lev-
els at z�−w and z�w, respectively.

Using Eqs. �16� and �42� we find the parameters � and �
determining the torque acting on a single magnetic moment
M0,

� =
egM0

j0	
Sz�0� , �54�

� = −
egM0

j0	
Sx�0� , �55�

where j0=−e2���t�2 /2	, and the “�” sign in the current is
due to the positive charge of the holes.

The dependence of � and � on the magnitude of magnetic
splitting gM for different bulk hole densities p is presented
in Figs. 4 and 5. We take the cross section A=1 nm2, and the
momentum of heavy holes k=p1D, where p1D is the linear
density of holes.

As we can see from Figs. 4 and 5 the factor � is negligibly
small as compared to �. In our model, the density of holes
and the spin splitting are independent parameters. Thus, the
magnitude of the torque � increases with the decreasing hole
density p at a fixed value of gM. However, in real magnetic
semiconductors these values are not independent, and the
magnetic splitting increases with the increasing hole
density.23

It should be noted that the approximation w→0 implies
that not only the wavelength of holes with Jz= 3

2 is large as
compared to the DW width, kw�1, but also the conditions

FIG. 4. �Color online� Dependence of the factor � on the mag-
netic splitting gM in the valence band of magnetic semiconductors
for different values of the bulk hole density p.
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�iw�1 for all �i should be fulfilled. This condition restricts
the magnitude of the magnetic splitting, �gMmt�1/2w /	�1.

III. MOTION OF THE DOMAIN WALL

A. Hamiltonian and equations of motion

Now we consider the Hamiltonian H0 describing a quasi-
one-dimensional magnetic system with a DW. We adopt a
model including the magnetic exchange interaction and two
different anisotropy constants �1 and �2 in the z and y direc-
tions, respectively �see Fig. 1�,

H0 =
a

2
� �n

�x
�2

+
�1

2
nz

2 +
�2

2
ny

2, �56�

where a is the exchange constant, and n�x� is the unit vector
along the magnetization. This Hamiltonian will be used to
describe the magnetic nanowire like that presented in Fig. 1.
We assume that the vector n depends only on the coordinate
x and time t. The Hamiltonian H0 describes the magnetic
system in the absence of the spin torque.

In our work we concentrate on the domain-wall motion
due to spin transfer, so in the Hamiltonian �56� we neglected
the magnetostatic contribution due to a stray field produced
by the wire and domain wall. Such a contribution is expected
to be small. However, it could be taken into account within
the micromagnetic simulations,24 which is however beyond
the scope of this paper.

As we have already pointed out in the Introduction, our
approach differs from the Walker solution of the magnetic
dynamics equations. The main reason of the difference origi-
nates from the fact that the spin torque giving rise to current-
induced DW motion �see Eq. �42�� explicitly contains a term
rotating magnetic moments out of the plane. Our method is
approximative but justified for the strong easy-plane aniso-
tropy.

In the following we consider the spin torque as a driving
force on the DW. Hence, we neglect the direct transfer of
momentum from electrons reflected from the DW. In the Ap-
pendix we show that this effect is smaller than that due to
spin torque.

Using spherical coordinates ��x , t� and ��x , t�, we can re-
write the Hamiltonian H0 as

H0 =
a

2
� ��

�x
�2

+
a

2
� ��

�x
�2

sin2 � +
�1

2
cos2 �

+
�2

2
sin2 � sin2 � . �57�

The Landau-Lifshitz-Gilbert equation of motion includes
a damping term and two possible components of the current-
induced torque, as discussed in the previous section,

1

�

�n

�t
= − n � � �H0

�n
−

�

�x

�H0

���n/�x�
� − �n �

�n

�t
+ J0�n � s

+ J0�n � �n � s� , �58�

where � is the damping constant, �=g
B /	M is the gyro-
magnetic ratio divided by M, J0= j0	 /eg�0, and �0 is a
volume per magnetic moment. In Eq. �58� the spin torque is
expressed in terms of the transferred moment per unit vol-
ume, and enters directly into the equation of motion. The
corresponding spin-torque terms in the magnetic Hamil-
tonian can be represented as

Hint = J0�n · s + J0��
0

1

d� n · � �n

��
� s� , �59�

where n��=0�=0 and n��=1�=n.
The Lagrangian of the magnetic system contains a term

with a time derivative as follows9,25

L = A� dx� 1

�

��

�t
�cos � − 1� − H� . �60�

Neglecting the damping term, equation of motion for the
magnetization leads to the following equations for the
spherical coordinates:

1

�

��

�t
= − a

�2�

�x2 sin � + �2 sin � sin � cos � − J0� cos � cos �

− J0� sin � , �61�

sin �

�

��

�t
= a

�2�

�x2 − a� ��

�x
�2

sin � cos � + �1 cos � sin �

− �2 sin � cos � sin2 � + J0� sin �

+ J0� cos � cos � . �62�

In the absence of current, j0=0, they have the well-known26

kinklike static solution �0�x�=arccos�tanh� 0x�� and �0

= /2, where  0= ��2 /a�1/2 is the inverse width of the static
DW. From now on we assume for definiteness that �1��2,
so that the static DW with the magnetization in the x-y plane
is energetically more favorable.

FIG. 5. �Color online� Coefficient � vs magnetic splitting gM for
different values of p.
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In a general case, the solution of the nonlinear equations
�61� and �62� for a moving DW is a difficult problem. There-
fore, we assume in the following that one of the anisotropy
constants is large, �1��2.

B. Strong easy-plane anisotropy

We consider the case of a large easy-plane anisotropy,
and, accordingly, assume that for the moving DW �subjected
to the torque� the deviation of magnetization M from the x
-y plane is small. Then, we can write ��x , t�= /2+!�x , t�
and take �!�x , t���1. To second order in the field !�x , t�, the
Lagrangian L is

L = A� dx�−
1

�

��

�t
�! + 1� −

a

2
� �!

�x
�2

−
a

2
� ��

�x
�2

�1 − !2�

−
�1

2
!2 −

�2

2
sin2 ��1 − !2� + J0�! sin � + J0� cos �� ,

�63�

Since we restrict our considerations to quadratic terms in
!, the integral over ! is Gaussian, and we can integrate out27

the ! fields to obtain

L = A� dx�1

2
� dx�G�x,x��� 1

�

���x�
�t

− J0� sin ��x��
� � 1

�

���x�
�t

− J0� sin ��x�� −
a

2
� ��

�x
�2

−
�2

2
sin2 � + J0� cos �� , �64�

where the Green function G�x ,x� obeys the equation

�− a
�2

�x2 − a� ��

�x
�2

+ �1 − �2 sin2 ��G�x,x�� = ��x − x�� .

�65�

Note that the � fields are taken at the same time t in Eq. �64�.
This follows from the equation for the Green function de-
scribing propagation in time, G�x , t ;x� , t�����t− t��. Equa-
tion �64� contains ��x , t�, which should be the saddle point
solution of the Lagrangian, i.e., the self-consistency should
be preserved.

Neglecting the first term in Eq. �65� we can find an ap-
proximate formula for the Green function proportional to
��x−x��

G�x,x�� = ��x − x���− a� ��

�x
�2

+ �1 − �2 sin2 ��−1

.

�66�

This form of G�x ,x�� leads to the point interaction of the �
fields in the first term of Eq. �64�. Physically, by neglecting
the first term with derivatives in Eq. �65� we substitute the
finite-range interaction by the �-like one.

One can estimate the conditions for which the use of
Green function �66� is justified. The exact solution of Eq.
�65� is

G�x,x�� = �
n

�n�x��n
*�x��

�n + �1
, �67�

where �n�x� and �n are the eigenfunctions and the corre-
sponding eigenvalues of the equation

�− a
�2

�x2 − a� ��

�x
�2

− �2 sin2 � − �n��n�x� = 0. �68�

We expect that the function ��x� in Eqs. �65� and �68� is
similar to the form of the static solution �0�x�. Thus, Eq. �68�
corresponds to the Schrödinger equation for a particle of
mass m=	2 /2a in the potential well V�x� of width L0

��a /�2�1/2. The energy spectrum of this problem consists of
a level in the well, �0�−�2, and a continuous spectrum for
all positive energies.

Equation �68� determines the eigenmodes �local spin ex-
citations� of the static DW. This is because we use the har-
monic expansion �63� of the Lagrangian in small deviations
! from the static solution with �= /2. Note that the current-
induced torque does not affect terms of the order of !2 in
�63�. The excitation modes of the DW are also known as
Winter modes.28 By integrating out the ! field from Eq. �63�
we take into account the effective interaction of the � fields
via the Winter modes.

For ��x�=�0�x�, the potential has the form V�x�=
−2�2 /cosh2� 0x�, and the discrete energy spectrum29 has one
level, �0=−4�2. The eigenfunctions �n�x� corresponding to
the continuous spectrum are oscillatory functions, so that
their contribution to Eq. �67� can be estimated as G�cont�

��x ,x����a�1�−1/2e−�1�x−x��, where �1= ��1 /a�1/2. Since �1

��2, it is a strongly localized function on the scale of the
distance L0 �static domain-wall width�. On the other hand,
the contribution of the localized state gives G�0��x ,x��
��1/L0�1�e−�0�x−x��, where �0=1/L0. Thus, in the case of
�1��2 �i.e., strong in-plane anisotropy�, the contribution of
G�0� can be neglected as compared to the short-range inter-
action. Using the condition of strong easy-plane anisotropy,
�1��2, we can simplify Eq. �66� essentially and obtain the
expression

G�x,x�� �
��x − x��

�1
. �69�

In this approximation, the Lagrangian �64� acquires the fol-
lowing form:

L = A� dx� 1

2�1
� 1

�

��

�t
− J0� sin ��2

−
a

2
� ��

�x
�2

−
�2

2
sin2 � + J0� cos �� . �70�

The corresponding saddle-point equation is
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−
1

�2�1

�2�

�t2 +
J0

2�2

�1
sin � cos � + a

�2�

�x2 − �2 sin � cos �

− J0� sin � = 0. �71�

The problem of the DW dynamics is reduced to a single
��x , t� field.

C. Solution for �=0

Let us consider the possibility of the kinklike solution,
moving with an arbitrary constant velocity v, ��x , t����x
−vt�. We can find such solutions in the case of �=0, trying a
function which obeys the equality ���x� /�x= sin ��x�. This
function differs from the static solution only by a different
choice of  instead of  0= ��2 /a�1/2. Substituting it into Eq.
�71�, we obtain the equation that relates the values of  and
v,

 2�a −
v2

�2�1
� − �2 +

J0
2�2

�1
= 0, �72�

as in the Walker solution. The dependence  �ṽ� is presented

in Fig. 6, where we denoted ṽ=v /���1a and j̃0
=J0� /��1�2.

When j0=0, we find from Eq. �72� that  2= 0
2 / �1

−v2 /�2�1a�. This means that in the absence of current, the
solution for a moving DW is more sharp than for a static
wall. For j0�0 and v→0, the value of  depends on the
current as  2= 0

2�1−J0
2�2a /�1�2�, i.e., the current makes the

thickness of the static DW larger.
Now we can use the velocity v as a variational parameter

to minimize the Lagrangian

L =
AF�v�
2 �v� � sin2 ��x�d� x� , �73�

where

F�v� =
1

�1
�v �v�

�
+ J0��2

− a 2 − �2, �74�

the function  �v� is defined by Eq. �72�, and the integral in
Eq. �73� does not depend on v.

Using Eqs. �72�–�74� we find that for j0=0, the quantity
F�v�=−�2 for any v. Thus, the minimum of L corresponds to
 = 0, which is the minimum value of the dependence  �v�
for j0=0. In the limit of a small velocity, v2��2�1a, and
using the relation �sin2 ����d�=2, we find the kinetic en-
ergy of the moving DW in the form of Ekin=m*v2 /2, where
m*=A��2 /�2�1

�a is the effective mass of the DW.30 This is
in agreement with the definition from Ref. 7 for �1=2M2.

For j0�0, we can present the dependence of the factor F
on both parameters v and j0 as

F�v� = − �2�1 − 2 j̃0
2 − 2 j̃0ṽ� 1 − j̃0

2

1 − ṽ2�1/2� . �75�

In the limit of v→0, the factor F changes its sign for
j0� j0cr, where

j0cr =
e�0

��1�2

�2	�
�76�

is the critical current. Thus, if j0� j0cr, the solution with
moving DW is energetically favorable. We can interpret the
effect of the current as leading to an effective reduction of
the effective mass of the DW. For j0� j0cr the current in-
duces an instability towards a spontaneous motion of the
wall.

D. Case of �Å0

In the case of ��0, there are no solutions of Eq. �71�
corresponding to the motion of the DW with a constant ve-
locity. This is because the last term in this equation acts as a
force accelerating the DW. Indeed, if we assume a probe
solution in the form of ��x , t����x−x0�t��, we find

m*ẍ0�t� + J0A� = 0, �77�

where m is a constant in the limit of a small velocity. In other
words, Eq. �77� describes the acceleration of the DW just
after we apply some voltage. Hence, our model can describe
the steady state if we include a viscosity �friction� into the
equation of motion. We can use the damping term from Eq.
�58�. Writing the corresponding additional term in Eq. �71�
as Fd=−��� /�t, we find the following equation that deter-
mines the velocity of the moving DW:

v �v� �
J0�

�
. �78�

This equation indicates a linear dependence of the velocity
on the current in the limit of a small velocity, when  is
constant. As we see from Eq. �78�, this corresponds to a large
damping.

Effective friction may also stem from the pinning by im-
purities. This case can be described phenomenologically
leading to another mechanism for the critical current.9

IV. CONCLUSIONS

We have calculated the spin-torque components, acting on
a thin DW in a magnetic nanowire subject to an electric

FIG. 6. �Color online� Dependence of the parameter  on the
domain-wall velocity ṽ for different values of the current.
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current. These components can induce rotation of magnetic
moments in different directions. We have also considered the
dynamics of a domain wall in the presence of a charge cur-
rent. It has been demonstrated that a moving magnetic kink,
similar to the static domain wall, can be a solution of the
equations for the magnetic dynamics only at some special
conditions characterized by a large ratio of the magnetic an-
isotropy constants. In the limit of small velocities, the solu-
tion is not a kink; its width decreases with increasing veloc-
ity. In the limit of a small velocity, the domain wall moves as
a particle with a mass determined by the exchange interac-
tion and anisotropies. The spin-torque component � domi-
nates at small coupling and acts as a driving force on the
DW, accelerating its motion �provided that there is no pin-
ning to impurities�.

Recent direct observations of the domain-wall configura-
tions show that the spin structure of the wall changes with
the current, and the structure depends on the velocity of the
domain-wall motion.5

We have performed calculations of the torque in the limit
of thin DW, w��F. This simplifies the problem, so that the
solution can be obtained analytically. Generally, the condi-
tion of a thin DW may not be well fulfilled. However, let us
consider a wire with a cross section A=1 nm2 and a bulk
carrier density n3D=1019 cm−3, corresponding to the linear
density n1D=n3DA=105 cm−1 meaning that kF=n1D�3
�105 cm−1 and we obtain for the carrier wavelength �F
=2 /kF�100 nm. To estimate the DW width, we assume
M =100 Oe, the demagnetizing factor along the y axis n�y�

=0.3, and calculate the anisotropy constant as �2
�8n�y�M2�105 erg/cm3. For the energy of magnetic inter-
action Eint�10 meV at a distance between magnetic ions of
c0=1 nm, the exchange parameter a=Eintc0 /A
�10−8 erg/cm. Then, the DW width has a reasonable value
of w= �a /�2�1/2�10 nm. Comparing these estimations, we
see that the main inequality of w��F is satisfied. At a larger
carrier density, both w and � can be of the same order of
magnitude, or even the inequality is reversed as in magnetic
metals. In this case, the constants � and � should be calcu-
lated numerically.
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APPENDIX A: SPIN TORQUE DUE TO THE MOMENTUM
TRANSFER

The reflection of electrons from a DW is accompanied by
the transfer of momentum from the electron system to the

DW. In the presence of the electric current flowing through
the magnetic wire, this creates an additional force acting on
the wall.8 Here we estimate the magnitude of this effect in
the case of a thin DW, kFw�1.

The force F is determined by the total transferred momen-
tum in a unit time. Taking into account the contributions of
spin-up and spin-down scattering states, corresponding to the
waves incoming from −� in the energy range between �F
and �+e��, we find

F =
e��

2
�k↑�1 + �r↑�2 − �t↑f�2 +

v↑

v↓
�r↓f�2 −

v↑

v↓
�t↓�2�

+ k↓�1 + �r↓�2 − �t↓f�2 +
v↓

v↑
�r↑f�2 −

v↓

v↑
�t↑�2�� . �A1�

This force tends to shift the DW along the x direction. For a
local moment within the wall it is equivalent to the presence
of a torque. To estimate the magnitude of this mechanical
torque acting on a single moment we use a simplified model.

We describe the DW by the field ��x�, which is the angle
in the x-y plane determining orientation of moment M�x�, as
shown in Fig. 1. We assume that the shift along the axis x is
related to the following interaction:

Hint = ���x�v�x� , �A2�

where � is a constant, v�x�=−d�0 /dx, and �0�x� is the static
solution for the domain wall. The potential v�x� has the form
of a potential well in the vicinity of the DW, and it forces
�makes energetically favorable� a correction to the ��x� field
of the same form, ���x��d�0 /dx. On the other hand, the
correction ���x�= �d� /dx��x0 is the shift along the axis x by
�x0. Thus, the interaction term in the form of �A2� in the
equation of motion for the ��x� acts as a shifting force.

The constant � should be determined by the condition that
the energy �E associated with the shift gives the force F

F = −
�E

�x0
= �A� �d�0

dx
�2

dx . �A3�

Using the known solution, d�0 /dx= sin �0�x�, we find �
=F /2 A.

The equation of motion for ��x� �Eq. �64�� includes the
additional torque term as �v�x�=Fv�x� /2 A. Using �A1� we
estimate the torque acting on the localized moment M0
=M�

Tmt �
j0

e

kF�

A
, �A4�

where � is the volume of an elementary cell. We find that
the relative contribution of the momentum-induced torque
with respect to the spin transfer is

Tmt/Tst � kF�/A � 1. �A5�
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